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Ordering and phase transitions of charged particles in a classical finite
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We report a Monte Carlo study of phase transitions in a finite two-dimensional (2D) system of
charged classical particles which are con6ned by a circular parabolic or hard-wall well. The ground-
state con6gurations are found by static energy calculations and their structures are analyzed using
the Voronoi constructions. A Mendeleev table for these classical 2D-like atoms is obtained. We
calculate the radial and angular components of the displacements of the particles as functions of
temperature and determine the critical temperatures for the order-disorder phase transitions. The
intershell rotation and intershell diffusion transitions are investigated. The results are compared
with Wigner crystallization in the infinite 2D system.

I. INTRODUCTION

In the last decade there has been considerable the-
oretical and experimental progress in the study of the
localization of a finite number of ions or electrons into
traps. These traps are created by imposing an artifi-
cial confining potential. Examples are radio-frequency
traps for ions and electrons in plasma, heavy-ion storage
rings, electrons above liquid He which can be trapped
in a bubble, and electrons in quantum dots in semicon-
ductor structures. 4 Electrons above liquid He and ions
in traps and in storage rings obey classical mechanics
due to the low electron density in the former case and
the heavy-ion mass in the latter. A special laser cooling
technique5 allows one to achieve very low temperatures
for ions. Electrons above liquid He are intrinsically at
very low temperatures. It is well known that a classical
one-component plasma at low temperatures undergoes
a phase transition and forms a Wigner crystal both in
three and two dimensions. The interesting question
is whether such a phase transition also exists in a quasi-
zero-dimensional system.

The purpose of this work is to present a detailed study
of a classical two-dimensional system consisting of a finite
number of ions or electrons which are laterally confined
by parabolic or hard-wall potentials at low temperatures
where Wigner crystallization occurs for unconfined infi-
nite systems. The possible ordered structures and phase
transitions for such a system are investigated. The sys-
tem of heavy-ion storage rings is similar to the present
one, except that there is a third degree of freedom, i.e.,
along the beam axis.

The equation of state and some of the ground-state
configurations have been reported by Calinon et al. for
a finite two-dimensional (2D) Wigner model. However,
most of their results are on systems with a in(l/r) in-
teraction potential, while we are interested in a pure
Coulomb repulsion interaction 1/r. Phase transitions
were not investigated.

Recently, Lozovik and co-workers have considered

a system similar to ours for the case of parabolic confine-
ment. In the present paper, we make several of their
conjectures more quantitative and improve considerably
on the statistics of their simulations: (1) typically we con-
sider at least an order of magnitude more configurations
for each set of parameters, and (2) we are able to con-
sider larger systems. We found that some of the configu-
rations proposed by Lozovik and coauthors are unstable.
Furthermore, we not only consider parabolic confinement
but also investigate the other extreme case of hard-mall
confinement. We found that the latter system behaves
difFerently in several aspects.

After finishing the present work we came across a re-
cent paper by Bolton and Rossler, who studied the
same system. They considered a classical model of a
Wigner crystal in a parabolic quantum dot with N & 40
electrons. They concentrated on the zero temperature
configurations and possible configurational degeneracies,
called cluster patterns. The differences with the present
paper are as follows: we consider also larger systems with
N ) 40, nonzero temperature and investigate the inHu-

ence of the confinement potential on our results.
The paper is organized as follows. In Sec. II we de-

scribe the model, the method of calculation, and intro-
duce the reduced units. In Sec. III the ground-state
configurations are discussed for parabolic and hard-wall
confinement potentials. We analyze the shell structures
using the Voronoi constructions and order the present
"classical atoms" into a Mendeleev-type table. Section
IV is devoted to phase transitions where we present the
results from Monte Carlo simulations at different tem-
peratures and system sizes for both confining potentials.
Our conclusions are presented in Sec. IV.

II. MODEL SVSTEM

We study a model system of a finite number N
of charged particles interacting through a repulsive
Coulomb potential and moving in two dimensions. A
confinement potential V, (r) keeps the system together.
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The Hamiltonian for such a system is given by

1V 1V

H =) V(r )+
i
r, —r, i'

V, (r) = 2mcupr (2)

and (2) hard-wall confinement

~( )
0 ifr(Rc
oo ifr&R, . (3)

Noting that the Hamiltonian (1) obeys a scaling law

when applying the parabolic confinement potential, we

can express the coordinates, energy, and temperature,
respectively, in the following units:

(q2/e) 1/3 ~ —1/3 (4a)

Ep (q2/e) 2/3 et 1/3 (4b)

T ( 2/ )2/3 1/3k— (4c)

where n = mwp/2 is a measure for the one-particle con-

finement energy and k~ is the Boltzmann constant. All

the results will be given in reduced form, i.e. , in dimen-
sionless units. In such units the Hamiltonian, in the case
of parabolic confinement, becomes

where e is the dielectric constant of the medium, and
r,

~

is the distance of the ith electron from the
center of the confinement potential. For convenience, we

will refer to our charged particles as electrons, keeping in
mind that they can also be ions with charge q and mass
m. The first term in Eq. (1) represents the confinement
potential, where we considered the following two cases:
(1) parabolic confinement

confinement energy ' such that fuup = 3 x 10 meV =
27t. x 1 kHz we obtained rp ——180 pm, Ep ——8 peV, and
Tp ——93 mK.

In the case of hard-wall confinement, there is another
parameter R„ the radius of the well, which defines the
length scale in the system. It turns out that it is con-
venient to choose the unit of length as rp = X / 2R,
which implies that the parameter n in Eqs. (4) has to be
replaced by ti = (q /e)N / (2R, )

The standard Metropolis, or M(RT), algorithm for
Monte Carlo simulation was used with automatic choice
of maximal displacements to ensure an acceptance prob-
ability of 0.5. The initial configurations were chosen as
fragments of the perfect Wigner triangular lattice with
some appropriate interelectron spacing for a given num-
ber of electrons. The real ground-state configurations
were then obtained during the Monte Carlo equilibration
run at zero temperature. In order to check that there
was a global minimum, the system was heated up and
cooled down again to T = 0. To consider a larger sys-
tem, an appropriate number of electrons was added with
random coordinates x and y within a circle of radius R~,
and then the system was equilibrated. The ground-state
configurations for systems with an arbitrary (but finite)
number of electrons can be obtained in this manner.

In order to analyze local order in the system, in par-
ticular to identify mean coordination number and local
density, we used the method of Voronoi constructions.
These are geometrical constructions which determine the
minimum area for each particle. This area is the inner
surface obtained by drawing perpendicular lines at the
midpoint between the particle and all its neighbors (cf.
the construction of the first Brillouin zone in solid state
physics) .

III. GROUND-STATE CONFIGURATIONS

A. Parabolic confinement

N N

H =) r,'+)

and we notice that the ground-state configurations do
not depend on the value of the confinement frequency
~p. The confinement frequency wp defines the length and
temperature scale in the system. Parabolic confinement
is similar to the action of a uniform neutralizing back-
ground of charges. Consequently, changing the number
of electrons % will, on the average, not change the den-
sity of the system, which is determined by the strength
of the confinement frequency ~p.

Typical values for the units, Eq. (4), are (1) for elec-
trons above liquid helium (q = —e, e = 1, m = m, )
with a typical dimple potential such that ~p ——0.1
meV= 23 GHz, we find rp ——2800 A, Fp ——5.1 meV,
and Tp ——60 K; (2) for electrons in a GaAs heterostruc-
ture with a typical quantum dot confinement energy of
heep ——1 meV we have rp ——630 A, Ep ——1.7 meV, and
Tp = 20 K, and (3) for ions in optical traps (q = —e,
e = 1, and m/m, = 4.2 x 10 for Na+) with a typical

In the case of not too large systems our computer simu-
lations indicate, as do Lozovik's work and Ref. 17, that at
low temperature the electrons are localized on shells. In
Table I shell structures are presented for different num-

bers of electrons N. This table can be viewed as the
present classical equivalent to the well-known Periodic
Table of elements. It should be noted that some of them,
for N = 1—21 and N = 56—58, have been reported earlier

by Lozovik and Pomirchy. ' The electrons are arranged
into shells with average interelectron distance which is
dependent both on the radius (shell number) for a par-
ticular structure and on the total number of electrons

[Fig. 1(a)]. The density increases with N but is lower
for outer shells. For large systems we found that the
structure of the inner shells is very close to the one of
a triangular lattice. Namely, almost all those electrons
are sixfold coordinated, whereas outer shells consist of
lower-coordinated electrons [see Fig. 2(a) for the case
N = 230]. Thus there is a competition between two types
of ordering: ordering into a triangular-lattice structure
(Wigner lattice) and ordering into a shell structure. The
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TABLE I. Ground-state con6gurations for the system with parabolic-con6nement potential.
Shell structures (Nq, Nq, ...), energies (E/N), and percentage of sixfold-coordinated particles (Ps).

N
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Ng) Ng) ...
1
2
3
4
5

1, 5

1, 6
1, 7
2 7
2, 8
3) 8
3) 9
4, 9
4, 10
5) 10
1, 5, 10
1, 6, 10
1, 6, 11
1, 6, 12
1, 7, 12
1713
2, 8, 12
2, 8, 13
3, 8, 13
3, 9, 13
3, 9, 14
4, 9, 14
4) 10, 14
5, 10, 14
5, 10, 15
5, 11, 15
1, 5, 11, 15
1, 6, 11, 15
1, 6, 12, 15
1, 6, 12, 16
1, 6, 12) 17
1, 7, 12, 17
1, 7, 13, 17
2, 7, 13, 17
2, 8, 13, 17
2) 8, 14) 17
3, 8, 14) 17
3, 9, 14, 17
3, 9, 14, 18
3, 9, 15, 18
4, 9, 15, 18
4, 10, 15, 18
4, 10, 15, 19
4, 10, 15, 20
4, 10, 16, 20
5, 11, 16, 19
1, 6, 11, 15, 19

E/N (reduced units)
0.0
0.75000
1.31037
1.83545
2.33845
2.80456
3.23897
3.66890
4.08813
4.48494
4.86467
5.23895
5.60114
5.95899
6.30758
6.64990
6.98291
7.30814
7.63197
7.94961
8.26588
8.57418
8.87765
9.17590
9.47079
9.76273

10.0509
10.3356
10.6193
10.8974
11.1739
11.4466
11.7157
11.9827
12.2469
12.5109
12.?719
13.0305
13.2881
13.5423
13.7940
14.0440
14.2915
14.5375
14.7819
15.0256
15.2664
15.5057
15.7447
15.9810
16.2159
16.4493

Ps (%%uo)

0
100
0
50
100
67
100
25
60
40
83
?1
86
100
62
75
80
70
91
83
75
92
5?
60
80
56
53
89
84
89
89
85
76
82
87
79
64
65
61
67
82
83
65
83
?7
78
85

151

230

1, 6, 12, 18, 22, 23

1, 6, 12, 18, 24, 30, 30, 30

1, 6, 12, 18, 23, 25, 34, 37, 37, 37

22.9059

35.3637

47.4781

63

76
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FIG. 1. Interelectron spacing as a function of shell
number for different numbers of electrons N for (a) a
parabolic-confinement, and (b) a hard-wall confinement po-
tential.
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triangular-lattice structure is the ordered configuration
for a 2D system of point particles while the shell structure
is imposed by the circular symmetry of the confinement
potential. For large systems we notice that the inner elec-
trons have a quasi-triangular-lattice structure, the outer
electrons are a bend triangular lattice with equal num-

bers of electrons on the last few shells [Fig. 2(a) and, e.g. ,
the largest two N values in Table Ij. This is quantified in
Fig. 3 where we show the radial distribution g(r) of the
system of N = 230 electrons measured &om the center
of the confinement potential. Notice that only the outer
shells have a well-defined radius while the inner shells
have a two peaked structure in g(r) reHecting a not well-

defined shell radius because of the triangular-lattice-like
structure.

When considering a sequence of systems with increas-
ing N (see Table I), we can see how shells are being filled
by electrons and sometimes a new embryo shell appears
in the center. This process reminds us of the formation of
the periodic system of elements. Also here there are rules
for filling the shells. For instance, the first shell (count-
ing from the center) never exceeds five electrons, and
the second shell never exceeds ten electrons for % ( 50
and 11 for larger N. When all the shells are filled up to
their maximum allowed number of electrons, a new shell,
consisting of only one electron, appears in the center,
when we add one electron to the system. Now the sec-
ond shell has five electrons (except for N ) 50), which

1.50

1.25

N=230
T=0.003

———T=0.028

1.00

0.75
C7)

0 1 2

FIG. 3. The radial distribution of a system consisting of
N = 230 electrons in a parabolic-confinement potential for
two different temperatures.

FIG. 2. Ground-state configurations and Voronoi con-
structions for the 230-electron system for (a) a parabolic-
confinement potential, and (b) a hard-wall confinement po-
tential.
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is smaller than the maximum allowed. Further adding
electrons will increase the number of electrons on the
different shells until each of them has reached their max-
imum. Rules for the number of electrons in the first shell:

(1) Two electrons in the center appear only when we add
one electron to the system which has the configuration
(1,7, ...), (2) three electrons in the center appear if we

have the configuration (2,8, ...), (3) four electrons if we

have (3,9,...), (4) five electrons if we have (4,10,...).
It should be noted that the search of the global-

minimum configurations is a diScult problem for large
N values (see also Ref. 17), because of the existence of
a number of local-minimum con6gurations, with ener-
gies very close to the global minimum. For example, in
the case of N = 14 the difference in energy between the
global-minimum (4,10) and the local-minimum (5,9) con-
figuration is only 0.06%. For this reason it is hard to see
any nonmonotonical behavior of E versus N. Apparently,
some numbers (magic numbers) allow perfect structures
while others do not. Only when we plot the difference
E(N) —E(N —1) can one observe small cusps (Fig. 4)
which are related to such magic numbers. The origin of
these cusps can be understood from a very simple model
in which we assume a constant density of electrons in
each shell. Next we will 6nd approximately the size of the
systems which allow perfect shell structures. If d is the
interelectron distance within a shell, which we take the
same for the different shells, then the number of electrons
in the ith shell is N, = 2vrR;/d. For equidistant shells the
radius of the ith shell is given by R; = Ro + ihR, where
Ro is the radius of the core and AR is the intershell spac-
ing. Then we have N; = 2mRo/d + i2xd, R/d. Suppose
now that the local structure is close to the triangular lat-
tice with the lattice constant d, we find AR = v 3d/2,
and consequently N; = 2nRo/d+ n~3i for i = 1, 2, . . . .
In the following, we will take the integer part in the pre-
vious expression for each N; and de6ne No as the num-
ber of electrons in the core. Now substituting different
cores with sixfold-coordinated configurations, we will ob-
tain magic numbers for particular cores. For example, if

0.7 ~ ~ ~ ~ I I I I I I ~ I I I I I I I I
I I I I I

0.6

0.5
Al
C)

0.4
I

K 03—
I
K

QJ

0.2

we choose the core consisting of one central electron and
six nearest neighbors with the spacing d, i.e. , No ——7
and core configuration (1,6), and Ro ——d then we ob-
tain No = 7, Ny = 11,N2 = 17, N3 = 22, . . ., or the set
of magic numbers: 7, 18,35, 57, . . . . For a core of two
electrons we choose No ——10(2, 8). In this case the sec-
ond shell consists of eight electrons with the interelectron
distance d and consequently Ro ——8d/2~m. We obtained
the magic numbers 10,23, 41, ... which are very close to
the numbers in Table I with the core (2, 8). For the core
consisting of three electrons, No ——3, we have Ro ——d/~3
as the distance from the center of an equilateral trian-
gle with side d to its apex. This results in the magic
numbers: 12, 26, 45, . . . . Comparing these numbers and
core structures with the structures presented in Table
I, we observe that indeed these numbers N correspond
to the inner-shell structures as we have assumed for the
cores and indeed the percentage of sixfold-coordinated
electrons for these N values is maximal. For large sys-
tems this simple model does not work because in this
case the electron density is not uniform (see Fig. 1).

For each number N we have a particular con6gura-
tion and all of them can be placed in a periodic ta-
ble, where the elements &om the same column exhibit
similar properties. In our case this property is point
symmetry of the inner shell. For example, there is a
column of elements with 6ve electrons in the center:
N = 5, 15, 29, 30, 31,51, . . . .

B. Hard-wa11 con6nement

In the case of a hard-wall confinement potential, the
physical picture is more complicated. Because of the ab-
sence of a neutralizing background, electrons tend to oc-
cupy first the edge positions at the wall. This is due
to the electron-electron repulsion. %hen a critical den-
sity at the edge is achieved, the remaining electrons form
shell structures [Fig. 2(b)]. The shell structure is more
pronounced here, even for large systems. However, the
electron density on a particular shell now increases with
increasing distance from the center [Fig. 1(b)]. For this
reason our simple model does not work here and the shell
structures are different than in the case of parabolic con-
finement. For example, for N = 50 the ground-state
configuration is (1,5, 13,31), which is quite difFerent &om
the shell structure found in the case of a parabolic poten-
tial (see Table I) with 50 electrons (4, 10, 16, 20). Even
when we exclude the outer-shell electrons (31 in number
and thus N = 19), we still obtain, for parabolic confine-
ment, a very different structure (1,6, 12). This observa-
tion should also be obvious from Fig. 1(b).

0.1

a ~ ~ ~ I s ~ ~ ~ I a ~ ~ ~ I ~ i I I I a ~ a ~0
IV. PHASE TRANSITION

0 10 20 30 40 50

FIG. 4. The di8'erence in ground-state con6guration ener-
gies e~ —e~ I as a function of the number of electrons in the
system N, where e& = E(N)/N is the energy per electron

After the ground configuration was achieved, the
system was heated up by an amount AT, typically
1.6x10, and equilibrated at this new temperature dur-
ing 10 —5 x 104 Monte Carlo steps. Then we calculated
the mean potential energy U = (H) the radial deviations
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and the relative angular intrashell

and intershell

cle from the same shell, while i2 refers to the nearest-
neighbor shell. We introduced a = (urn) ~ as the av-
erage distance betweeen the electrons with n the local
electron density, 2yo ——2x/NJt the angular interelectron
distance for the shell consisting of NR electrons, and ()
denotes an average over the difFerent Monte Carlo config-
urations, which were typically about 10 . Only relative
angular displacements are considered, because we found
that the system can rotate freely as a whole.

A. Parabolic confinement

square deviations, where i1 indicates the nearest parti-
Figures 5(a)—5(d) show typical electron trajectories

during Monte Carlo runs for a system of N = 26 [Figs.

(a) N= 26, T=0.003 {b) N= 26, T=0.028 (C) N=230, T=0.003

4
~ ~

e

k ~ ~ ~
4r4 r

s y ~ ~
~ 4

e
r ~ ~ ~

r
'~

~ r 0

~ ~j a
~ ~ r q ~

~ 0
l ~ ~

~ a ~ ~ ~r
~ ~t ~ ~ ~ rs

~ ~ ~ ~

I ~ ~ ~ ~ ~
~ ~

~ ~
~ ~ ~

~ ~
5 ~ ~

r ~ a r
~ 4

e ~ r C

(d) N =230, T=0.028 (6) N= 50, T=0.003 (&} N= 50, T=0.027

=.~ass.

(g) N=230, T=0.003 {h} N=230, T=0.027

4 ~

~i

~ r ~

FIG. 5. Electron trajectories during 1000 Monte Carlo steps for (a)—(d) parabolic-confinement, and (e)—(h) hard-wall con-
finement potentials. Results are shown for diferent numbers of electrons and for diferent temperatures.
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5(a) and 5(b)] and N = 230 [Figs. 5(c) and 5(d)] elec-
trons in a parabolic confinement potential. At low tem-
peratures, electrons are well localized around their equi-
librium position and the deviations &om these positions
are small compared to interelectron distances. How-

ever, a closer inspection shows that the displacements are
anisotropic. Namely, the angular component is typically
larger for small systems and also for the outer shells in a
large system. At high temperatures, electrons exhibit liq-
uidlike behavior, they can move freely within the shells,
and can hop from shell to shell. Thus there should be a
temperature (or temperature interval) where the system
changes their behavior.

Temperature dependencies of radial and angular dis-
placements are presented in Fig. 6 for small N = 26
[Fig. 6(a)] and large N = 230 [Fig. 6(b)] systems, for
difFerent shells. For large systems, radial and angular
displacements change very rapidly at approximately the
same temperature. Therefore there is no evidence for
shell rotation with respect to each other in contrast to Lo-
zovik's conjecture. i is For small systems, on the other
hand, the intershell displacements start to grow at much
lower temperatures than the temperature at which the
radial displacement jumps. This demonstrates the possi-
bility of intershell rotation prior to the melting transition.
From Fig. 6(b) we notice that in large systems the differ-
ent shells melt at diHerent temperatures, which is partly
a consequence of the radius-dependent electron density
[see Fig. 1(a)]. The outer shell has the lowest density
and therefore we might expect intuitively the largest (u2)
and the lowest T for these shells. However, the largest
(u ) were found for medium shells [Fig. 6(b)]. We can
explain this as follows: the outer electrons are affected
by random fields which are created by their fluctuating
neighbors mostly from the center and a regular parabolic
field from the outside, while the electrons in the center
are affected by fiuctuating fields from all directions. So
the fiuctuations should be greater for the inner shells. As
a result we have maximal displacements at some medium
radius (Fig. 7). Another reason is that in large systems
there exists an interface (i.e., lattice distortions) between
the triangularlike and the circular structures [Figs. 2(a),
3, and 5(c) and 5(d)]. Maximal fluctuations occur in
those interfacial shells.

Because of the small system size and density nonunifor-
mity there is no definite melting temperature but rather
a melting region. Nevertheless we can define a critical
temperature T via the Lindemann criterion for melt-
ing. This implies that melting occurs when the mean
displacements (uz) = (Erz)/a2 approach some critical
value p'. Here a = (nn) i~2 and n is the number
density. For 2D crystals, however, this criterion is not
universal, because (u ) diverges logarithmically with the
system size I. Therefore one considers relative displace-
ments between two neighboring sites which are finite and
the Lindemann-like criterion is applied to such relative
displacements. ' Phonon anharmonicity calculations
and molecular-dynamics simulations found that the
universal parameter for 2D melting is close to p, = 0.10.
In our case, the fiuctuations (u i) and (u 2) are relative
by definition. The radial displacements (uz&) are also

relative, because they are measured with respect to the
center of the system. We found that at least for large sys-
tems the critical value for (u2&) and for (u i) is around
0.05 [Fig. 6(b)], and the criterion is fulfilled (it is a fac-
tor of 2 smaller because the present (uz&) and (u2i) refer
to only one direction in space). For small systems the
critical value of (u2) is lower, but displacements grow
very fast after the critical point [see Fig. 6(a)]. To in-
vestigate the dependence of the critical temperature on
the system size we define T, as the temperature at which
(u2&) + (u i), averaged over all the shells, approaches 0.1.

The dependence of critical temperature on the num-
ber of electrons N is shown in Fig. 8(a). Also the result
&om a simple estimate for T, is shown, which was ob-
tained by using I' = e2/ak~T with the critical value for
I'=137. The latter was found for a classical 2D Wigner
crystal &om experiments on electrons on the surface of
liquid helium and &om computer simulations. In
these estimates we used the lowest local electron den-
sity found for each ground-state configuration. Except
for very small N, T, lies lower than the one for 2D sys-
tems and it approaches slowly the limiting value at large
N. The system turns out to be less stable against tem-
perature fluctuations than the infinite one. The origin of
such instability is the defect-rich interface between lat-
ticelike and circularlike structures where the fluctuations
are maximal.

For very small systems (N ( 26), there is a sharp
increase in the critical temperature, because such sys-
tems are mainly stabilized by the regular force &om the
confinement potential which dominates over the random
forces created by the neighboring electrons. As a conse-
quence the effective temperature fluctuations are smaller
and the melting temperature T, is enhanced.

It should be noted that although we plot a single point
for each N in Fig. 8, there is a temperature interval AT,
where the transition occurs. Furthermore there are differ-
ent T, for the different shells. For N = 26 this interval is
small b,T = 0.001 [see Fig. 6(a)]. However, for K = 230
[see Fig. 6(b)] it is AT = 0.005 which is almost 50%%up of
Tc ~

B. Hard-wall con6nement

In the case of a hard-wall confinement potential, the
electron density depends strongly on the she11 radius
[Figs. 1(b) and 2(b)]. The outer-shell electrons are prac-
tically frozen [Figs. 5(e)—5(h)] against the sharp and hard
potential wall. They are pressed against the wall and can
move only along the perimeter. The radial displacements
for those electrons and for the inner ones differ by several
orders of magnitude. Thus when analyzing transitions in
such a system we did not consider the outer-electron con-
tribution to the fluctuations. Notice that the number of
such electrons at the edge is a considerable part of the
total N. For example, for N = 50 there are 31 electrons
at the edge, and 92 electrons for N = 230. Thus in the
case of hard-wall confinement we should in fact exclude
these electrons such that efFectively we are dealing with
a smaller number of electrons.
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Due to the radius-dependent electron density the fluc-
tuations also depend strongly on the distance from the
center of the well. However, in this case the dependence
is monotonic. The critical temperatures for the differ-
ent shells lie in a wide temperature interval AT = 0.007

[Fig. 6(c)]. Circular ordering dominates here even for
large systems. This causes an easier rotation of shells
with respect to each other. The intershell angular dis-
placements jump at very low temperatures even for large-
radius shells [Fig. 6(c)].
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parabolic well. Results are shown for two different temper-
atures. The maximal displacements are found in the sixth
shell.

The critical temperature as obtained after averaging
over the diferent shells (excluding the outer shell) is pre-
sented in Fig. 8(b) as a function of the number of elec-
trons N. The confinement radius R, of the well was cho-
sen such that the average electron density N = N/vrR2
was constant. The estimated critical temperatures, us-

ing I', = 137 and the minimal local electron densities
(solid line), coincide with the Monte Carlo results for
N & 50. The estimate using an average electron density
n = N/vrR2 is also shown (dotted line), which apparently
overestimates T, . Very small systems (N ( 50) again are
more stable than large and infinite 2D systems.

V. CONCLUSION

We have presented the results of a static energy cal-
culation and of Monte Carlo simulations of a classical
2D system of point charges with parabolic and hard-
wall confinement potentials. The ground-state configu-
rations have been found. Large systems (N ) 200) with
parabolic confinement exhibit almost perfect triangular-
lattice structure for the inner part and circular structure
for the outer one. The density of electrons is nearly con-
stant inside and decreases slightly with radius for the
outer shells. Small systems have a very clear shell struc-
ture. A Mendeleev-type table for such structures was
made. In the case of hard-wall confinement the density
increases with radius and electrons are arranged into well
pronounced shells even for large systems.

We have studied phase transitions in such systems.
Shell-structured systems undergo two-step phase tran-
sitions, both for hard-wall and parabolic confinement, as

0.005—
~ ~ ~ k ~ ~ I ~ ~ I ~ ~ ~ ~ ~ ~ s ~ ~ I ~ ~ ~ ~ k ~ ~ I ~ I0

0 100 200 300

FIG. 8. Critical temperature as a function of the number of
electrons N for (a) parabolic-confinement, aud (b) hard-wall
con6nement. The solid curve corresponds to T, as estimated
through I', = 137 using the lowest electron density shell for
each ground-state configuration. The dotted line in (b) is a
similar estimate using the average density of the system.

reported earlier by Lozovik and co-workersis s for the
case of small systems with parabolic confinement. The
first transition corresponds to intershell rotations, while
the second one corresponds to intershell diffusion. Large
systems with parabolic confinement behave more like in-
finite 2D systems, and no rotations of the shells are ob-
served in the ordered state.

In the case of a hard-wall confinement potential, the
electron density depends on the radius, i.e., the shell
number, and consequently also the critical temperatures
will depend on the radius. The lowest T, is found for the
inner shell, while in the case of parabolic confinement
the lowest T, was found for some intermediate shells.
The latter was a consequence of the increased fiuctua-
tions at the interface between latticelike and circularlike
structures which are found at some intermediate radius.

Except for very small N systems we found that the
present systems are less stable against temperature fiuc-
tuations as compared to an infinite 2D system.
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