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Mean-field polariton theory for asymmetric quantum wells
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We present a simple method to compute the optical properties of quantum wells of any shape, using
microscopic calculations of the electronic states. Near the exciton resonances simple expressions for the
polariton states and the radiative lifetimes are obtained as functions of the in-plane wave vector K. The
cases of a GaAs/Al,Ga,_,As/AlAs asymmetric well and of double wells are considered; the results re-
late to those of the symmetric well. The computed splitting between the Z mode and the T mode is
shown to depend mostly on the thickness, in fair agreement with experiments by Frohlich et al. Polari-
tons associated with crossed excitons involving pairs of subbands forbidden in the symmetric case are
found, and are shown to give rise to additional structure in the reflectivity.

I. INTRODUCTION

The problem of the optical response of a composite
medium containing mesoscopic structures, such as thin
layers, superlattices, quantum wires, or quantum dots, is
of current interest. New excitonic and polaritonic effects
have been observed in connection with the electronic ex-
citations of the confined states in multiple quantum wells
(QW’s) and superlattices (SL’s),! " quantum well wires
(QWW’s),*> and semiconductor slabs.® For the case of
multiple QW’s and QWW’s the theory of polariton states
has been considered by solving Maxwell equations with a
nonlocal susceptibility,”® and also by using a second
quantization formalism with the A-p interaction in the
Hamiltonian.” Polaritons with two-dimensional and
one-dimensional dispersion have been obtained in QW’s
and QWW’s, respectively, and effects produced on the
optical absorption have been experimentally ob-
served.!7 12 Also, the short natural lifetimes which have
been theoretically predicted for QW fluorescence have
been experimentally observed.'?

The cases of more complicated mesoscopic structures,
such as asymmetric quantum wells (AQW?’s) is of current
interest because new effects may occur and nonlinear
properties near the exciton states are enhanced.'*”!7 For
this case a simplified two-band model has been recently
proposed and has been shown to apply for the microscop-
ic calculations of exciton energies and oscillator
strengths.!® The problem of computing the optical
response of a composite medium containing asymmetric
wells is of interest, but seems to be very difficult because
the number of boundary conditions is increased and the
plane of specular symmetry which allows a simple treat-
ment of the modes is absent in this case.

We address such a problem using the simplified treat-
ment for the optical response of a composite medium
proposed by Agranovich,!®?° and applied to superlat-
tices,?! when the wavelength of the radiation is large
compared with the period of the superlattice. We will

0163-1829/94/49(4)/2658(9)/$06.00 49

show that dispersion relations and lifetimes of reduced di-
mension polariton states are obtained, and the case of
asymmetric wells can be easily studied. The optical prop-
erties can be computed in such cases and the effects due
to the mesoscopic structures can be observed in absorp-
tion, reflectivity, and transmission experiments.

In Sec. IT we recall the general mean-field method and
show how the electric field can be connected to the polar-
iton modes by appropriate boundary conditions at all the
surfaces which separate different structures. In Sec. III
we derive the polariton states in the instantaneous ap-
proximation. In Sec. IV we use the method to obtain the
polariton states in asymmetric wells and derive the opti-
cal properties of materials containing such structures.
The main results are discussed in Sec. V, where experi-
ments to verify this theory are also suggested.

II. MEAN-FIELD METHOD FOR ASYMMETRIC
MICROSTRUCTURES

A general approach to the calculation of the linear op-
tical response of a composite medium from the suscepti-
bilities of the component mesoscopic structures has been
introduced in Ref. 19 (see also Ref. 24). The basic ap-
proximation is that the wavelength A of the electromag-
netic field in the sample is larger than the distance over
which the potential changes (L /A << 1, L being the typi-
cal QW width or SL period). In that case we can use the
approximation of constant electric field, or adopt an ex-
pansion in L /A. In Fig. 1 we show an example of a com-
posite medium in the form of step QW, as well as a
schematic representation of the electric-field distribution
in the sample.

Let us consider a mesoscopic medium, homogeneous in
the X and J directions and discontinuous in the 2 direc-
tion (such as a multiple quantum-well structure with
QW’s of width L, separated by a distance L —L,). The
linear susceptibility in each region of the sample is nonlo-
cal in the % direction and can be computed from the re-
sults of the microscopic theory on excitation energies and
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FIG. 1. Schematic representation of a double asymmetric
quantum well ( 4 and A’) with barriers (B). E |’| and Ej are the
in-plane components of an electric field in the region on the left
and on the right of the well. E™, E™, and E’ denote the in-
cident, reflected, and transmitted electric fields of the corre-
sponding electromagnetic waves polarized in the plane of in-
cidence (p polarization) (1) or perpendicular to it (s polarization)
(®).

wave functions. Outside the QW regions the susceptibili-
ty can be taken as a local function yp8(z —z'). Inside the
QW regions the susceptibility tensor splits into three con-
tributions:

X(E,z,2')=x,(2)8(z —z')+ XU E,z,2")
+XYS(E,z,2'), E=%w . (1)

The first is a background susceptibility, which is often
taken to coincide with Y, but in general is different, this
difference being responsible for interface modes.?

The second gives the contribution of the electronic
transitions in the continuum between the bands, as ob-
tained from the usual linear-response theory.?*»?* Consid-
ering that only the diagonal tensor components can be
taken to be different from zero,’*?* and denoting each
pair of subbands with indexes i and j, we have for each
polarization p (p =x,y,z).

X(E,2,2)=3, x50, j,E) Ayy(2) A(2") 2)
L
where
A;(2)=A;(2)=(ilz)(zlj} , 3)
and
2e?P?,
x;’(i,j,E)=m[fo(j)——fo(i)]

1 1
X3 + .
o | E;(k)—E—il'  E;(k)+E+il
I

4)
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Here, €, is the free-space permittivity, ¥ denotes the QW
volume, f, is the Fermi function, the confinement factor
A;; is the product of the electron and hole envelope func-
tions in state i (i=1,2,...) and j (j=1B,2B,...;
B=hh,lh), respectively, and P, is the bulk dipolar
transition-matrix element between states of energy
difference
E;(k,)=E E-{*hzkﬁ (5)
7| i J 2”0_ ’

where E; and E; denote the bottom electron and the top
hole energy levels, and p;; is their corresponding reduced
mass.

The third term of Eq. (1) is the contribution of the ex-
citon bound states inside the quantum well and is given
by

Xy (E,z,2")=3 X, (i,j,E) 4;;(z) 4;;(z") , (6)
ij
where
2¢2P2,
e)((l-, ,E)= pJ
o L ot m}
1
X 3 |IFPOP | =
n=1,2 v Ei(jn)_E—lFex

1

E{"+E +iT,,

each exciton state (n), (1S,2S, ...) being characterized
by the amplitude of the exciton envelope function in the
quantum well F,-(j")(r), and the corresponding exciton en-
ergies E ,-(j").

Following Kane,®> we can express the bulk momentum
matrix elements of light and heavy holes in terms of the
average Kane energy Ey as

ij=ch\/EKm0/2, (8)

where ¢, =1/V2, ¢y, =0, ¢,y =1/V'6, ¢, =V2/3.
Then we perform the k; integration in expression (4), and,
using expression (5), obtain the following contribution of
the interband continuum:

.. ezEKy'rB . .
Xpl(l,J,E)=Cp23‘——€01erE2mO [fol)—fold)]
x [d i c, ©)

€
E}(e)—E?—2iET

where the integration is performed on the subband ener-
gy € and we have taken into account the residual
Coulomb interaction between the electrons using the
Coulomb enhancement factor C =exp(kw)/cosh(kw),
where k=1/k a,, and a, is the Bohr radius.® For the
exciton contribution we insert into Eq. (7) the explicit ex-
pression of F\"(0) as given in Ref. 18:
1 2S /A 72 1

Ay’ F;(00°=Vv2/37 Ty

FiS(0)=v2/m
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and, neglecting the interaction between different exciton
states,'® we obtain

i E)=e? 4e’Ep#?
L E)=cppg———————
XpthJ pﬂeoﬂLszmok%j
Ei('n)
> L . , (10

512 21" B —E2—2iET,

where A;; denotes the Bohr radius of the exciton between
the two bands i and j.

The microscopic quantum theory of the electronic
states allows us to compute explicitly the expressions (1),
(9), and (10). This allows the construction of the constitu-
tive equation of the medium relating the electric induc-
tion D to the electric field E(z) inside the wells:

DP(Z,E)zﬁb(Z)Ep(Z)"‘Lw ZXP(I’J’E)AU(Z)( AijEp > .
l'./

Here,

g,(z)=1+Y,(z) (12)
is the background dielectric constant at point z,

X, (i, E)=x5, j, E) +X5(i, j, E) (13)

gives the contribution of the interband continuum and
excitons in the well, and

Lw
(4,E,)= [ “dz 4;(2E,(2). (14)
Outside the QW’s we have
D,(z)=gp(2)E,(z) . (15)

At this point we make the constitutive equations (11)
very simple by using the approximation that the electric
field varies very little on the QW width because A>>L .
An average electric field can be defined inside the well as

F=-L
p Lw

o]

L
J dzEp(z)=21:(Ep) (16)

and an average induction can be obtained with the
definition of a dielectric function inside the QW,

=1 — B
DP——L:(DP)—ePEP : (17

By satisfying the appropriate boundary conditions on E
and using the average field approximation for the in-
plane component E, ,,=E, we obtain the expression for
the total in-plane dielectric function:

g =g, + 3 XL, EX(A4;)* . (18)
i’j
In the case of the E, component (perpendicular to the

planes) the boundary conditions and the average field ap-
proximation give

D,=D,, (19)

which is constant on the boundary, and
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1
L,

w

E,= (E,), (20)
which is not constant through the boundary. From the
constitutive equation (11) we obtain

E,(z,E)=¢, '(z)D,
—L, 3 x.(i,j,E)A;(2)e; (2)( 4,E,) . (21)

i
The only unknown terms are the integrals { 4 i E; ),
which can be computed from the above equation by mul-
tiplying by A;; and performing the integration on the z
variable. This results in the linear system of equations:

. . -1 < AijEz>
08,18, x +L,x,(i,j,E)e, ' A Ay) ]—“D
ij z
=g, '4;), (2
which can be solved to obtain all the values

§ilE)Y=(A4,E,)/D, (23)

as functions of the energy. This gives immediately the
perpendicular dielectric function:

e (E)=¢g; '= S x, (i, ,E)(ey "4, )6, (E) . (24)
LJ
The above analysis allows the calculation of the total
effective dielectric functions € and ¢, from the geometry
of the microstructures and the microscopic calculation of
the electronic structure. An immediate application of
this result is to find the absorption coefficient

E
0 ic Im(ep) , (25)

a,(E)=

where ny; =1"¢5. Index p refers to the polarization of
the electric field.

We give in Fig. 2 the absorption coefficient of a typical
asymmetric QW when the incident electromagnetic wave
is polarized in the plane, or perpendicularly to it, as com-
puted from the above expressions with values of the pa-
rameters given in Table I. These values are obtained with
the method of Ref. 18, where the x dependence of the an-
isotropic effective masses and the dielectric mismatch are
both included.

As may be seen, the spectrum of a, contains both
heavy-hole and light-hole exciton resonances. In the en-
ergy range of the figure, one sees the direct heavy-hole
(i =1, j =1hh) exciton peak E,HH as well as the analo-
gous light-hole exciton peak E,LH,. The weak peaks on
the right of these resonance correspond to (2S) exciton
states. The crossed exciton state (i =1, j =2hh) is mani-
fested by a relatively weak peak (E,HH,). This is be-
cause the corresponding dipole moment matrix element is
proportional to the overlap integral of state i =1 and
Jj =2hh, and hence it is smaller than the corresponding
one of the direct exciton states (see Table I). The inter-
band continuum included in the calculations by y® pro-
duces the background stairlike structure of the spectra.
The absorption given in Fig. 2 is very close to the experi-
mental absorption in an asymmetric well of the type con-
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FIG. 2. Absorption spectra at normal incidence of an asym-
metric quantum-well structure with AlAs barriers and wells of
3.5 nm of GaAs and 4 nm of GaggAly,As. The solid line
denotes the absorption for an in-plane polarized electromagnet-
ic wave, and the long-dashed line is the corresponding spectrum
when the electric field is polarized along the Z axis. In the inset,
the electron (EQW) and hole (HQW) confinement potentials, as
well as the first electron level and the first two heavy-hole levels
with the corresponding envelope functions, are indicated. The
dotted lines refer to the envelope functions corresponding to the
two lowest levels, and the short dashed line to the second level.
We shall keep these notations for all inserts in the present work.
The parameters used in the calculation are given in Table 1.

sidered.?’” Experimental evidence of excitations is also ob-
tained from the fluorescence spectrum, but in this case
the peaks corresponding to the excitons here reported are
a little displayed on the low-energy side (by about 0.1
meV), because emission is proportional to Im(e, ) and ab-
sorption is proportional to (25).

As shown by the dipole transition coefficient of Eq. (8),
only the light-hole exciton states have a resonance in a,.
This resonance is shifted with respect to its position in
the spectrum of a, by approximately 1 meV, as in the
case of symmetric QW. Such a splitting has been con-
sidered in the usual optical analysis, on the excitons,??
and has been found to be due to the electron-hole ex-
change interaction. This is understood in our procedure
as due to the fact that the parallel electric-field com-
ponents do not change across the internal surfaces, and
the perpendicular one changes according to the boundary

conditions as in (24). Thus, an AQW may be considered
as a point microstructure in the case of an in-plane elec-
tric field, and as a condensed medium with some internal
charge distribution in the case of a Z-polarized elec-
tromagnetic wave.

The above results remain valid for a superlattice with
narrow minibands, except for the fact that the average
has to be performed over the superlattice period L, and
the susceptibility ¥ must be multiplied by L,, /L.

In case we have a number of QW’s with a barrier re-
gion of a thickness comparable with the light wave
length, we must consider separately the dielectric func-
tions for the barrier and for each quantum well and ob-
tain the optical properties by considering all boundary
conditions with the transfer-matrix approach.

III. INSTANTANEOUS POLARITONS

The procedure described above is appropriate to derive
the optical properties of a composite medium, but it does
not give details such as the spatial dispersion of the polar-
iton states. To obtain these effects we must consider ex-
plicitly the wave-vector dependence of the exciton states
into Eq. (10), i.e.,

E"K)=E,—E;+R{"+#°K} /2(m,+m,), (26)

where R/ is the binding energy of the (n) ij exciton
state. We must also consider the wave vector of the radi-
ation in the barrier Q =1/¢ g@/c. In such a way, the ex-
citon susceptibility x;* of Eq. (7), and hence the dielectric
functions g of Eq. (18) and ¢, of Eq. (24) become depen-
dent on the in-plane component of the exciton wave vec-
tor K. Taking into account the above expressions for ¢,
and €, we may apply the standard approach in order to
obtain the reflectivity coefficients of an asymmetric quan-
tum well. As a first approximation, we may consider
reflection only from the surface between the barrier and
the quantum well (for example, the boundary between re-
gions B and A4 in Fig. 1). That model corresponds to the
case of reflectivity from a semi-infinite anisotropic medi-
um represented by its parallel and perpendicular dielec-
tric function. Thus, following Drude,* we find

.= nBKz—(QZEH—EBKﬁ)l/Z
P ngK,+(Q%,—egK1)'2

(27)

and

2 24172
, nnngK,—eg(Q%, —epKj)

) (28)
n”nlnBKz'FSB(QZEl_SBKﬁ' )1/2

TABLE I. Calculated exciton parameters for an asymmetric quantum well with AlAs barriers and
GaAs (L =3.5 nm)-Gag 3Alj ,As (L =4 nm) wells. The theoretical model and material parameters used
in the calculations are computed as indicated in Ref. 18. The temperature is T =4 K.

EJS RYS RES e

(i, ) (meV) (meV) (meV) (nm) (4;)
E HH, 1665.4 12.6 1.7 10 0.97
EHH, 1746.3 11 1.6 11.1 0.21
E,LH, 1708.2 13.9 2 8.9 0.99
E,LH, 1849.8 11.7 1.8 10.2 0.08
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where €, and ¢, are given, respectively, by Egs. (18) and
(24), K,=V/Q?—K?, and n;,=1"¢, denotes the cor-
responding refractive index. Here, ry is the reflection
coefficient for an electromagnetic wave when the electric
field is perpendicular to the plane of incidence (s polariza-
tion), and r, is the reflection coefficient when the electric
field lies in the plane of incidence (p polarization). The
angle of incidence 0 is defined by sin( (60)=K,/Q. From
the above two express1ons according to the general re-
sults of scattering theory, we find the states E (K ) in
correspondence to poles in r; and r,. These eigenstates
result from the mixing of the electromagnetic field and
the quantum-well exciton states without retardation
(¢ — o). The resonant states of 7, (the poles of ¢,) corre-
spond to the so-called transverse modes (T modes), be-
cause the electric field is perpendicular to the plane of in-
cidence. Their dispersion law E T(K 1) coincides with that
of the corresponding exciton energies, i.e.,

ENK)=E"K,) . (29)

Analogously, the resonances in r, give two types of reso-
nant states; one corresponds to the longitudinal modes (L
modes) and occurs for g/(E,K)=0, which in the approx-
imation under consideration coincides with Eq. (29); the
second type of resonance coincides with the poles of & !
(Z modes) and their dispersion law can be found from the
following equation:

e(E,K,)=0. (30)

We skow in Fig. 3 the reflectivity spectra of the same
asymmetric quantum well whose absorption at K, =0 was
reported in Fig. 2. We can observe that the light-hole ex-
citon structure in r, is displaced towards high energy, be-

L} X, (
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FIG. 3. Reflectivity at the surface of a single asymmetric
quantum well with sample parameters of Table I as in Fig. 2.
Cases (a) and (b) refer to parallel and perpendicular polariza-
tion, respectively, with an angle of incidence of 30°.

cause of the contribution of the z component. The
crossed exciton state (E; HH,) appears as a small peak as
in the case of absorption. As can be seen from relations
(27) and (28), the reflectivity spectra change with the an-
gle of incidence and give the dispersion curves of the
models L, T, and Z of the instantaneous polaritons, as
functlon of K,. The first two are given immediately by

q. (29), where in the approximation so far adopted, the
splitting between the L and T modes is negligible. The
dispersion law of the Z mode obeys a simple analytical
expression obtained from the solution of (22) near a fixed
resonance,

<€b 1A )2

e(EK )= (5;1> (er 1>22 I+ Ly E

Taking only the exciton part of ), and considering the

background dielectric permeability as a constant
€,(z)=~¢€p, we find the solution of Eq. (30) to be
) 1 .
Ef=E{"(K )+E—Xz(z,1)<A,§>, (32)
where
(i.jy= 2Pt L IEor (33)
z l’ :__
X e B

is responsible for the correction to the exciton dispersion,
which in this approximation is independent of K. Here,
one may see that the splitting A, between modes Z and
T depends on the z component of the momentum matrix
element P,;, and hence is equal to zero for the heavy-hole
polariton states. In the case of the AQW shown in Fig. 2
the splitting is approximately 2 meV for the light-hole

(e, ' 47 )—(sb T4,/ (ey "))

f

polariton state (see also Fig. 5). This value is almost
twice that reported in Ref. 28 for symmetric 60- A wide
QW mostly because of the higher oscillator strength due
to the confinement of the lowest exciton state in the 35-
A-thick layer. For the purpose of displaying the depen-
dence of the A,y splitting on well parameters we give in
Table II the computed values for different QW’s with
lengths and concentrations chosen to be the same as
those on which absorption experiments have been carried
out by Frohlich et al.'? It can be observed that the agree-
ment is satisfactory.

In the simple case of a symmetric quantum well for
i=1 and j =1/h we have for infinite barrier potentials
(A43%,,,)~3/(2L,) and we find the approximation ex-
pression

3
~ 1 4
Ay L.c, X.(1,1,Ih), (34)
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TABLE II. Splitting between Z and T modes and the corresponding linewidths in a symmetric QW

of varying widths for K;=~0.018 nm™".

taken from Fig. 3 of Ref. 12.

The experimental results with angle of incidence 6~43° are

L, (nm) x (%) AZP (meV) APT (meV) I'T [meV] I'? [meV]
5 35 2.1+0.3 1.5 0.13 0.05
6.6 31 1.3+0.3 1.2 0.13 0.05
9 43 0.9+0.2 1.0 0.14 0.06

10 45 0.910.1 0.9 0.14 0.06
13 35 0.5+0.1 0.6 0.12 0.05
15 26 0.35+0.1 0.48 0.11 0.04

which agrees with the results of Ref. 28, when the same
limit is considered. Since in Ref. 28 the splitting is com-
puted from the exchange interactions, this gives a further
confirmation that the long-range electron-hole exchange
interaction is equal to the Coulomb correction introduced
by Maxwell equations without retardation.

IV. QUANTUM-WELL POLARITONS

The approximation described above of constant field
inside the well is not sufficiently accurate to give the po-
lariton states and their natural lifetimes with retardation
effect. To this purpose, choosing our frame of reference
at the beginning of the quantum well (z=0) and the X
axis along the exciton wave vector K, (see Fig. 1), we use
the following first-order expansion in (L, /A) inside the
well:

RL,)=F0)+EQp (35)
oz
where F may be E, D, or the magnetic field H. Then we
take the fields inside the well as

F(r,t)=F(z)exp[i (K -1,—wt)], (36)

where for simplicity we distinguish the fields F(r,?) from
their z-dependent amplitudes F(z) by their arguments
only. Following the method described in Ref. 19 we im-
pose the boundary conditions and from the phase conser-
vation obtain a constant K, through the boundaries.
Making use of Eq. (35) and eliminating the derivative
with respect of z from div(D)=0, we find

DJ(0)—D}(0)=—i(g,—ez)L, K, E[(0), (37)

where the superscripts 7 and / refer to the regions on the
right and on the left of the AQW, respectively (see Fig.
1). The other boundary conditions on the field com-
ponents, with expansion (36), give

HI0)=H!0), (38)

E[(0)—EL0)=i [i—l L,K,DJ(0) (39)
€ €

Hj(0)—H{(0)=i(e,—ep)L,Q2XE[(0) . (40)

The solutions of Maxwell equations amount to those of
Egs. (37)-(40) with ¢ and ¢, given by Egs. (18) and (24),
respectively. The solutions are classified according to the
values of the exciton wave vector K| with respect to Q.

A. Radiative modes

In the region K| <Q the component K, is a real quanti-
ty and we may find the solutions of the above system in
the form of plane waves. Let us take the electric field as a
TE wave which on the left of the QW is given as a sum of
an incident and reflected plane wave

E;(Z)=F[exp[i(Kzz)]+Rsexp[i(—Kzz)]] ) (41)
and on the right as a transmitted wave
Ej(z)=F[Texpli(K,z)]] . (42)

Substituting these equations in system (37)-(40), we find

the reflection coefficient R, to be given by
iQ’n
= _” — (43)
2epK,—iQ m

where
n=L,(g,—¢€p) . (44)

Analogously, considering the reflection of a TM wave
from the quantum well, we find for the reflection
coefficient of a p-polarized electromagnetic wave

E%Kﬁm +K2277[|

R,=— , (45)
P 2iepK, —ejKin +K2,
where
1 1
=L —_—
"h w 81 EB (46)

In Fig. 4 we give the above-calculated reflection
coefficients and compare them with the corresponding
ones calculated in the preceding section. One may see
that the curves are quite similar but the absolute values
of the reflection coefficients are different. They are lower
in this case because L, <A and, as may be seen, R, /r,,
Rp /rIJ ~2L,0<1. Between the exciton peaks, the
reflectivity spectra are determined by x® and €,(z). It is
worthwhile to note the contribution of the dielectric
mismatch to the magnitude of the reflectivity coefficients.
As is shown in Fig. 4, this contribution increases approxi-
mately twice the values of R; and R, with respect to the
corresponding ones when g,(z) is taken to be a constant
[es(z)=¢ep].

Following the same approach as in Eq. (31) we find
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FIG. 4. Reflectivity of a single asymmetric QW described in
Fig. 2 including retardation. The angle of incidence 6=30".
The solid lines which refer to the corresponding left-hand scales
give (a) the reflection coefficients for s-polarized wave (R, ), and
(b) the corresponding coefficient (R, ) for electromagnetic waves
polarized perpendicularly to the plane of incidence. The dotted
lines which refer to the corresponding right-hand scales give the
same spectra as above, but the dielectric mismatch is not taken
into account [g,(z)=¢g].

analytical expressions for the poles of R, and R,. As may
be seen from Eq. (43) and (45) they are complex quantities
of the form E(K )—il(K,), so that the effect of
reflection is to introduce a natural lifetime of the polari-
ton states. The real parts of these poles in our first-order
expansion of the fields coincide with Egs. (29) and (30)
found in the preceding section and give the dispersion
laws of the polariton states. This is displayed in Fig. 5 on
the left-hand side of the optical line corresponding to
K,=Q. The imaginary parts give the corresponding ra-
diative line widths, and can be explicitly written as fol-
lows:

T Q2 T 2
i,j= ZSBKZ X||(l>j)(Aij> ) (47)
K
F{:j: 28; X||(i’j)( A[j >2 ) (48)
and
KZ
gj: ZEBLZ Xl(l’.])( Aij )2 . (49)

We show in Fig. 6 the computed values and their K,
dependence of these radiative line widths for the same
AQW considered so far. One may see the rapid diver-
gence of modes Z and T as K| tends to Q. This is also a
typical feature of symmetric QW’s® and can possibly be
removed by considering the interaction with wave-guide
modes due to dielectric mismatch?? or performing the
calculation in polariton-pole approximation.??

Differently from the case of symmetric QW’s, in
AQW’s the indirect exciton states are optically active,

0 0.01 0.02 0.03 0.04
-1
K, [nm™]

FIG. 5. Dispersion curves of resonant and surface light-hole
polaritons in the same steplike asymmetric quantum well as in
Fig. 2. The vertical line indicates the photon dispersion
E =#cQ /ng.

and hence they form bound states with photons, one of
which can be seen, for instance, as a peak (E,HH,) in the
absorption spectra of Fig. 2. We shall call these bound
states crossed (indirect)**33 polaritons. We present in
Fig. 7 the cross polariton state from the second light-hole
band (i =1, j =2Ih) in the case of an asymmetric double
QW. As may be seen from the figure, the Z-T splitting is
about 1 meV, which is of the same order of magnitude as
A, of the direct polariton state (2.4 meV in this case).
That is because the splitting depends on the square of the
confinement factor 4;; [see Eq. (32)], which is compara-
ble with that of the direct polariton state in the asymptot-
ic case, and on the exciton oscillator strength, which is
also comparable to that of the direct exciton in this asym-
metric potential. On the other hand, the radiative line
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Radiative linewidth [meV]
o
'S

o
N

FIG. 6. Radiative linewidths of resonant light-hole polariton
modes in the steplike QW already considered. The lowest two
electron and light-hole levels are indicated in the inset with
their envelope functions.
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FIG. 7. Crossed light-hole polaritons in double asymmetric
QW with AlAs barriers, 3 nm of GaAs, 1 nm of Gag sAl, sAs,
and 3.5 nm of GaAs. The wave functions of the second light-
hole and the first electron bound state are shown in the inset.
The inset notations are as in Fig. 2.

widths depend on 4;; [see Eqgs. (47)-(49)]. Here, the
different symmetries of states i and state j provide very
small values of I'%, I'7, and T'%, and hence very large life-
times (r=4/T"), even near the divergence point K|, =Q.
That observation is demonstrated in Fig. 7, where the
crossed polariton line widths are about three orders of
magnitude smaller than in the case of direct polariton
states. This extends the exciton study of double wells in
an electric field.*?

B. Surface quantum-well polaritons

In the region K> Q, K, is an imaginary quantity and
we are looking for solutions localized in the £ direction of
the type of evanescent waves

F,(z)<exp[ — |K,z|] . (50)

In this case the condition for nonzero solutions of the
Maxwell equations gives the same equations as in the
preceding section but K, is replaced by iK,. As a conse-
quence, we obtain real eigenvalues, which formally coin-
cide with the poles of R; and R, from evanescent fields.
The dispersion laws of T modes are determined from the
equation

25K, +q°n,=0, (51)
and those of L and Z modes from
2epK, +e3Kin +KMn =0, (52)
the radiative line widths being equal to zero.
Substituting expressions (18) and (31) for ¢ and ¢,
which is consistent with our first-order expansion in

(KL, ), we find the following explicit expressions for the
dispersion relations of the surface polariton states:
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T Q? .. 2
Ej=Ey Ky =5 x(h){4,), (53)
. K, . 2
zZ 1 .. 2 Kﬁ 2
Ei’j—Eij(K||)+E—B‘Xz(1’J) <Aij)“2_Kz<Aij) ‘
(55)

The dispersive behavior of the surface polariton states is
shown on the right-hand side of the photon line
E =#cQ/ny and K;=Q, and is displayed in Fig. 5 for
the asymmetric well we have considered. One can ob-
serve the asymptotic behavior of modes T and Z towards
the photon line, while the longitudinal mode L remains
continuous in accordance with relations (29) and (54)
with K,=0. The radiative linewidths are zero for the
surface modes and diverge in the region of radiative po-
laritons as shown in Fig. 6. Hence the resonant modes Z
and T are in practice inactive for K, =(, but become sur-
face modes with an infinite lifetime for K > Q, similarly
to the case of symmetric QW’s.® The role of the asym-
metry is in the magnitude of the effects and in the appear-
ance of the crossed polariton modes.

V. DISCUSSION AND CONCLUSION

We have presented a theoretical model which allows
the calculations of the polariton states of AQW’s of arbi-
trary shape. The reflectivity, transmission, and other op-
tical properties can all be obtained as functions of the ex-
citon states and of the computed averaged dielectric func-
tions g and €,.

The absorption spectra give the possibility to study the
direct as well as the crossed exciton transitions in an
AQW. Experiments at an angle of incidence with per-
pendicular and parallel polarization'? can be interpreted,
and give information on the splitting between the light-
hole Z and T, which are in agreement with our results, as
shown in Table II.

The reflectivity spectra contain the full information on
the polariton states. As was shown in Sec. IV, the Z-T
splitting occurs for the light-hole polaritons, and the sur-
facelike polariton modes are separated from resonant
modes by the photon line. Dispersion laws and lifetimes
have been given for AQW’s of all shapes. Experimental
evidence for these modes can be obtained with the use of
grating or a ZnSe prism in optical contact with the sam-
ple (see Frohlich and co-workers'??!). In the case of sur-
face polaritons, a prism with an index of refraction
greater than that of the barrier material is needed to ex-
cite surface modes and to produce attenuation
reflectance.?

The crossed polaritons are present in AQW’s; their
influence in the reflectivity spectra is small because of the
small transition dipolar momentum. Another possibility
for observation may be the two-photon absorption. In
fact, a very particular feature of the crossed polaritons is
their large contribution to nonlinear optical effects, as we
have demonstrated with this approach and will show ex-
plicitly in further work.
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The results here obtained are a natural continuation of
the studies on polariton states in symmetric quantum
wells and superlattices. The theoretical model gives a
unique and simple approach to calculate the optical prop-
erties of asymmetric quantum wells and may be extended
to other mesoscopic structures as gratings of asymmetric
QWW’s and dots.
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