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The abruptness of the semiconductor heterojunction has been dealt with by many past researchers by
incorporating the single-band effective-mass equation with a connection matrix at the interface. This
connection-matrix method has been used to predict the eigenenergies of the GaAs-Al„Ga& „As quan-
tum wells. In this paper, the validity of this approach to quantum wells is examined by varying the loca-
tion of the interface within a lattice constant to reveal the eigenenergy dependence on the location. The
eigenenergy should be independent of the interface location if the single-band effective-mass equation
combined with the connection matrix is a consistent theoretical entity. However, as the interface is dis-

placed from —a to a (where a is the lattice constant) relative to the location where the numerical values
of the connection matrices are usually given in the literature, the first and the second eigenenergies of the
GaAs-Alo 3Gao 7As quantum wells can deviate by about 6 and 20 meV, respectively. Therefore, it is con-
cluded that the connection-matrix approach to quantum wells is not sufficiently consistent. However,
the eigenenergy deviations become less signficant for the quantum well with lower barrier energy and
wider well width.

I. INTRODUCTION

The effective-mass equation is valid for a slowly vary-

ing potential. ' The abrupt change of the constituents in a
semiconductor heterojunction introduces a challenging
modification to the effective-mass equation. The connec-
tion matrix which connects the envelope functions and
their first derivatives at the heterojunction has been de-
vised to deal with this difficulty and has also been ap-
plied to the computation of the eigenenergies of quantum
wells and superlattices. '

The connection-matrices method is developed to com-
bine with the effective-mass equation in order to improve
the results predicted by using the effective-mass approxi-
mation, with the continuity assumption conventionally
made on the envelope function and the probability flux

based on the envelope function at the heterojunction. '

The methods used for the computation of the connection
matrix employ either the tight-binding model ' ' or the
pseudopotential model. '

By the tight-binding model, Ando, Wakahara, and Ak-
era deduced an effective-mass-dependent connection ma-
trix at the GaAs-A1„Ga, „As interface. By the pseudo-
potential method, Cuypers and van Haeringen introduced
an energy-dependent connection matrix. In this paper
both the effective-mass-dependent and the energy-
dependent connection matrices will be explored.

In a rectangular quantum well, there are two hetero-
junctions, and the locations of the interfaces where the
connection matrices are given are arbitrary to within a
lattice constant because the interfaces are artificially
drawn. With this arbitrariness in mind, it is expected
that the eigenenergies predicted by the single-band
effective-mass equation incorporated with the connection
matrix should be independent of the interface location.
The purpose of this paper is to perform these eigenenergy

calculations of the GaAs-Al Ga, ,As quantum wells to
examine the validity of this theoretical approach.

II. THE EXAMINATION METHODS

The connection matrix utilized to deal with the semi-
conductor heterojunction connects the envelope function
and its first derivative at the interface ' '

a(zo ) 4~ (zo)

with

T(z =zo) =

where zo is the location of the interface. Material A is
the first-grown material and is drawn on the left-hand
side (z (zo) as shown in Fig. l. Material B is drawn on
the right-hand side (z )zo). Both materials are assumed
to have single-band extrema, and the band extrema are
close in energy. ' " P„and ga are the envelope func-
tions in materials 3 and B, respectively. V'=a dldz,
with a being the lattice constant. T(z=zo) is the 2X2
connection matrix with the dimensionless matrix ele-
ments of t », t,2, and t2„and t22.

One way to calculate the connection matrix is by the
linear chain model of the constituent atoms, each kind of
which contributes either s orbitals or p orbitals. ' ' The
transfer integrals are only considered between the nearest
neighbors. ' Another way is by the empirical pseudopo-
tential method. The connection conditions for the en-

velope functions at the interface are obtained by match-
ing the wave functions on both sides of the interface in

order for the overall wave function to become smooth at
the heterojunction.
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T(zo) T(zo+5Z) s(zo+5z) g„(zo+5z)
V1(,(z, +5z) =T'="+" Vy„(z, +5z) ~

with the connection matrix at zo+6z,

T(z =zo+5z )

MATERIAL A MATERIAL B

1 6 1 5=
0 1

T'='o' 0 1

11+ 215 r12+(r22 r 11 )5 r2152

(8)

zp zp+5z

If the interface is displaced by the distance of 5z, and
~5z ~

& a, the Taylor's expansions of the envelope function
in material A can be written as

and

(zo+5z ) =f„(zo)+ (zo )5z
dz

1 " |('a+— (z11)5z +O(5z )
2 dz&

(3)

dna dna d 1II'

(z11+5z)= (z11)+ 2
(z11)5z+O(5z ) .

dz dz dz

(4)

FIG. 1. A semiconductor heterojunction. A semiconductor
heterojunction is sketched. The first-grown material A is drawn
on the left-hand side, and material 8 is on the right-hand side.
The interface where the connection matrix is given is artificial.
It can be at zp or zp+5z as shown by the vertical solid and
dashed lines, respectively. When the interface moves from zp to
zp+5z, the connection matrix will vary accordingly from T(zp)
to T(zo+5z} as shown in Eq. (8).

where t», t», t2, , and t22 are the matrix elements of the
connection matrix for the interface at zo as shown in Eq.
(2). Equations (7) and (8) have been presented by Ando,
Wakahara, and Akera in 1989.

In this article, two methods will be suggested to exam-
ine the validity of the connection-matrix approach to
quantum wells by using Eq. (8) and the numerical values
of the connection matrix for the GaAs-Al Ga, As in-
terfaces given in Refs. 5 and 7. The first method is to re-
veal the dependence of the eigenenergy on the location of
the interface. The second method is to demonstrate that
the dependence is not entirely due to the change of the
well width.

The first examination method is based on the upper
schematic plot of the GaAs-Al„Ga& „As quantum well
in Fig. 2. For this quantum well, there are two interfaces
located at z& and z2 shown by the vertical solid lines in
Fig. 2. The interface is artificial and it can be placed ar-
bitrarily at any point between the interfacing atoms. For
instance, the heterojunction at z2 can have the interface
at z=z2 or at z=z2+5z as illustrated by the vertical
dashed lines in the first model of Fig. 2, as long as
/5z/ &a.

Usually, z2 is taken to be the location of the interface

GaAs-AIXGat-XAs QUANTUM WELL

In the formalism of the connection-matrix approach, it
is assumed that, in each bulklike region, the variation of
the envelope function within a lattice constant is negligi-
ble. Furthermore, in the tight-binding model, only the
first derivative of the envelope function is retained in the
derivation of the connection matrix. Hence, the terms
of second- and higher-order derivatives in Eqs. (3) and (4)
can be ignored without increasing the degree of approxi-
mation. This results in the relation between the envelope
function at zz and the envelope function at zo+6z:

vp

Vp

Z)

I I

Z2 Zp+5Z Z3

MODEL 1

MODEL 2

1( „(zo+5z )

Vg„(zo+5z } 0 1

(zo }

Vg„(zo }

where 5=5z la.
A similar relation can be established for material 8:

Ps(zp +5z )

Vfs(zo+5z }

1 5 Ps(zo)
0 1 V1(s (zo )

Therefore, when the interface is displaced to zo+5z,
the envelope function relation becomes

a-5z

FIG. 2. Schematic plots of quantum-well models. The mi-
croscopic picture and two effective-mass models of the GaAs-
Al Ga& As quantum well are plotted. Model 1 is used for the
first examination method, where the dependence of the eigenen-
ergies on the interface location is studied. Models 1 and 2 have
the same resultant well width, and are used for the second ex-
amination method to illustrate that the well-width change is not
the only reason responsible for the eigenenergy dependence on
the interface location.
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where the connection matrix is given in the literature.
For most of the physical applications of the connection
matrix, the interface is simply taken to be at z2. In this
paper, moving the interface by 6z is the method we sug-
gest to investigate the consistency of the effective-mass
model employing the connection matrix at the interface.

If the quantum well shown in the upper plot of Fig. 2 is
to be modeled by the single-band effective-mass equation
and the connection matrix at the interface, one can take
the right-hand interface to be at either zz or zz+5z. The
well width of the quantum well should be taken as the
separation between the locations of the two interfaces.
Therefore, the model with the right-hand interface at
zz+5z have the connection matrix given by Eq. (8) and
the resultant well width of

L =Lo+5z (9)

where Lo =z2 —z, is the well width of the model with the
right-hand interface at z2.

The model with the two interfaces at z, and z2 and the
model with the interfaces at z, and zz+5z are simply two
different simulations of the same physical system. They
should produce the same confined electron levels in the
quantum well if the effective-mass equation incorporated
with the connection matrix is sufficient for this type of
problem.

In the second examination method, the quantum well
is simulated by two models. The first model has the well
width of Lo and the interface displacement of 5z as
shown in the upper plot of Fig. 2. The second model has
the well width of Lo+a and the interface displacement of
5z as shown in the upper plot of Fig. 2. The second mod-
el has the well width of Lo+a and the interface displace-
ment of —(a —5z) as shown in the lower plot of Fig. 2,
where a is the lattice constant and 0~5z &a for this
method. These two models have the same resultant well
width of

L =Lo+5z =(Lo+a )+ I
—(a —5z ) j .

If the eigenenergy dependence on the interface location
revealed in the first examination method is simply due to
the change of the well width, then the eigenenergies ob-
tained by the two models of the second examination
method should be identical. In Sec. III these two propo-
sitions will be inspected and the validity of the
connection-matrix approach to quantum wells wi11 be dis-
cussed.

t12
T(A1„Ga, ,As~GaAs) =

21 22
(10)

The matrix elements t», t,2, t2„and t22 obtained by the
tight-binding model and the pseudopotential method will
be given below.

The effective mass-dependent connection matrix pro-
posed by Ando, Wakahara, and Akera is given at the As
atom:~

m(Al„Ga, „As) E (GaAs)

m(GaAs) Eg(Al„Ga, ,As)

m(A1, Ga, „As) E (Al„Ga, „As)
m(GaAs) E (GaAs)

(12)

and

t =t =0.12 21 (13)

In this paper, the band-gap energy, the effective mass,
and the lattice constant of the Al„Ga, As crystal are
taken to be

l.424+ 1.247x (eV)

l. 900+0.125x +0.143x (eV),

dependent connection matrices. It wi11 be shown that the
energy-dependent connection matrix does slightly better
in the examination than the effective-mass-dependent
connection matrix. But their results are not different
enough for the major characteristics of the examination
results to change.

The GaAs-A1As quantum well has three quantum lev-
els for the well width of about 100 A. For the sake of
simplicity in illustrations, a two-level GaAs-Alo 3Gao 7As
quantum well will be employed after the comparison be-
tween the two connection matrices is completed. Hence,
only the results obtained by the effective-mass-dependent
connection matrix will be presented for the rest of the ex-
aminations.

The transfer-matrix method in Ref. 13 is modified to
take the connection matrix into account. For the
quantum-well model employing the energy-dependent
connection matrix, self-consistent solutions for each
quantum level are obtained by iterations. Hence, the re-
sults obtained in this section are analytic solutions.

The connection matrix of the GaAs-Al„Ga1 „As in-

terface is given by

III. RESULTS AND DISCUSSION (14)

Both the effective-mass-dependent connection matrix
proposed by Ando, Wakahara, and Akera and the
energy-dependent connection matrix proposed by
Cuypers, and van Haeringen will be examined by the
two examination methods mentioned in Sec. II. Since the
energy-dependent connection matrix is only available for
the GaAs-A1As interface in the work by Cuypers and van
Haeringen, the GaAs-AlAs quantum well is used in the
first examination method to compare the results predict-
ed by the effective-mass-dependent and the energy-

m(A1, Ga, „As)=(0.067+0.083x)mo,

and

(15)

a(A1 Ga, As) =5.6533+0.0078x (A), {16)

1.213
T(A1As~GaAs) =

0 1.846 (17)

respectively. ' For x =1.0 and 0.3, the connection ma-
trix becomes
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and 350

1.042
T(Alo ~Gao 7As~GaAs) =

1.316 (18) 300

respectively.
The connection matrix of the GaAs-A1As interface cal-

culated by Cuypers and van Haeringen is energy depen-
dent and almost diagonal. The matrix element t» can be
taken as real, and t~z is almost real. As the energy
changes from 0 to 1.5 eV, the matrix elements t» and t22

vary from 0.92 to 0.9 and from 1.26 to 1.05, respective1y.
From Fig. 3 of Ref. 7, the dependence of t» and t22 on
the energy is almost linear for energy less than 0.9 eV.
Therefore, the following linear relations are used in this
paper, for 0 eV E ~0.9 eV,

t» =0.92
0.02
1.5

(19)

t22 —1.26— 0.21
1.5

(20)

and t, z and tz, are the same as in Eq. (13), where E is the
energy relative to the conduction-band minimum of
GaAs. The location where the energy-dependent connec-
tion matrix is given is not mentioned in Ref. 7. This does
not influence our work because the interface displace-
ment is relative to the location where the numerical
values of the connection matrices are normally given in
the literature.

For the conduction band of the GaAs-Al, Ga&, As
quantum well, the connection matrix connects envelope
functions of two s-symmetry bands. Hence, the connec-
tion matrix of the interface configuration obtainable by
the mirror reQection of the interface configuration with
the connection matrix of T~~ is computed by

1 0 1 0
TAB p 1 TBA p (21)

The eigenenergies of the three quantum levels of the
GaAs-A1As quantum well are shown in Fig. 3. The re-
sults obtained by the efFective-mass-dependent and the
energy-dependent connection matrices are plotted in the
solid and the dashed curves, respectively. The barrier
height and the well width of the GaAs-A1As quantum
well are taken to be 446.6 meV (by assuming the
conduction-band —o8'set ratio to be 0.6) and 101.7594 A
(36 monolayers of GaAs), respectively

As the interface displaces from a to —a, the first, the
second, and the third eigenenergies predicted by the
effective-mass-dependent connection matrix deviate by
9.654, 33.691, and 56.428 meV, respectively; those pre-
dicted by the energy-dependent connection matrix devi-
ate by 9.213, 32.549, and 54.637 meV, respectively.

The first examination method can also be formulated
so that the displacement occurs at the interface at z&

rather than at z2. The computational results show that
the eigenenergies as functions of the interface displace-
ment relative to z& are the mirror reAection of Fig. 3
about 6z =0. Hence, we will concentrate on the examina-
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FIG. 3. Eigenenergies of the GaAs-AlAs quantum well. The
eigenenergies of the three quantum levels of the GaAs-AlAs
quantum well as functions of the interface displacement (in the
unit of a lattice constant) are plotted. The barrier energy and
the well width are 446.40 meV and 101.7594 A, respectively.
The solid and the dashed curves stand for the results obtained

by the effective-mass-dependent and the energy-dependent con-
nection matrices, respectively. The eigenenergy deviations due
to the interface displacement are very close for both matrices.

tion on the heterojunction at z2.
To conclude, the energy-dependent connection matrix

does slightly better in the examination than the effective-
mass-dependent connection matrix. But the difference is
too sma11 to introduce significant change of the charac-
teristics of the examination results. Therefore, for simpli-
city, we will, in the following discussions, focus on the ex-
amination on the two-level GaAs-Alo 36a07As quantum
well by using the effective-mass-dependent connection
matrix.

The eigenenergies of the first and the second levels of
the GaAs-A103Ga07As quantum well are shown in the
lower and the upper subplots of Fig. 4, respectively. The
barrier energy and the well width used in this figure are
224.46 meV and 101.7594 A, respectively. The solid
curves represent the physical solutions. Two nonphysical
solutions are also plotted. The first one, denoted by the
dashed curves, is the eigensolution obtained by holding
the well width constant and varying the connection ma-
trix as the interface displacement changes. The second
one shown by the dotted curves is the eigenenergies ob-
tained by holding the connection matrix unchanged and
varying the well width. These two nonphysical solutions
are presented to illustrate the efFects of the well width
and the connection matrix on the eigenenergies.

As mentioned in Sec. II, if the combination of the
effective-mass equation and the connection matrix consti-
tutes a sufficiently consistent model, the effects of the al-
teration of the connection matrix, as the interface moves,
should compensate for the effects of the well width
change. However, it is found that the effects of the we11



2612 TSUNG L, LI AND KELIN J. KUHN 49

130 118

110

105

UJ

@ 33

(g 32

Qj 31

30
29

-0.5 0.5

112

110

108

10B

31

f 3o-
(3

29

MODEL 1
MODEL 2

28

101 102 103 104 105 10B 107 108

-1 -0.6 0 0.6
IN I tHFACE DISPLACEMENT (8)

27 I I I I I I

101 102 103 104 106 10B 107 108

RESULTANT WR I WIDTH (A)

FIG. 4. Eigenenergies of the GaAs-Alp 3Gap 7As quantum
well. The eigenenergies of the GaAs-Alp 3Gap 7As quantum well

are plotted in solid curves. The barrier energy and the well

width of the quantum well are 224.46 meV and 101.7594 A, re-

spectively. The nonphysical eigensolutions obtained by fixing
the well width and by fixing the connection matrix are shown by
the dashed and dotted curves, respectively. The eigenenergy de-
viation is dominated by the change of the well width.

width and the effects of the connection matrix on the
eigenenergies are in the same direction, and that the
eigenenergy deviation is dominated by the variation of
the well width. As the interface displacement changes
from a to —a, the first and the second eigenenergies of
the GaAs-Alp 3Gao 7As quantum well can differ by 6.058
and 19.948 meV, respectively.

The fact that the well-width change dominates the
eigenenergy variation as the interface displaces is also re-
sponsible for the results (obtained for the GaAs-AlAs
quantum well in Fig. 3) that eigenenergy deviations for
the models employing the effective-mass-dependent and
the energy-dependent connection matrices are rather
close.

As the GaAs-A103Ga07As quantum well is simulated

by the two models of the same resultant well width
(Ln+5z) as sketched in Fig. 2, the eigenenergies of the
first model with the well width of Lo and the second
model with the well width of Lo+a are shown as func-
tions of the resultant well width L in Fig. 5 by the solid
and the dashed curves, respectively. The 1ower and the
upper subplots display the eigenergies of the first, and the
second levels, respectively. In this figure the well width
of the first model (Ln) is taken to be 36 monolayers
(101.7594 A). Hence, the well width of the second model
(Lo+a) is 38 monolayers (107.4127 A).

It is found that the eigenenergies predicted by the two
methods with the same resultant well width are not iden-
tical. The differences are about 0.5 and 1 meV for the
first and the second levels, respectively. These differences
are small because, as pointed out in the first examination
method, the energy deviation is dominated by the well-

FIG. 5. Quantum wells with the same resultant well width.
The eigenenergies of the two GaAs-Alp 3Gap 7As quantum-well

models given in Fig. 2 are plotted versus the resultant well

width. The results of models 1 and 2 are shown in the solid and
dashed curves, respectively.
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FIG. 6. Eigenenergy deviations versus barrier energy. The
eigenenergies of the GaAs-Al Gal As quantum well as func-

tions of the barrier energy are plotted in solid curves. The
eigenenergies of the same system obtained by taking the inter-

face displacement (6z) to be a and —a are shown by the dashed
and dotted curves, respectively.

width change. The fact that they are not identical shows
that the well-width change is not the only reason for the
eigenenergy to deviate as the interface displaces.

As the Al composition in the barrier of the GaAs-
Al„Ga, „As quantum well varies from 0.2 to 0.45, the
barrier height changes from 149.64 to 336.69 meV. The
well width (Lo) is taken to be 36 monolayers. The
eigenenergies obtained by 5z =0, a, and —a are shown in
Fig. 6 by the solid, dashed, and dotted curves, respective-
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conditions for the envelope functions. ' The
connection-matrix approach does not solve the hetero-
junction as a united system. In other words, it neglects
the interaction between the materials on both sides of the
heterojunctions. Hence, it is not surprising to see the in-
consistent eigenenergies of the quantum well calculated
by using the connection matrices obtained under the
above assumptions.

IV. CONCLUSIONS

30
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wELL whom (A)

140

FIG. 7. Eigenenergy deviations versus well width. The
eigenenergies of the GaAs-Alp 3Ga07As quantum well as func-

tions of the well width are plotted in solid curves. The eigenen-

ergies of the same system obtained by taking the interface dis-

placement (5z) to be a and —a are shown by the dashed and dot-

ted curves, respectively.

ly. The lower and upper subplots show the first and
second eigenenergies, respectively. It is observed that the
eigenenergy deviation due to a fixed interface displace-
ment decreases as the barrier energy decreases.

In Fig. 7 the eigenenergies of the quantum well with
the barrier energy of 224.46 meV are plotted as functions
of the well width (Lo) The eige. nenergies obtained by
5z =0, a, and —a are shown by the solid, dashed, and
dotted curves, respectively. The eigenenergy deviations
decreases as the well width increases. The trend that the
eigenenergy deviation due to the interface displacement
decreases as the barrier height decreases or as the well
width increases is rather predictable because the effects of
the well width overwhelm those of the connection matrix.

In this section it is shown that the GaAs-A1, Ga& As
quantum-well model employing the single-band effective-
mass equation and the connection matrix does not pre-
dict sufficiently consistent eigenenergies. In the
connection-matrix approach to semiconductor hetero-
junctions, the wave functions on one side of the hetero-
junction are solved by assuming that the material on this
side prevails in the entire space. The wave functions on
the other side of the heterojunctions are obtained by the
same assumption. Then, the wave functions are smoothly
joined together at the interface to yield the connection

In this paper the connection-matrix approach to the
GaAs-A1, Ga& „As quantum wells is examined by vary-

ing the location of the interface between the interfacing
atoms to observe the eigenenergy dependence on the loca-
tion. As the interface is displaced between the interfac-
ing atoms, the widths of the quantum well and the con-
nection matrix alter accordingly. These two factors
determine the eigenenergy of the quantum well. The
effects of the two factors on the eigenenergies should can-
cel each other if the single-band effective-mass equation
incorporated with the connection matrices at the hetero-
junctions is a sufficiently consistent model for the quan-
tum well with abrupt heterojunctions.

Both the effective-mass-dependent and the energy-
dependent connection matrices are explored. The results
obtained from the GaAs-A1As quantum well show negli-
gible difference between the eigenenergy deviations calcu-
lated by the effective-mass-dependent and the energy-
dependent connection matrices.

In this paper it is found that, as the interface displace-
ment changes from a to —a, the first and second eigenen-
ergies of the GaAs-Alo 3Gao 7As quantum well can devi-
ate by about 6 and 20 meV, respectively. It is further
verified that the deviations are dominated by the well
width, but are not solely due to the change of the well
width. Therefore, we conclude that the quantum-well
model employing the single-band effective-mass equation
and the connection matrices does not comprise a
sufficiently consistent theoretical model. However, the
eigenenergy deviations become less significant for the
quantum well with smaller barrier energy and wider well
width.
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