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Thermal transport in silicate glasses. I. Localized phonons
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Measurements of the thermal diffusivities between 80 and 500 K for five silicate glasses of composition
0.15(M20)0.05(ZnO)0. 05(BaO)0.05(Eu203)0.70(Si02), where M is Li, Na, K, Rb, or Cs are presented. In
each case the thermal diffusivity asymptotically approaches a linear temperature dependence at high

temperatures. The data are analyzed using a model that contains extended phonons and, above a mobili-

ty edge, localized phonons that participate in the transport through thermally activated hopping. The
lowest-frequency Raman peak is used as a quantitative measure of the mobility edge. The thermally

averaged relaxation times that characterize the localized-mode and extended-mode contributions to the
thermal diffusivities are studied as functions of the mobility edge across this isostructural series of
glasses.

INTRODUCTION

Thermal transport properties of glasses have presented
an interesting set of research questions over the last two
decades. The thermal conductivity experiments of Zeller
and Pohl initiated a train of investigation that culminat-
ed in the two-level-system (TLS) model ' which accounts
for many of the properties of glasses at temperatures
below the plateau region. In this picture the heat carriers
are extended-state phonons, similar to the Debye pho-
nons of crystalline solids, and the TLS provide a scatter-
ing mechanism for them. On a more general level, an im-
portant consequence of the success of the TLS model has
been the recognition that amorphous solids can support
excitations that differ qualitatively, as well as quantita-
tively, from those ordinarily encountered in crystalline
solids.

At temperatures above the plateau, there is not yet
consensus on the nature of the phonons that provide the
heat carriers nor on the elastic properties of the glass that
may be needed for effective thermal transport by these
modes. The most successful current models hypothesize
that the phonons are weakly localized by the disordered
structure of the glass. The thermal transport process is
one in which these localized phonons diffuse among
neighboring localization sites by a random walk or hop-
ping process. Cahill and Pohl have used such a random
walk model in which the localized phonons have a strong,
temperature-independent damping and diffuse among
equivalent sites to account for the thermal conductivities
of a number of simple glasses. Their model predicts that
the thermal transport coefficients will become indepen-
dent of temperature once the glass is at a sufficiently high
temperature that equipartition applies. Orbach and co-
workers have developed a model in which the local-
ized phonons (fractons) execute thermally activated hop-
ping among inequivalent localization sites. We shall refer
to this as the thermally activated hopping (TAH) model.
This model predicts that the thermal transport
coefficients will be proportional to T at high tempera-
tures. This result was not seen in the high-temperature

limit for the simple glasses analyzed by Cahill and Pohl
as these have thermal conductivities that tend toward a
limiting value at the upper extreme of the temperature
range in their data. The TAH model has also been con-
troversial because of its use of a fractal mesoscale struc-
ture for the glass to facilitate computation.

In the present paper we shall present measurements of
the thermal diffusivities between 80 and 500 K for five re-
lated silicate glasses having the composition

0. 15(MzO)0. 05(ZnO)0. 05(BaO)0.05(Eu203)0. 70(Si02),

where the network modifier M is an alkali metal. We
shall show that these results can be adequately described
by a TAH model with localized phonons as the principal
heat carriers in this temperature range. The model that
we use employs many of the ideas inherent in the fracton
model without explicit reference to the mesostructure
of the glasses. While this is somewhat limiting in terms
of first-principles computational ability, we shall rely on
empirical properties of the glasses to support the analysis.
Extended phonons will also be seen to make a small but
important contribution to the transport in these glasses.
In the following paper (herein referred to as II) results
will be presented for a second set of network-modified sil-
icate glasses in which it is necessary to include a
significant contribution of the extended-state phonons to
account for the thermal transport. It will also be shown
there that this picture provides good agreement with the
thermal diffusivity of fused silica and thus provide a con-
nection between the Cahill and Pohl and the TAH pic-
tures of the transport process.

EXPERIMENTAL

Thermal diffusivity is a technique of preference for
studying thermal transport in poor heat conductors be-
cause of its insensitivity to radiative heat losses. The
thermal diffusivities were measured using an adaptation
of the transient technique developed by Kennedy
et al. ' Figure l shows a block diagram of our ap-
paratus. The samples, kindly given to us by Powell, were
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FIG. 1. Block diagram of the apparatus.

rectangular parallelepipeds, typically 3 X 3 X 15 mm .
Shallow grooves spaced at 5.0-mm intervals were cut into
the sample to hold the three thermometers. These were
0.025-mm-diam chromel-alumel thermocouples refer-
enced to electronic ice points. The thermocouples were
anchored to the sample with a small amount of thermally
conducting paste (an alumina-filled silicone grease). With
this same thermal compound, the sample base was at-
tached to a resistance heater used to obtain a transient
temperature distribution in the specimen. For measure-
ments above room temperature this assembly was mount-
ed in a small tube furnace that controlled the mean tem-
perature of the sample. Low-temperature measurements
were obtained with this assembly mounted on the cold
finger of a liquid-nitrogen cryostat.

The experiment was carried out under microcomputer
control with the instruments communicating over an
IEEE-488 interface bus. Simultaneous readings of the
three thermometers were obtained by sending a group
trigger command to the digital voltmeters. Each of these
was a Hewlett-Packard model 3478A digital multimeter
having a sensitivity of 0.1 pV. 4'ith the sample in
steady-state conditions temperature readings were taken
to establish a "baseline" for the measurement. On com-
mand from the computer, the digital relay was closed,
supplying current to the transient heater. This current
was maintained constant while simultaneous temperature
measurements were taken by the three thermometers at
intervals of 0.5 s. These data were collected for an
elapsed time of 50—100 s. During this time a tempera-
ture change of 3—7 K occurred at the thermometer
closest to the heater. At the end of this data-collection
interval the relay was opened to turn off the transient
heater and allow steady-state conditions to become rees-
tablished. Figure 2 displays a typical data set of tempera-
tures as functions of time for one of our glasses.

The therma1 diffusivity, a, can be obtained from these
data via the diffusion equation,

T =aV T.
Bt

FIG. 2. Typical temperature vs time data. The upper curve
is for the thermometer closest to the heater and the lower curve
is for the thermometer farthest from the heater. These data are
for the K-modified glass.

Kennedy, Sidles, and Danielson used trial values of
the thermal diffusivity to solve the diffusion equation us-

ing a mesh method. %e have instead used a simple algo-
rithm for the diffusivity that could be evaluated in a few
seconds by the microcomputer. Under the assumption of
one-dimensional heat Aow, V T was estimated by the
finite difference relation for each measurement time in the
data set. Here L, M, and U refer to the lower, middle,

and upper thermometers, respectively, and Ax is the
spacing between adjacent thermometers. At each time t,
BT(t )IBt was estimated by fitting a regression line to a
short segment of TM(t) on either side of t and using the
slope of this line as the estimate of the time derivative.
Typically segments of eight points were used in this pro-
cedure. The estimates of V TM were refined by averaging
over the same time interval used to evaluate the time
derivative. According to (l), BTM /Bt should be a linear
function of V TM with slope a. Figure 3 illustrates the
result of this procedure applied to the data set displayed
in Fig. 2. The curve is remarkably linear, particularly in
view of the number of numerical derivatives that have
been performed to generate it. Through the use of this
algorithm, both g and plots of the data in the form of
Figs. 2 and 3 are available to the experimenter in essen-
tially real time. The value of o. obtained in this way was
assigned to the mean temperature of the middle ther-
mometer during the measurement cycle.

Two kinds of checks have been performed on the relia-
bility of this algorithm to represent the diffusion equation
faithfully. First, the method has been used to measure the
thermal diffusivities of several standard samples, includ-
ing fused silica (to be discussed in II), whose known
thermal diffusivities cover a broad range of values and
which include both amorphous and crystalline solids. In
all cases the thermal diffusivities measured by the present
technique were in excellent agreement with those report-
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FIG. 3. Plot of BT/Bt vs O'T/Bx calculated from the data
of Fig. 2 as described in the text. The slope of this line is the
thermal diffusivity.

FIG. 4. Thermal diffusivities as a function of temperature for
the Li-modified and Na-modified glasses. The curves are fits to
the data using the model described in the text.

ed in the literature. A second test was performed on
every data set to ensure that the smoothing procedure in
our algorithm did not materially affect the estimated
thermal diffusivity. In this test dTM(t )IBt was calculat-
ed by using the slope of the line connecting the two
points T~(t, ) and TM(t +, ). This, of course, produces
the maximum scatter in the data. At each time in the
measurement cycle g was evaluated, and the average of
these values was computed. If this did not agree with the
value obtained using the smoothing procedure, the data
set was deemed too noisy to be useful.

Since the temperature was observed at only three loca-
tions along the length of the sample, finite difference pro-
cedures could not faithfully track V T unless the contri-
butions to the transient temperature distribution from
higher-order derivatives of the temperature and from ra-
dial heat Qow were small. This could be guaranteed only
if the initial condition of the sample was near to steady
state. In our apparatus the best results for these samples
were obtained if the transients were allowed to dissipate
to 20-30 min between data sets.

is the ratio of the density to M. The "molar radius" rf is
the radius of a sphere whose volume is the "molar
volume. "

It is also of interest to compare the magnitudes of the
thermal diffusivities of these network-modified glasses to
that of fused silica. Between 300 and 500 K the thermal
diffusivity of fused silica has a nearly constant value of
9X10 cm /s. Both the Li-Zn-Ba-Eu silicate and the
Cs-Zn-Ba-Eu silicate substantially exceed this value at
temperatures above 400 K.

The linear temperature dependence observed for these
samples is suggestive of transport by thermal activation
of localized phonons similar to that described in the frac-
ton model by Orbach et al. However, we have
insuScient knowledge of the mesoscale structure of these
glasses to determine whether or not a fractal structure is
appropriate. Fortunately, many of the features of the
TAH model do not require the dilation symmetry of frac-

10

RESULTS AND DISCUSSION

Data are shown in Figs. 4—7 for each of the five glasses
in this study. In each case the thermal diffusivity is a
nearly linear function of temperature with a nonzero in-
tercept. The slopes are quite similar for the glasses
within this family. Each figure also exhibits a fit to the
data using the model described below.

In Table I, we give some relevant physical properties
for the glasses. We have also introduced the concept of a
"formula unit" for the glasses. This useful concept is
somewhat ill defined since these glasses are mixtures rath-
er than compounds. We shall retain the quotation marks
as a reminder of this. No is the smallest number of atoms
in which each element is represented in the same propor-
tions as in the overall sample, and thus comprises one
"formula unit. " For these glasses No=60. The mass M
is the mass of one "formula unit. " The "molar volume"
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FIG. S. Thermal diffusivity of the K-modified glass as a
function of temperature. The curve is the fit to the data using
the model described in the text. The separate contributions of
extended phonons and localized phonons are also shown.
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FIG. 6. Thermal diffusivities of the Rb-modified and Cs-
modified glasses as function of temperature. The curves are fits
to the data using the model described in the text.

tal structures. For our present purposes it is convenient
to consider a broader class of TAH models of which the
fracton model is a specific example. While this limits our
potential for relating the parameters of the model to first
principles, it avoids making possibly controversia1 as-
sumptions about the structure. Thus, we shall postpone
until a future paper such structural questions and treat
thermally activated hopping transport in a form that in-
volves parameters which we can estimate empirically.

There are two basic ingredients of the TAH model.
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FIG. 7. Raman spectra of the glasses. The main figure
shows the region of the boson peak. Curve A is the LI-modified
glass; curve B is the Na-modified glass; curve C is the K-
modified glass; curve D is the Rb-modified glass; and curve E is
the Cs-modified glass. The inset shows the Raman spectrum of
the Na-modified glass from 0 to 1600 cm ', the behavior of the
other glasses is similar on this scale. A11 Raman spectra were
obtained at room temperature.

The first is a phonon spectrum of the glass containing
both low-frequency extended phonons and localized pho-
nons above a minimum frequency co„the phonon mobili-

ty edge. It is also necessary that there be significantly
anharmonic forces to provide the thermal activation of
the localized phonons. Rather than obtaining this from a
calculation, we shall use empirical evidence to argue that
this is the case for the glasses we study here.

A Brillouin scattering study" of these glasses found
narrow peaks for the longitudinal and transverse pho-
nons, indicating the presence of extended phonons with
well-defined wave vectors at room temperature. A Ra-
man scattering study' shows an onset of Raman activity
for these glasses beginning at 10-20 cm ' with a low-
frequency peak, the "boson peak, " in the 30—80 cm
range. This shows that the wave vectors are no longer
well defined above this frequency. On general theoretical
grounds one expects extended phonons with wave vector
q such that q

' is comparable to, or less than, g„the
scale of the disorder in the network, to be strongly scat-
tered by the inhomogeneities in density and elastic prop-
erties that will exist. Unless the mean free path A
satisfies the Ioffe-Regel criterion, qA& 1, it is no longer
possible to have a normal mode with this wave vector.
Hence qg, —l divides the low-frequency, extended states
with reasonably well-defined wave vectors from higher-
frequency modes for which the wave vector is no longer a
good quantum number. Numerical studies of phonon
wave vectors in disordered systems by Bell and Dean' '
indicate that this also signals the onset of phonon locali-
zation.

The broad homogeneous optical linewidths seen in
rare-earth-modified glasses' ' indicate that the motions
of the ligands due to phonons with such frequencies have
large local amplitudes compared to crystalline solids
where the homogeneous widths are orders of magnitude
narrower. The amplitude of a localized phonon will be
far larger than for an extended phonon of the same fre-
quency because the phonon energy %co will be distributed
over far fewer atoms (in a ratio -t /V, where V is the
volume of the sample and l is the localization length for
the phonon). The larger number of extended modes of
frequency ~ that are present at a given site only partially
compensates for this since they add incoherently. This
larger amplitude would also make anharmonicity more
important for the localized modes than for extended
modes with the same interatomic interactions. All this
suggests to us that the phonons become localized at fre-
quencies comparable to the onset of the Raman activity.

For these reasons, we shall interpret the onset of Ra-
man activity in these glasses with phonon localization
and take the maximum in the boson peak as representa-
tive of co, . The critical length (, will be approximated by
2~v, /co„where v, is the average sound velocity of the
extended phonons. These, and other parameters associat-
ed with this interpretation, are given in Table II.

It is reasonable to expect that a set of glasses as closely
related in composition as the ones studied here may also
be structurally similar. This would imply that the critical
length g, should scale linearly with rf, the radius of the
"formula unit. " The excellent agreement between experi-
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TABLE I. Physical properties.

Alkali modifier

Formula mass (u)
Density (g/cm')
Molar volume (nm')
Molar radius (nm)
Alkali ionic rad (nm)

Li

1516
3.22
0.786
0.573
0.06

Na

1612
3.21
0.839
0.585
0.095

1708
3.15
0.906
0.600
0.133

1987
3.47
0.956
0.611
0.148

Cs

2272
3.74
1.015
0.623
0.169

Sound velocity' (10' cm/s)
Transverse
Longitudinal

Mean

3.31
5.66
4.09

3.07
5.29
3.81

2.91
5.07
3.63

2.74
4.76
3.41

2.54
4.48
3.19

Raman frequencies (cm ')

Boson peak
Other peaks

'Reference 11.
Reference 12.

78
425
625
783
948

1076
1328

60
429
637
780
932

1082
1302

58
436
606
786
930

1087
1295

48
440
600
780
940

1090
1292

34
448
599
776
929

1086
1303

ment and this relationship is exhibited in Fig. 8. This
provides quantitative support for interpreting the boson
peak as co, . Note, however, that this linear relation ex-
trapolates to g, =0 for rf &0. This is minimum rf corre-
sponds closely to the radius of an equivalent number of
units of crystoballite, to which the silica network would
devitrify if it phase separated from the network modifiers;
this is shown by the open circle in Fig. 8.

The leading contribution of the localized modes to
thermal transport is a three-phonon anharmonic process
illustrated schematically in Fig. 9. When a localized
phonon decays, energy conservation requires that it reap-
pear in some other mode elsewhere, a distance R away, in
the glass. This is the process that we refer to as "hop-
ping. " This process will have significant probability of
occurring only if there is substantial overlap of the donor
and acceptor wave functions. Since there will be few oth-
er neighboring modes of exactly the same frequency, a
low-frequency phonon will be emitted or absorbed to
make up the energy difference between the donor and ac-

ceptor phonons. Extended phonons are likely candidates
for these facilitator modes since they have access to the
entire sample.

The hopping process contributes a thermal diffusivity
given by

(3)

where ( R ) is a thermally averaged square hopping dis-
tance and ~&„is the mean lifetime of the localized pho-
nons. Since this process is facilitated by an extended pho-
non, the lifetime will be inversely proportional to the
population of extended phonons

(4)

when kii T »Ace, . (R ) does not depend on temperature
when T is large enough for equipartition to apply. In a
series of glasses all having the same structure, (R )
should scale with the size of the configuration as mea-
sured by rf.

TABLE II. Transport parameters.

Alkali modifier

co, /2n. (cm ')

g, (nm)

C,„,/C (high-T limit) (10 )

B (10 cm /sK)
A (10 cm K/s)
N, /V (10' cm )

(R;„)(nm)

s&„T(ns K)
&extT (ns K)
~1„(300K) (ps)
A,„,(300 K) (nm)

Li

78
1.73
3.53
2.46
1.14

21.5
1.67
1.13
0.204

22.4
2.79

Na

60
2.10
2.12
1.64
1.36

12.1
2.02
2.49
0.282

67.1

3.54

58
2.07
2.39
1.70
0.998

12.6
1.99
2.33
0.228

40.7
2.76

Rb

48
2.35
1.72
1.69
2.18
8.62
2.26
3.03
0.561

47.7
6.39

Cs

34
3.09
0.797
2.72
3.57
3.77
2.98
3.27
1.05

60.7
11.2
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where C,„,and C&„are the heat capacities per unit
volume of the extended and localized phonons, respec-
tively. The corresponding thermal diffusivity o, =a,„t
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FIG. 8. Comparison of the critical length g, calculated from
the boson peak with the radius r& of the "formula unit. " The
solid circles are the five glasses studied here. The open circle in-

dicates r& for the 14 Si02 units devitrified as crystabalite.

Thus, a phonon mobility edge and three-phonon anhar-
monic processes suffice to produce thermally activated
hopping. The linear dependence of the thermal
diffusivity on temperature is the signature of a significant
transport due to thermally activated hopping and is not,
of itself, an indication of a fracta1 glass. It is, short of ac-
cess to the phonon wave functions, the best indication
that phonon localization has occurred.

The extended phonons will also contribute to the
thermal transport. Here one expects to be able to de-
scribe the conduction in the conventional phonon-gas
picture. The net thermal conductivity is the sum of the
contributions from the extended and the localized pho-
nons,

where C =C„,+C~„.At temperatures high enough for
equipartition C =3Nokz(p/M), where No is the number
of atoms in the "formula unit" and M is the mass of this
unit. Using the Debye approximation to estimate the
heat capacity of the extended phonons in this limit,
C,„,=(co, /v) ks/(2n ). The peaks in the Raman spec-
tra, listed in Table I, extend to 1330 cm '. Therefore, it
is necessary to correct for the temperature variation of
the total heat capacity C. This has been done by approxi-
mating the phonon density of states by the center fre-
quencies of the seven Raman peaks and using these in a
multiterm Einstein approximation. The values for
C,„,/C given in Table II are the values in the high-
temperature limit. Note that the data used to estimate
C,„,/C are not derived from the transport measurements.

The contribution of the extended phonons to the
thermal transport in these glasses is too small to us
unambiguously to extract the detailed behavior of ~,„t
from the data. However, the linear temperature depen-
dence extending from 100 to 500 K suggests a strong
anharmonicity. This indicates to us that the limiting re-
laxation time for the extended states will also be due to
anharmonic, phonon-phonon processes. (In II a set of
glasses will be studied in which a significant fracton of
the transport is due to the extended phonons. ) On the as-
sumption that phonon-phonon scattering is the dominant
resistive process for the extended phonons, we take
w,„t~T and fit the thermal diffusivity with a function
of the form

localized
"donor"
mode

localized
"acceptor" a=(C,„,/C) AT '+(I —C,„,/C)BT,

extended
phonon

"facilitator'
mode

FIG. 9. Schematic representation of the thermally activated
hopping process. The process deexcites a phonon in the donor
mode and excites a phonon of different frequency on a neighbor-
ing acceptor mode. This is facilitated by an extended phonon to
conserve energy. Note that the parabolas representing the lo-
calized mode potential wells are in normal coordinates while the
separation R is in configuration coordinates.

where A and 8 are constants to be determined from the
fit. This relation has been used to analyze the thermal
diffusivities for these glasses. The fitting coefficients are
given in Table II. The results of this fit for each glass are
displayed in Figs. 4—6. In Fig. 5, the separate contribu-
tions from the extended and localized phonons are
displayed, as well, for the K-modified glass. It should be
noted that it is also possible to represent the data using a
~,„tthat is independent of T.

In order for the localized phonons to be effective heat
carriers the donor wave function must have substantial
overlap with the acceptor wave function. For this reason
it is of interest to estimate the minimum average distance
between a donor and a neighboring acceptor. If D (co) is
the density of states of the localized modes, then the aver-
age number of acceptor modes per unit volume in the
neighborhood of a donor of frequency co& will be

= f D(co)den,
min
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where co;„andco,„arethe maximum and minimum lo-
calized phonon frequencies accessible by interaction with
a single facilitator phonon. Although we do not know
D (co), the Debye approximation will suffice for an order-
of-magnitude estimate. The density of acceptors will be
smallest when the donor frequency is co„giving co;„=co,
and co,„=2~„assumingthat the facilitators are the ex-
tended phonons. This gives

N, /V=7/(2~)(~, /v)' .

This allows us to estimate an average hopping distance to
the nearest available acceptor for the phonons near the
mobility edge as

(10)

which is comparable to the localization length for these
phonons. Thus, the .spatial distribution of acceptor
modes with wave functions overlapping the donor wave
function should be large enough that the hopping trans-
port will not be bottlenecked by a lack of suitable accep-
tors provided the density of states for the localized pho-
nons is not significantly less than a Debye density of
states in the vicinity of the mobility edge.

Jagannathan, Entin-Wohlman, and Orbach derive ex-
pressions for r„,(co) and r,„,(co) for the process illustrated
in Fig. 9 in the fracton approximation. The mean life-
times obtained from these by thermal averaging and tak-
ing $, =2mv, /co, depend on co„v„the density p, the
anharmonic force constants C,z, and geometrical factors
G.

&&,
'=Gio, C fr@), T/(p v, ),

(12)

The assumption of fractal geometry for the glass enters
only in the details of the geometrical factors. This leads
to the conclusion that if extended phonons provide the
facilitator modes for the localized phonon transport, and
this process also sets the mean free path of the extended
phonons, then

Table II. Note that qA ) 1 for the extended phonons and
also N7l„)l for the localized modes at this temperature,
indicating that these states exist as well-defined excita-
tions.

The estimates for the frequency dependence of the re-
laxation rates, in the scaled form r 'p v, /T, derived
from our data using (14) and (15) are displayed in Fig. 10.
For the extended phonons a quartic power law

t l
~ co is indicated, as predicted by Jagannathan

et al. This differs from the co frequency dependence ob-
served for monochromatic, low-frequency phonons in

fused quartz by Dietsche and Kinder. ' The quartic
power law suggests that the anharmonicity of the extend-
ed states is relatively insensitive to the change in the al-

kali modifier. The results of this analysis for ~l„' also
show an co, power law for the four glasses having the
highest u, s. The Cs-modified glass deviates significantly
from this behavior, its thermal diffusivity being too large
to scale in this way. This increase in vl„ from the ex-

pected proportionality for the lifetimes may indicate a
stronger dependence of the anharmonicity of the local-
ized states on the alkali modifier. However, one intuitive-

ly expects that the Li-modified glass, rather than the Cs-
modified, would be more anharmonic. This is because of
the larger amplitude that would be needed for a 78-cm
localized phonon as compared to lower frequencies and
also because of the smaller size and mass of the Li. An
alternate, more physically reasonable, possibility is that
the hopping process may be facilitated by another mecha-
nism that does not limit the mean free path of the extend-
ed phonons. We suggest that this may be due to low-

frequency localized modes acting as facilitators as well as
carriers. Their importance to the transport would be ex-
pected to increase as the mobility edge lowers and re-
stricts the number of extended modes available. The
low-frequency localized modes have been shown' to

100

loc+loc Gext ext ' (13)

The experimental frequency dependence of the mean
lifetimes of the localized and extended phonons can be es-
timated from the thermal diffusivities by

r„,= ( R ) /a„,~ rf /BT

using rf to scale the hopping distance, and

3~ext 3A

v, C,„,/C v, T

(14)

This is a better estimate of the magnitude of v.
&~, than

would be obtained by using (R;„)for the hopping dis-
tance, since the latter represents the maximum distance
at full localization while the measured diffusivity
represents an average over all localized modes. It is also
of interest to estimate the mean free path A=v, v;„tfor
the extended phonons. Ualues for the magnitudes of the
lifetimes and the mean free paths at 300 K are given in

„~60
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FIG. 10. Comparison of the scaled phonon relation rates for
the localized states (circles) and the extended states (triangles).
The hnes are regressions to an ~, power law with an exponent
of 4.3 for the extended states for all Sve glasses and 4.1 for the
localized states for the four glasses with the largest co, 's. Note,
however, the deviation of the localized phonon data from this
behavior at the lowest frequency.
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make a significant contribution to the related problem of
phonon-assisted energy transfer among optically excited
states of rare-earth ions in glasses.

Although the use of ~,„,' ~ T to describe our data for
these glasses leads to a result that agrees with the predic-
tion of Jagannathan et al. , it is important over such a re-
stricted interval of the temperatures studied here that, as
we noted above, a temperature-independent relaxation
rate for the extended states produces an equally good fit
with the experiments. Our choice of this form is based
on observations of a closely related family of silicate
glasses, to be described in II, for which the thermal
diffusivity sharply decreases with increasing temperature
between 100 and 250 K before going over to the linearly
increasing form that we have attributed to TAH at room
temperature and above. Our argument for preferring
phonon-phonon scattering in the present case is large
anharmonicity indicated by the similarity in composition
of the two families.

SUMMARY

The linear term in the temperature dependence of the
thermal diffusivities of these glasses has been shown to
provide experimental evidence for transport by localized
phonons at frequencies above a mobility edge co, . The
model used to describe the data is based on the ideas of
the thermally assisted fracton hopping model, but does
not assume or imply an underlying fractal mesostructure
for the glass. At large values of the mobility edge, ~&„
scales with v.,„,for these for isostructural glasses. The
mobility edge is associated in this relationship with the
onset of Raman activity at low frequencies, thus implying
that this onset is the result of phonon localization rather
than merely the breakdown of wave-vector conservation.
The localization length g, derived from the Raman spec-
tra and the sound velocities is a linear function of the ra-
dius of the most primitive "formula unit" for the compo-
sition of these glasses.

The relaxation times extracted from our thermal
diffusivities show an co, T dependence for both the 1ocal-
ized and the extended phonons. This provides strong evi-
dence that the TAH model is appropriate to the descrip-
tion of thermal transport in these glasses. These results

do not, however, address the question of a possible under-
lying fracta1 mesostructure as used by Jag annathan,
Entin-Wohlman and Orbach as a computational aid in
their theoretical study of this process. The Cs-modified
member of this family exhibits a significantly larger
thermal diffusivity than expected from the co, T relation,
suggesting that low-frequency localized phonons are also
acting as facilitator modes for the hopping transport in
this glass.

A significant practical result of the dominance of trans-
port by this thermally activated hopping is that, other
factors being equal, an increase in the anharmonicity in
the network will increase its thermal diffusivity. This re-
sult, which is counterintuitive from our experience with
the kinetic model for a phonon gas, comes from the con-
sequent decrease in ~&„which increases the hopping rate.
In the present family of glasses, the thermal diffusivities
of both the Li-modified and Cs-modified members be-
come larger than that of fused silica above room tempera-
ture. The scaling relation between rf and g„illustrated in

Fig. 8, may also allow the use of Raman and Brillouin
scattering to assess the structural similarity of glasses
having the same or closely related compositions.

This model for the thermal transport as due to contri-
butions from localized and extended phonons provides a
consistent picture of our data on this family of glasses.
The two fitting parameters in the mode1 vary across the

family much as expected from other measured properties
of these systems. Estimates of the phonon lifetimes, hop-
ping distances, and mean free paths that needed to ac-
count for the results are physically reasonable. In II, a
similar study on another family of glasses in which the
extended phonons play a more significant role will be
presented. The model will be shown to account well for
that situation also.
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