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We present an application to quantum dots of formulas from atomic physics for the rates of collisional
ionization (binary encounter model) and dipole allowed collisional excitation (Van Regemorter and clas-
sical path models) occurring via the Coulomb interaction. The Van Regemorter, classical path, and
binary encounter cross sections, which are known to be very successful in modeling atomic collisions, are
shown to have accuracies comparable to (and are much easier to use than) the methods currently being
used to study collisional rates in bulk excitons. Collisional excitation and ionization cross sections for a

0
150-A-radius InSb quantum dot surrounded by CdTe barriers are shown to be much smaller than the
geometric area ~R', where R is the quantum-dot radius. The reason that these cross sections are so
small is that the Coulomb energy associated with the collision is typically much smaller than the col-
lisional energy exchange. Explicit formulas are given for quantum-dot intraband oscillator strengths.

I. INTRODUCTION

Recently, the quantization of the electron and phonon
spectrum has been observed' in quantum dots of very
small (tens of angstroms) radii. Quantum dots have previ-
ously been proposed for semiconductor lasers as a
method of increasing laser efficiency ' because the opti-
cal transitions between discrete bound energies could be
spectrally very narrow. Further, the ability to make the
typical separations between adjacent bound energy levels
in a quantum dot large compared to kttT has led to
speculation ' that quantum-dot lasers could have charac-
teristics (threshold gain and current density) which are
much less temperature sensitive than conventional semi-
conductor lasers.

Since typical LO phonon energies in semiconductors
have values on the order of the room temperature k~ T,
the typical bound energy separations would exceed a LO
phonon energy in the quantum dots just discussed. Thus,
the bound carriers in these quantum dots are expected to
have little interaction with phonons. In a detailed model
of the ionization balance which we will present in a fu-
ture work, there are two ways in which we model phonon
e6'ects on the bound carriers in quantum dots having typ-
ical energy separations larger than a LO phonon energy.
Acoustic phonons interact strongly with electrons whose
energies are nearly degenerate and will force these elec-
trons into a local thermal equilibrium. LO phonons in
such quantum dots interact strongly only with those
bound carriers which have energies within a LO phonon
energy of the continuum. Bound state transitions result-
ing from LO phonon absorption or emission are very un-
likely because bound energy separations will usually be
very different from the nearly monochromatic LO pho-
non energy.

With the interaction of bound carriers with phonons
inconsequential in such quantum dots, radiative (intra-
band as well as interband) and collisional (via the
Coulomb interaction) processes involving bound carriers

become important. Interband oscillator strengths' ' "
have already been discussed in the literature. Intraband
dipoles are summarized in Appendix A. This paper stud-
ies the collisional excitation and ionization (and their in-
verse processes) of quantum-dot bound carriers caused by
the Coulomb interaction between bound and free carriers
(holes and electrons with energies in the continuum
beyond the barrier band edge).

Quantum dots are more similar to atoms than they are
to bulk or quantum well semiconductors in that the local-
ized electrons in both atoms and quantum dots have
discrete energies. Thus, some intuition about the process-
es important in quantum-dot population kinetics can be
obtained from a study of ion plasmas. Of interest is the
fact that in many astrophysical and laboratory plas-
mas, '~ "the particle distribution among many of the ex-
cited levels in any particular atom or ion cannot be de-
scribed by that of a Saha-Boltzmann equilibrium. In
these cases, knowledge of the detailed collisional and ra-
diative excitation and ionization rates are paramount in
determining the population kinetics.

Our purpose for writing this paper is twofold. First,
we make numerical estimates, based on well known ideas
from ion plasmas, of collisional transition and ionization
rates which we find to be important in the study of the
population kinetics of semiconductor quantum-dot lasers
when interaction with phonons can be ignored. In a fu-
ture' ' paper, we will use these detailed collisional exci-
tation (deexcitation) and ionization (recombination) pro-
cesses affecting individual states to determine the validity
of assuming ' ' a quasiequilibrium, with its associ-
ated quasi-Fermi level, in each energy (conduction or
valence) band in a quantum dot. We will find' ' that
when interaction of bound carriers with phonons is negli-
gible, the assumption of a quasiequilibrium in an energy
(conduction or valence) band is not valid because all in-

traband (collisional and radiative) processes affecting
bound states occur on a time sca1e much 1onger than an
interband radiative lifetime.

The second purpose for writing this paper is to explore
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the use in semiconductor problems of simple models from
plasma physics for collisional transition and ionization
affecting bound states. To this end, we compare the re-
sults from our simple models with experimental and oth-
er theoretical values of the collisiona1 rates affecting serm-
conductor excitons. We find that the agreement with the
literature is good.

We present in Sec. IIA the first application to quan-
tum dots of a Van Regemorter cross section for dipole al-
lowed collisional excitation. Section II B and Appendix C
present the classical path method, which is known to be
useful for computing collisional excitation rates between
strongly, intermediate, and weakly (dipole) coupled states
in atomic plasmas. In Sec. III, we use a binary encounter
theory to estimate quantum-dot collisional ionization
rates. We checked that our collisional excitation and ion-
ization cross sections agree with similar calculations from
the literature for excitons and for atomic hydrogen in
Secs. II C and III B. Explicit formulas are derived in Ap-
pendix A for intraband (as well as interband) oscillator
strengths. Some of the integrals needed to compute col-
lisional excitation and ionization rate coefBcients are
summarized in Appendixes B and D, respectively. We
conclude with a summary of our work in Sec. IV.

To obtain numerical estimates throughout this paper,
we will use the materials parameters for 150-A-radii InSb
quantum dots surrounded by CdTe barriers, which we
have considered earlier' as a materials system whose
Auger rate can be greatly reduced in comparison with the
bulk. InSb has' ' a room temperature, bulk band gap of
163 meV, a spin-orbit splitting of 850 meV, a low fre-
quency dielectric of 17.7eo, light hole, heavy hole, and
conduction band effective masses at the I point of
0.015mo, 0.4mo, and 0.014mo, respectively. CdTe has a
room-temperature' ' ' bulk conduction band edge
which is 420 meV above that of InSb and a valence band
edge which is 850 meV below that of InSb. CdTe has
heavy hole and conduction band effective masses of
0.35mo and 0. 11mo, respectively, and a low frequency
dielectric of 10.2E'0. Unless otherwise specified, we will
assume room-temperature operation of our quantum-dot
lasers throughout this paper.

II. COLLISIONAL EXCITATION

Collisional excitation and deexcitation by incident elec-
trons, can be indicated by the forward and reverse reac-
tions, respectively (E; & 0)

X(Z, i)+e X(Zj —)+e .

A similar equation can be written for incident holes.
Here X(Z, i) denotes the quantum dot which has a total
charge of Z on it and an electron (hole} in state i (Unless.
explicitly stated otherwise, we will assume that we are
dealing with neutral quantum dots in this paper. ) In col-
lisional excitation processes, the incident particle loses an
energy E, as it excites a bound particle, via the Coulomb
interaction between the two charged particles, in the
quantum dot from state i to state j, as shown in Fig. 1.
The collisional deexcitation rate coefficient q, is related
to the collisional excitation rate coefficient q;- through

E4

E;

Barrier %ell Barrier

FIG. 1. In collisional excitation processes, the incident parti-
cle loses an energy E,; =E43 as it excites a bound particle, via
the Coulomb interaction between the two charged particles, in
the quantum dot from state i to state j.

the principle of detailed balance:

g, E,.
p

where g, is the degeneracy of the state i, and where we as-
sume that the incident free particles have a Maxwellian
distribution.

In this section, we will present collisional excitation
cross sections obtained from two methods. The first uses
a Van Regemorter' ' cross section and the second uses
the classical path' ' ' (CP} (otherwise known as the im-

pact parameter) method. Our purpose is to show that
these two methods are much simpler to use than (and
comparable in accuracy to) the ones currently being used
to calculate collisional excitation cross sections for exci-
tons (bound electron-hole pairs) in bulk semiconductors.
Further, the simple analytical form of the Van Regemort-
er and classical path cross sections provides more im-
mediate physical insight than numerically involved
methods. The Van Regemorter and CP cross sections
would also be very simple, numerically reliable methods
of obtaining cross sections for collisional excitation in
quantum dots.

Before presenting the Van Regemorter and classical
path methods, we first summarize methods now being
used to calculate collisional excitation cross sections in
excitons. Cross sections for collisional excitation in bulk
excitons by incident free carriers (electrons and holes) are
often calculated using methods adapted from the study of
scattering from the hydrogen atom, such as variation-
al techniques and the Glauber approximation.
Variational methods assume a particular form for the
trial wave function, whose parameters are found by re-
quiring the scattering phase shift to be stationary. The
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Glauber approximation appears to be the most success-
ful ' method of calculating collisional excitation in hy-
drogen and is thus quite useful for studying collisional ex-
citation in bulk excitons.

Results of the calculations based on the Glauber ap-
proximation for both hydrogen and excitons appear to be
in good agreement with those based on variational
methods. Honold et al. and Schultheis et al. found
reasonable agreement (within a factor of 3) between these
theoretical estimates of the collisional excitation cross
sections for bulk excitons and those inferred from experi-
ment.

These methods now being used to calculate cross sec-
tions for collisional excitation in bulk excitons are incon-
venient to apply to the study of collisional excitation in
quantum dots. For example, the Glauber approximation
involves the computation of a cumbersome integral for
each different transition i ~j. For the problem of scatter-
ing from bulk excitons, these cumbersome integrals are
very similar to those calculated for scattering from the
hydrogen atom. However, these Glauber integrals must
be calculated anew for the quantum-dot scattering prob-
lem. Similarly, the variational results now being used for
the excitonic scattering problem are almost identical to
those for the hydrogenic scattering problem, but must be
calculated anew for the quantum-dot scattering problem.
The Van Regemorter and CP cross sections are much
simpler to use since they involve only the computation of
the oscillator strength, which is usually needed anyway.

The Van Regemorter (Sec. II A) and classical path
(Sec. II B and Appendix C) cross sections are comparable
in accuracy to the variational and Glauber methods in
determining numerical values of the collisional excitation
cross sections in realistic (Sec. IIC) atomic or semicon-
ductor systems. Figure 2 shows that both the Van Re-
gemorter and CP cross sections are within a factor of 2 of
the observed collisional excitation cross section in hydro-
gen. (This factor of 2 agreement is all that is needed for
our purposes. '

) We present in Fig. 3 the first application
of these simple models to the collisional excitation of ex-
citons in a bulk semiconductor. Our simple models agree
with the more complicated Glauber approximation for
the collisional excitation in bulk excitons. This success of
the Van Regemorter and CP methods allows us to predict
quantum-dot collisional excitation cross sections, of
which experimental measurements are not available at
present, as in Figs. 4 and 5.

The use of the Van Regemorter and CP cross sections
also provides insight not immediately available from the
variational or Glauber techniques. For example, we find
the curious result, which will be explained later in this
section, that the quantum-dot collisional excitation cross
section is much smaller than the physical size ~R .
From the Glauber and variational results mentioned
above, one would not understand this, since the collision-
al excitation cross sections in bulk excitons are always on
the order of the physical size ma, „, where a,„ is the exci-
ton Bohr radius. As we will discuss in more detail below,
the collisional excitation cross sections in quantum dots
are much smaller than the physical size mR because the
typical Coulomb energy involved in the collision is much

Bo
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smaller than the typical collisional excitation energy, an
observation which will be clear from the Van Regemorter
and CP formulas.

We emphasize that the power of our Van Regemorter
and classical path models lie both in their simplicity and
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FIG. 3. The col1isional excitation cross section as a function
of incident electron energy for the 1s-2p transition in an exciton
in a semiconductor, such as CdS, with m, /mI, =0.02. The re-

sults of the Glauber approximation (6), known to be very suc-

cessful in predicting collisional excitation rates in hydrogen,
were calculated (Ref. 30) by Elkomoss and Munschy for exci-
tons in many semiconductors. For comparison, we calculate
this same cross section using the (CP) method (using a cutoff ra-
dius of 2.008a,„, where a,„=(1+ lmm„) [EMa]) of Eq. (C8)
and the Van Regemorter (VR) cross section of Eqs. (7) and (22).

50 100 150 200 250
Incident Energy (eV)

FIG. 2. The collisional excitation cross section, in units of
m.ao, where ao is the Bohr radius, as a function of incident elec-
tron energy for the 1s-2p transition in hydrogen. The experi-
mental (E) data and the calculation in the Born (Bo) approxi-
mation are taken from Seaton's (Ref. 25) paper. The results of
the classical path (CP) method (using a cutoff radius of 2.008ao)
are obtained from Eq. (64). The Van Regemorter (Ref. 24) cross
section is obtained using Eq. ('7).
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in their ability to provide numerics of comparable accu-
racy to what is now being used in studying bulk excitons.

1. Van Regernorter cross sections

A. Van Regemorter collisional excitation rates

The matrix element for the Coulomb interaction be-
tween the incident and bound particles is

(3)

where r, r' are the coordinates of the bound and incident
particles, respectively, where I, F are the total (free parti-
cle plus quantum dot) initial and final states, where j,i are
the initial and final bound particle states, and where 1, 1'

are the initial and final free particle states.

When the incident particle does not penetrate the
quantum dot, the largest contribution to the collisional
excitation rate is for dipole allowed bound state transi-
tions. In such cases, (3) can be approximated as the prod-
uct of the dipole between the bound states i,j and the
electric field of the incident particle as seen by the bound
particle. When the incident particle penetrates the tar-
get, the classical path model, discussed later in this paper,
can be used.

The Van Regemorter collisional excitation cross sec-
tion for dipole allowed transitions, modified to include
the materials parameters of our semiconductor
quantum-dot system, is

Q(~~j)= 2'
v'3

m;

mo

degenerate i, degenerate j gG

ji inc

2
2

(~R ),
4m@„R

(4)

where the effective mass m, is that of the incident parti-
cle, R is the radius of the quantum dot, and E;„, is the in-
cident particle energy (measured from the band edge of
the barrier material). The oscillator strength f; and the
Gaunt factor gG are discussed later in this section.

Some discussion is necessary as to the appropriate
dielectric constant to use in (4) for a distant encounter be-
tween the incident particle in the barrier region, whose
low frequency dielectric is eb„, and the bound particle in
the quantum dot, whose low frequency dielectric is eQD.
We propose to use in (4) the dielectric constant „ewhi hc

we define to be

=—(E'qD+ '3eb~~)

for collisional excitation cross sections. Equation (5) is
obtained by observing that the electric field of the in-
cident particle in a distant encounter with the quantum

dot corresponds to a roughly uniform electric field inside
the quantum dot which is 3eb„/(e&D+2eb„) times
that of the roughly uniform electric field, proportional to
e /4~eb„, just outside the quantum dot in the barrier re-
gion.

(a) Gaunt factors The Gau. nt factor is defined as

and is associated with the electric field of the incident
particle. We take the Gaunt factor gG in (4) to be that
given for neutral targets in Table 1 of Van Regemorter's
paper. Van Regemorter's Gaunt factor was chosen to
match the measured 1s-2p collisional excitation cross sec-
tion in hydrogen. To within 5%, we can accurately ap-
proxirnate this Gaunt factor as

1/2

0.073 —1 +0.051
Jl

lnlxo+ 1
l

—0. 124

3/2

for EJi inc ji

1/2

+ 0. 124xo — lnlx 0+ 1
l

3

for 2E, &E;„,& (x0+ 1)EJ, .(7).
ln for E;„,)(x0+ 1)EJ;,

Jl
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f, ,(E)=
1+exp

1

EFc,FU

kBT

"c,v

&C, V

—E
P

where Nc &=2(2mks T. jh ) mDos c'z, where

m»r~3/2~ —m 3/2m DQs c m

m bar(3/2)
(

3/2 + 3/2 }m DOS, V LH HH

(9) bar2m Dos, c, v
g, ,(E)= 1

4

Using (4) and (8), we can write the collisional excitation
rate as

where E is measured from the band edge of the barrier
material and the density of final stages g (E) for the free
particles is the bulk density of states (DOS) (per unit
volume} in the barrier material having a specific spin

3/2

E 1/2

2

n, „q"=n,„(R U,z)
4m@„R

(3 3)—1/2

E,ks T mo

E"
VR k TB

(12)

where

Vth

2kB T

m;
(13)

and where we used Van Regemorter's notation to define
the integral

Pv„=f d 6'exp( —8}gG(8), (14)

B.The classical path method

where 8=E;„,IksT and gG is the Van Regemorter
Gaunt factor (7). The integral in (14) is carried out in

Appendix B, wherein appropriate limiting forms of the
integral are also given.

agreement with experiment from an intermediate cou-
pling form of the classical path model.

One of the advantages of the classical path method lies
in its simplicity, especially in its treatment of collisional
excitations dominated by contributions from small im-

pact parameters. The other advantage of the classical
path method is that, as is shown' in the literature, it is
numerically accurate (to within a factor of 2) enough for
our purpose of determining the conditions under which
quasiequilibriurn exists within a quantum-dot energy
band. A more complete discussion of the classical path
method is given in Appendix C. We present a summary
here.

In the limit ip which the bound states i,j are weakly

coupled, the classical path collisional excitation cross sec-
tion is dominated by collisions having large impact pa-
rameters and is given by (C8)

Before presenting numerical values for the cross sec-
tions for collisional excitation in a hydrogen atom, an ex-
citon in a bulk semiconductor, and a quantum dot, we

briefly discuss the collisional excitation cross sections ob-
tained from the classical path method. As discussed
more fully in Appendix C, the classical path method is
extremely useful in situations where the collisional excita-
tion cross section is dominated by the near collisions,
which involve small impact parameters. This could occur
when the bound states involved are strongly dipole cou-
pled, for which the Born and Van Regernorter collisional
excitation cross sections are often much larger than ob-
served cross sections. In such cases, Seaton has shown
that much better agreement with experiment is obtained
from a strong coupling limit of the classical path method,
in which the transition probabilities for small impact pa-
rameters are limited to physically accessible values (less
than unity). The collisions which penetrate the electronic
orbits surrounding an ion make important contributions
to the collisional excitation cross section in highly
stripped ions, for which Hagelstein has found very good

Q wcp(~ ~i )
=

2+f,;
mi ij 1

m 0 3g; Ej Einc
'2

2

X P(P,.)(~R '),
4m.e„R

where p„ is (C4) evaluated at the cutoff impact parame-
ter R„, and where the function p(p„) is given in Eq.
(C9}.The cutoff impact parameter R is chosen to be the
physical size of the target, which we define as the root
mean square orbit size of the i,j states (C7). This choice
of cuto8' impact parameter is physically reasonable for
many target atoms and it allows the CP cross sections
to rnatch the experimentally observed high energy limit
of the collisional excitation cross section.

In the limit in which the bound states i,j are strongly
coupled, the classical path collisional excitation cross sec-
tion is given by (C13)
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Qcps (t
m;

mo

2

2+f,
/, J

3gi

2

1

Eji Einc

paper. The results of the CP method are obtained from
Eq. (Cg). The Van Regemorter (VR) cross section in Fig.
2 is obtained using Eqs. (4) and (7). For the ls ~2p tran-
sition in hydrogen, the oscillator strength and excitation
energy are

(16)

where g(p&) is given in Eq. (C5), p& is (C4) evaluated at
R &, and R

&
is the cutoff impact parameter, defined in

(Cl 1), which limits the transition probability to physical-
ly accessible values for those collisions having small im-

pact parameters.
The intermediate form of the CP model will be used

in this paper to describe collisional excitations dominated
by near collisions, as in highly stripped ions and, as we
shall see, in quantum dots. The intermediate form of the
CP cross section is obtained from the assumption that the
transition probabilities at small impact parameters are
similar to those at the cutoff impact parameter, as in
(C14). The collisional excitation cross section is thus

Qct'r('~J) = m;

mo

2

2+f,;
i j 1

g' EJ"E
2

[$(p„)+3 g( p„)](trR ) .
4m@„R

C. Numerical evaluation

In this subsection, we use our formulas above to calcu-
late CP and Van Regemorter cross sections and rate
coefficients for collisional excitation by electron impact in
a hydrogen atom, in an exciton in a bulk semiconductor,
and in a quantum dot. Our purpose for presenting these
numerical values is to demonstrate that Van Regemorter
and classical path formulas are very simple models which
nevertheless provide reliable numerics. We recapitulate
the success that these simple models have had in astro-
physics by studying collisional excitation in hydrogen.
Next, we present the application of these simple models
to the collisional excitation in bulk excitons, for which we
demonstrate good agreement with other theoretical and
experimental results. Finally, we apply our model to col-
lisional excitation in quantum dots, for which our pur-
pose is to estimate rate coefBcients.

Calculations for hydrogen

Figure 2 shows the collisional excitation cross section,
in units of m.ao where ao is the Bohr radius, as a function
of incident electron energy for the 1s-2p transition in hy-
drogen. The experimental (E) data and the calculation in
the Born (Bo) approximation are taken from Seaton's

(17)

Another intermediate form of the CP cross section is
given in Appendix C. Appendix C also shows how the
difference in the quantum dot and barrier dielectrics can
be approximately accounted for.

l,j
3gi

=0.416, E „-=31

Calculations for excitons

We now compare our Van Regemorter and CP cross
section with the 1s~2p collisional excitation cross sec-
tion in excitons for incident electrons as calculated by El-
komoss and Munschy in the Glauber approximation.
The Glauber approximation has had much success ' in
predicting cross sections for scattering off hydrogenic
ions at intermediate and large incident energies. This
should serve to calibrate the accuracy of our simple mod-
el for a semiconductor system.

Our Van Regemorter cross section is, using (4),

where IH is the ionization potential of hydrogen.
The cutoff radius for the classical path calculation,

which is the root mean square radius in the 1s and 2p
states (about 2.008 Bohr radii), allows the CP cross sec-
tion to match measured cross sections in the limit of large
incident energies. This is what we would expect since the
integration in (C6) should not include the near collisions,
for which the weak coupling limit of the CP model is not
appropriate. The ls-2p oscillator strength is rather large:
the transition probability (C3) at incident energies near
threshold is about 0.2. If the CP weak coupling limit
were no longer applicable, the strong or intermediate
forms of the CP method would be invoked to ensure that
transition probabilities remain physically reasonable.

That the van Regemorter cross section of Eqs. (4) and
(7) is very similar to the experimental data is not surpris-
ing since Van Regemorter's Gaunt factor was chosen to
match this particular transition in H. That Fig. 2 shows
the classical path cross section to be very similar to the
Born approximation is also not surprising since both are
based on similar assumptions and both are expected to be
more accurate for large incident energies. What is a bit
surprising is that, even at energies near threshold, our
classical path cross section is well within a factor of 2 of
the measured cross section. This is a powerful result,
given the great simplicity of the CP model.

One might argue that errors of the order of 50% may
render the Van Regemorter cross sections useless. How-
ever, for the best part of 30 years, a 50%%uo accuracy was
acceptable in the atomic plasma community. Further,
for our purpose of determining' the quantum-dot popu-
lation kinetics, this 50/o error is inconsequential to our
main result; we find' that only errors worse than Pve or-
ders of magnitude would change our qualitative result.
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Q(i~j)= m,.

mp E;.

~ex 2X go(ma, „),
inc

(19)

where I,„=m„e /2A (4ne) . is the ionization energy of an
exciton and a,„=Pi (4we)/m„e is the exciton radius. In
keeping with the notation of Elkomoss and Munschy, we
define the effective mass ratio

gies near threshold. This is to be expected, as it is well
known ' that the Glauber approximation underestimates
and that the Born approximation overestimates the col-
lisional excitation cross sections near threshold.

Given the extreme simplicity of our CP and Van Re-
gemorter models, this agreement with the Glauber calcu-
lation of the collisional excitation in bulk excitons is quite
satisfactory. Honold et al. and Schultheis et al.
found reasonable agreement between the Glauber approx-
imation in bulk excitons and collisional excitation cross
sections inferred from experiment.

m,
0' =

m~
(20) 3. Calculations for quantum dots

which allows the reduced mass to be written as

m,
1+v (21}

Accounting for the effective masses and dielectric in a
semiconductor, we can write I,„=(m„/m p)(IH Ie ),

EJ, ,„=,'I,„, (m„—/mp)fj, ,„=fH, m; =m, . Using the no-

tation of Elkomoss and Munschy for the normalized in-
cident energy, we write E;„=(1+2o)k;I,„. The Van
Regemorter cross section, obtained using {7},is then

4
8n. 3{i~j)= ~3 (1+2o )k;

X(0.416)(1+o') go(ma O, EM ) (22)

where the exciton radius is related to the length appM
defined by Elkornoss and Munschy through a,„

{1+o )aO, EM'
A numerical comparison of our Van Regemorter (22)

and CP cross sections with the cross sections of Elkomoss
and Munschy (labeled G for Glauber) is given in Fig. 3.
The parameter given, cr=0.02, corresponds to CdS.
The largest value of k; presented in our figure is the larg-
est one for which Elkomoss and Munschy gave a col-
lisional excitation cross section. For values of incident
energy much larger than the ones given, we expect very
good agreement, as the cross sections predicted by all
reasonable theories approach the Bethe approximation as
given by Burgess and Tully.

At incident energies shown in Fig. 3, the agreement be-
tween our Van Regemorter cross section and the Glauber
cross section of Elkomoss and Munschy is extremely
good. This should not be surprising in view of Fig. 2,
since the equations describing the 1s-2p collisional excita-
tion in this bulk exciton are almost identical to those for
the hydrogen atom.

The cutoff radius used in the CP calculation of Fig. 3
was taken to be 2.008 exciton Bohr radii, by analogy with
the hydrogen collision problem above, since m, «m&.
For the CP calculations, the agreement between our re-
sults and theirs is about 40% at intermediate incident en-
ergies. Again, this is similar to the agreement between the
CP method and experiment which we saw in Fig. 2 for
atomic hydrogen. The largest discrepancies between the
CP and the Glauber calculations appear at incident ener-

The discussion in the preceding paragraphs shows that
our Van Regemorter and CP cross sections are very use-
ful in determining collisional excitation cross sections in
realistic atomic and semiconductor systems. Given that
experimental values of collisional excitation cross sec-
tions in quantum dots are not available now, the Van Re-
gemorter and CP cross sections are perhaps the simplest,
numerically reliable method at present.

Figures 4 and 5 show the collisional excitation cross
section as a function of incident electron energy at room
temperature for the 1S»2-1P»2 transition in the conduc-

0
tion band of a 150-A-radius InSb quantum dot surround-
ed by CdTe barriers. (The energy levels, symmetries, and
notation for the bound states of this quantum dot have
appeared elsewhere' in the literature. These and other
relevant quantities are summarized in Table I.) These
cross sections for our quantum dot could not be checked
with experimental data, as no such data exists to the
author's knowledge. To study our results, we will com-
pare the cross sections obtained from both the CP
methods in Figs. 4 and 5 with our VR cross section.

The weak (CPW) and intermediate (CPF,CPT) forms
of the CP method in Fig. 4, obtained from (C6), (C14),
and (C15) [with (C7) calculated to be 0.6R], were ob-
tained using the correct dielectric everywhere: e=e&D
when the incident particle is inside the quantum dot and
e=e otherwise. The contribution from impact parame-
ters greater than R, labeled R )RQD, is seen to be much
smaller than the other CP cross sections in Fig. 4. Thus,
the largest contributions to collisional excitation are from
near collisions. The difFerence in the heights of the CPW,
CPT, and CPF curves in Fig. 4 is a rough estimate of the
errors incurred in estimating the contributions of the
very near collisions using varying forms of the CP
method. (See Appendix C.}

Since the quantum-dot collisional excitation cross sec-
tion is dominated by the near collisions, specifically those
which penetrate the quantum dot, we expect the
difference in the quantum dot and barrier dielectric con-
stants to be important for determining the collisiona1 ex-
citation cross section. The neglect of the difference in
dielectric between the quantum dot and barrier materials
makes the VR cross section, obtained from (4) and (7),
much larger than the CP cross sections in Fig. 4. The
Van Regemorter cross section of Figs. 4 and 5 uses a= @„
everywhere along the incident particle trajectory and is
very similar to the classical path curve labeled CPF1 in
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TABLE I. Intraband oscillator strengths and collisional excitation rate coefficients at room tempera-
0

ture for a 150-A-radius InSb quantum dot surrounded by CdTe barriers. The bound state energies
(measured from the bulk valence band edge) and symmetries have been discussed (Ref. 18) elsewhere.
The intraband dipoles were checked by comparison with the analytical expressions given in Appendix
A.

Electron
state

1S&/2

(244 meV)
(intrab and)

Electron
state

1P&/p

1P3/2

2P&/z

2P3/&2

Electron
energy
(meV)

300
300
446
446

Oscillator
strength

F. F.
$Z& tz

25.00
32.95
0.78
1.09

Collisional
excitation rate

coefficient
C

(10 cm'/s)

0.8054
1.062

8.443 X 10
1.180X 10

Fig. 5, which also uses e=e„ for all incident particle
paths. Both the VR and CPF1 curves are noticeably
di6'erent from the CPF curve of Fig. 5, which is the
correct curve calculated using the correct dielectric
everywhere.

The curve labeled CPF2 in Fig. 5 is calculated from the
CP method (75) with e=e„ for those incident particle
paths with the impact parameter greater than R, and
E =E'qD everywhere along those incident particle paths
with impact parameter less than R. CPF and CPF2 are
similar because the dominant contribution to the cross
section when the impact parameter is less than R occurs
when the incident particle is inside the quantum dot.

Observe also that the typical quantum-dot collisional
excitation cross section shown in Fig. 5 is much smaller
than the physical size ~R . This is in sharp contrast to
the typical collisional excitation cross sections, which are
roughly comparable to the physical size, either ~ao or
ma„, in Figs. 2 and 3 for the hydrogen atom and the bulk
exciton. The small size of the typical quantum-dot col-
lisional excitation cross section is a result of the fact that
E; is much larger than the Coulomb energy (e /4m@„R )

in (4) and (64), as we now show.
More specifically, we can understand the small size of

the quantum-dot collisional excitation cross section rela-
tive to the physical size nR by comparing (4) and (19),

Q QD ( 1S1/2-1P1/2 )
~R

Q
PEAK (1$ lp)

e 1

2X4~e„R E,;
'2 —

1I
7Ta (23)

H or ex

Equation (23) is obtained by noting that the scaled oscil-
lator strength (m, /mo)(g, f, /3g, ) is roughly the same
for most dipole allowed transitions: it is 0.416 for the 1s-

2p transition in both the hydrogen atom and the exciton
and it is (m, /mo)(g; f;/3g;)=0. 014X25.00=0.35 for
the 1S&&2-1P,&2 quantum-dot transition. Since the Gaunt
factor is a function of E;„,/E;, then (E, /E;„, )gG always
has the same peak value. Whence, (23) follows.

Observe from (23) that the peak cross section for col-
lisional excitation in hydrogen, in an exciton, and in a

QUANTUM DOT CB
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FIG. 6. The collisional excitation rate coefficients q, = (Q„)
(units of 10 cm /s) as a function of incident electron tempera-
ture for the 1SI /2-1P, /& (E,; =56 me V) and 1SI/&-2P I»
(E,; =202 meV) transitions in the conduction band of a 150-A-

radius InSb quantum dot surrounded by CdTe barriers. These
rate coefficients were obtained by integrating the Van Re-
gemorter cross sections over a Maxwellian distribution of in-

cident free electrons, as in Eq. (12).

quantum dot is roughly equal to a geometric area (either
re or mR ) times the square of the ratio of a Coulomb
energy to the collisional excitation energy. If we approxi-
mate Qir „,„as mao or ma, „, then Q&D (IS&/2-IPt/2)
evaluates to 2.5X10 m.R, in good agreement with Fig.
5.

For the 1s-2p transition in both the hydrogen atom and
the exciton, (I/E, ; ) =(—', ), thus indicating that the typi-
cal bound state energy separation is about the same size
as the typical Coulomb energy. For the 1S,&2-1P, &2

quantum-dot transition, the analogous quantity is

[(e /2X4me„R)(1/E, )j =4.5X10 . In other words,
this small quantum dot has a typical Coulomb energy,
which is inversely proportional to the radius, much
smaller than the typical quantum confinement energy E, ,
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III. COLLISIONAL IONIZATION

Collisional ionization and its inverse, three-body
recombination, can be indicated by the forward and re-
verse reactions, respectively,

X(Z —l, i)+e X(Z)+e+e, (24)

for an incident electron and for i in the conduction band.
A similar equation can be written for incident holes
and/or for i in the valence band. For the dominant col-
lisional ionization processes, the bound (and the incident)
particles make intraband transitions, for reasons dis-
cussed in Appendix A. In collisional ionization process-
es, the incident particle loses an energy of at least U; (the
ionization potential of the bound particle) as it excites,
via the Coulomb interaction between the two charged
particles, a particle in the quantum dot from the bound
state i to the continuum, as shown in Fig. 7.

If we define N (Z —1,i) as the population of the quan-
tum dots X(Z —l, i) and N(Z) as the population of the
parent "ion" X(Z), then the collisional ionization rate
out of and the three-body recombination rate into state i
are, respectively, N(Z —l, i)nfq; and N(Z)nfn&a3 (i),
where f =c,v denotes the energy band (conduction or
valence) containing the incident free particle, b =c, v

denotes the energy band containing the bound state i, and
nf, n& denote free carrier concentrations. The principle
of detailed balance relates the coefficient for collisional
ionization to that for three-body recombination,

b
g(Z)

f$ . (Z 1 )
b=c v ~exp

—U(Z —l, i)
k~T

(2&)

where U(Z —l, i) is the ionization potential of the quan-
tum dot with total charge Z —1 and a particle in state i,
and g (Z) and g (Z —l, i) are the statistical degeneracies
of the initial and final quantum dot "ions."

In this section, we will present collisional ionization
cross sections obtained from the binary encounter model.
Our purpose is to show that the binary encounter model

which is inversely proportional to the square of the ra-
dius. Unlike the hydrogen atom and the bulk exciton, this
quantum confinement energy E, comes from the
confining effects of the barrier material surrounding the
quantum dot and is not the result of the Coulomb attrac-
tion between the bound electron and a proton (or hole).
The small size of the typical quantum-dot collisional exci-
tation cross section relative to its physical size ~R is
thus a result of the large size of E&, compared to the typi-
cal Coulomb energy (e /4m. e„R).

The collisional excitation rate coefficients q ~
= ( Q„) of

Eq. (12) are shown in Fig. 6 as a function of incident elec-
tron temperature for the 1S&&z-1P&&z (E~; =56 meV) and

1S,&z-2P&&z (E&, =202 meV) transitions in the conduction
band of our 150-A-radius InSb quantum dot surrounded
by CdTe barriers. As expected, the larger rate
coefficients are associated with the smaller collisional en-

ergy exchange. The temperature dependences shown in
Fig. 6 arise mainly from the occupation statistics of the
incident electrons.

Ei

E,)

Barrier Well Barrier

FIG. 7. In collisional ionization processes, the incident parti-
cle loses an energy E32=E&4 of at least U2 (the ionization po-
tential of the bound particle) as it excites, via the Coulomb in-
teraction between the two charged particles, a particle in the
quantum dot from the bound state 2 to the continuum.

is very simple to use and of reliable numerical accuracy.
Calculations based on the binary encounter model are in
good agreement with experimentally inferred collisional
ionization cross sections for the hydrogen atom and bulk
excitons. Further, the simple analytical form of the
binary cross sections yields physical insight into the study
of collisional ionization from quantum dots, for which ex-
perirnental data are not available.

Before presenting the binary encounter (BE) model, we
report that we were not able to find an ab initio calcula-
tion of the collisional ionization cross section in bulk ex-
citons. In the analysis of experimental data in low tem-
perature, high field luminescence and conductivity stud-
ies of the collisional ionization of excitons, the collisional
ionization cross section is often assumed to be the
geometric area na, „, where a,„ is the exciton Bohr ra-
dius. This is the curve labeled N in Fig. 8. The calcula-
tions based on this assumed cross section are usually
within an order of magnitude of measured data: the Yao
et al. ' data were within a factor of 7 and Yamashita's
data were within an order of magnitude, with the best
agreement being a factor of 2. More recently, agreement
within a factor of 4 between the measured data and calcu-
lations based on the assumed cross section labeled X in
Fig. 8 was reported by Noldeke et al.

Figure 8 shows that our BE cross sections for free car-
riers having energies above threshold are within an order
of magnitude of the geometric area ~a,„and are thus
consistent with experimental measurements.

The use of the binary encounter model a1so provides
insight not immediately available from the ad hoc as-
sumption of a cross section equal to the geometric area
m.a,„. For example, we find the curious result that the
typical quantum-dot collisional ionization cross section is
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FIG. 8. The dependence on incident electron energy of the
total collisional ionization cross section of hydrogen and of an
exciton (with m, && mz) in a semiconductor. If the cross section
is expressed in units of ~a', where a is the Bohr radius for the
hydrogen ionization problem and a is the exciton Bohr radius
for the exciton ionization problem, and if the incident energy is
expressed in units of the threshold (either the hydrogen or the
exciton ionization potential), then the binary encounter col-
lisional ionization cross section given by Eq. {26), is the curve
(Ref. 43) labeled BE for ionization of both hydrogen and exci-
tons. The experimental data (Ref. 43) labeled E are measure-
ments made for hydrogen. The curve labeled N is the cross sec-
tion often assumed (Refs. 40-42) in the analysis of experimental
data from low temperature, high field studies of the collisional
ionization of excitons. The calculations based on this assumed
cross section were within a factor of 4 of the measured data of
Noldeke et al. (Ref. 40).

FIG. 9. The dependence on incident electron energy of the
collisional ionization cross section (26), in units of 10 '~R', of
the 1S,/, (U; =339 meV) state in the conduction band of a 150-
0

A-radius InSb quantum dot surrounded by CdTe barriers.

bulk semiconductors. Figure 8 presents the first applica-
tion of this simple model to the collisional ionization of
excitons in a bulk semiconductor.

A. Binary encounter model

To calculate collisional ionization rates, we use a
binary encounter approximation, of which a very
good review has been given by Vriens. Hansen has
formulated the binary encounter approximation in spatial

much smaller than the physical size m.R . The ad hoc as-
sumption of a cross section equal to the geometric area
era, „does not allow one to understand this. As in the dis-
cussion of collisional excitation above, we will show in
this section that the collisional ionization cross sections
in quantum dots are much smaller than the physical size
mR because the typical Coulomb energy involved in the
collision is much smaller than the typical ionization po-
tential.

We emphasize that the power of the binary encounter
model lies both in its simplicity and in its ability to pro-
vide numerics of comparable accuracy to what is now be-
ing used in studying bulk excitons. This success of the
binary encounter model allows us to predict, as in Fig. 9,
quantum-dot collisional ionization cross sections, for
which experimental data is not yet available. We also cal-
culate in Fig. 10 rate coefticients for the collisional ion-
ization out of a bound state in an InSb quantum dot.

In Sec. IIIA, we present formulas for cross sections
and rate coeScients in the binary encounter model of col-
lisional ionization. In Sec. III B, we show that calcula-
tions based on this binary encounter model are in good
agreement with experimental results for collisional ion-
ization in atomic hydrogen (Fig. gi and for excitons in

10—
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FIG. 10. The collisional ionization rate coefficient

q,"=(Qv) (units of 10 "ctn /si as a function of incident elec-
tron temperature for the 1S&/& (U; =339 meV) state in the con-

0
duction band of a 150-A-radius InSb quantum dot surrounded
by CdTe barriers. This rate coefficient is obtained by integrat-
ing the binary encounter cross section (26) over a Maxwellian
distribution of incident free electrons, as in Eq. (29).
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coordinates so as to resemble the impact parameter
method. This method has been used in realistic' '

descriptions of the collisional ionization processes in lab-
oratory and astrophysical plasmas. The binary encounter
model is known to give an accurate description of col-
lisional ionization resulting from the near collisions of an
incident particle with an atom or ion.

In the binary encounter model, the incident and the
bound particles are modeled as free particles, of which
the latter (the bound particle) has a velocity distribution
appropriate for its bound state in the quantum dot. The
cross sections for the Coulomb scattering of the two
charged, moving, nonidentical particles are the same clas-
sically as quantum mechanically. For identical particles,
the only modifications to the cross sections come from
the interference between the direct and exchange terms.

The binary encounter model assumes that the incident
particle interacts with only one bound (target) particle at
a time. This assumption of the target particles as in-
dependent scattering centers would be justified when the
interaction of the incident particle with the target parti-
cle takes place over spatial dimensions much smaller than
the typical dimensions of the quantum dot. Consistent
with this model is that the momentum (energy)
transferred to the bound particle is large compared to the
momentum (binding energy) of the bound particle before
the collision.

In applying the Coulomb cross section to the collision-
al ionization of an electron by an incident electron, we
use the symmetrized binary encounter model of Thomas
and Burgess as described by Vriens. ' We define

E, —:—,'m'U& as the incident particle energy (measured
from the quantum barrier band edge), E2 —= —,

' m '
v z as the

bound particle energy (measured from the quantum-dot
band edge), and U; = Vs Ez as the io—nization potential
of (the bound) particle nutnber 2. In this symmetrized
model, we take the kinetic energy of the incident particle
to increase to E~+ Vs (as compared to its kinetic energy
of E, very far from the quantum dot) while the potential
energy is taken as 0 (as compared to its potential energy
of Vs very far from the quantum dot) during the interac-
tion time of the classical encounter of the two particles.

In using the symmetrized binary encounter model for
collisional ionization out of a quantum-dot bound state,
we propose to use the quantum dot (and not the barrier)
dielectric constant e&D as the relevant dielectric constant
for the Coulomb interaction, as in (26). We do so because
this would be consistent with the assumption of a near

collision between the incident particle and the quantum
dot. This value of the dielectric constant is also consistent
with the discussion of the preceding paragraph of the in-
cident particle kinetic and potential energies used in this
model during the interaction time of the classical en-
counter.

1.Binary encounter cross section

The collisional ionization cross section in this sym-
metrized boundary encounter model is

Q;=
2

4meqD

1

U;

2

E& + Ui+E2

1 2 1 1+—E2
E& 3 U.

e' E~

E)+U; U;
ln (26)

where

4'=cos
' 1/2 E

E)+U; U;
(27)

because the energies

2

I =m e
4m.AD

'2 0.61meV for electrons

0.65meV for light holes (28)

17.43meV for heavy holes

2. Binary encounter rate coe+cient

The collisional ionization rate of an electron by an in-
cident electron is, using (26),

are small (for e&D =17.7, m, =0.014mo, mLH =0.015mo,
and mHH=0. 4mo in InSb} compared to the ionization
energies U;. (For InSb surrounded by CdTe, the barrier
heights are 420 meV and 850 meV in the conduction and
valence bands, respectively. ) Equation (26) also assumes
that there is no predetermined orientation between the
velocities of the incident and bound particles; in other
words, the bound particles have velocities of magnitude
U2 and of isotropic directional distribution.

2

n, q,
"—=n, (Q,.U) =n,

4&EqDR

2 2
U~h, cR

4 (k~ T)
PBE

U; E2
kBT' kBT

(29)

where

U,. E2 A'&d 6, exp( —6, }
PQE Q

kB T kB T u. @1+&i+@2

1 2+—82
1 1

u.
1

1
ln

@,+u, ui
(30)
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with 6]:E&/kgT EE;:U./kgT, and 62=Ez/k~T. This
integral and its limiting forms are evaluated in Appendix
D.

B. Numerical evaluation

In this subsection, we use our binary encounter formu-
las to calculate cross sections and rate coefficients for col-
lisional ionization by electron impact in an hydrogen
atom, in an exciton in a semiconductor, and in a quantum
dot. As with our discussion of collision excitation in Sec.
II C, we would like to demonstrate that this very simple
model contains enough information to provide reliable
numerics. First, we will review experimental measure-
ments of the collisional ionization of hydrogen and com-
pare these with results of the binary encounter model.
Next, we present the first application of this simple model
to the collisional ionization of excitons in semiconduc-
tors, and compare these results with experiment. Finally,
we apply our model to the collisional ionization from
quantum-dot bound states, for which our purpose is to es-
timate rate coefficients.

1. Calculations for hydrogen

The curve labeled BE in Fig. 8 shows the total col-
lisional ionization cross section (where a is the Bohr ra-
dius for the hydrogen atom and the threshold is the hy-
drogen ionization potential) of hydrogen as a function of
incident electron energy obtained from the symmetrized
binary ' encounter model, Eq. (26). The experimental
data labeled E are measurements made for hydrogen.
Considering the great simplicity of the binary encounter
model, this agreement with experiment is good. As in a
similar discussion for collisional excitation in Sec. IIC,
the typical collisional ionization cross sections for both
the hydrogen atom and the bulk exciton shown in Fig. 8

are comparable to the physical sizes mao and ~a,„, re-
spectively.

2. Calculations for exci tons

If the cross sections in Fig. 8 are expressed in units of
ma, where a is the exciton Bohr radius, and if the in-

cident energy is expressed in units of the exciton ioniza-
tion potential, then the binary encounter collisional ion-
ization cross section of an exciton with m, «m& is also
given by the curve labeled BE [Eq. (26)]. We now show
that this BE collisional ionization cross section is in
reasonable agreement with experiment.

In the introduction to this section, we saw that in the
analysis of experimental data in low temperature, high
field luminescence and conductivity studies of bulk exci-
tons, the collisional ionization cross section is often as-
sumed to be the geometric area ma, „. This is the
curve labeled X in Fig. 8. The careful work of Noldeke
et al. , Yao et al. ,

' and Yamashita showed that cal-
culations based on this assumed cross section are within
an order of magnitude of the measured data. Figure 8

shows that our BE cross sections for free carriers having
energies above threshold are within an order of magni-

tude of the geometric area na „and are thus consistent
with experimental measurements.

3. Calculations for quantum dots

The discussion in the preceding paragraphs shows that
our BE cross section is useful in determining collisional
ionization cross sections in realistic atomic or semicon-
ductor systems. Given that experimental values of col-
lisional ionization cross sections in quantum dots are not
available now, the binary encounter cross section is
perhaps the simplest, numerically reliable method at
present. Figure 9 shows the collisional cross section (26),
in units of 10 mR, as a function of incident electron en-
ergy, of the 1S,&& (U; =339 meV) state in the conduction
band of an 150-A-radius InSb quantum dot surrounded
by CdTe barriers. %e have used the fact that
U;= V~

—E2.
As in Sec. II C, we have th curious fact that the typical

quantum-dot collisional ionization cross section shown in
Fig. 9 is much smaller than the physical size mR . Using
Eq. (26), we can get the rough relationship for the
peak collisional ionization cross section of
—[(e /2X4meODR)(1/U;)] mR =6.4X10 mR in a
quantum dot and —(I/O, ) ma -ma for the hydrogen
atom (or exciton). Thus, the typical collisional ionization
cross section of hydrogen (or an exciton) is comparable to
the physical size ma because the typical Coulomb energy
Iz „,„ is comparable to the typical ionization potential
U. This makes sense since it is the Coulomb attraction
which binds the electron to the positively charged proton
(or hole).

For the quantum dot, the typical Coulomb energy
e /(2X4meODR) is much smaller than the typical ioniza-
tion potential U and this allows the collisional ionization
cross section to be much smaller than the physical size
~R . The typical Coulomb energy is very difterent from
the ionization potential for the quantum dot because it is
the materials properties of the barrier material (and not
the Coulomb potential of a hole or H nucleus) which
binds the electron to the quantum dot.

Figure 10 shows the collisional ionization rate
coefficient q,"=(Qz) (units of 10 ' cm /s), Eq. (29), as
a function of incident electron temperature for the 1S»2
(U, =339 meV) state in the conduction band of 150-A-
radius InSb quantum dot surrounded by CdTe barriers.
The temperature dependences shown in Fig. 10 arise
mainly from the (Maxwellian) occupation statistics of the
incident electrons.

A comparison of the cross sections in Figs. 5 and 9 can
be used in conjunction with the rate coefficients in Fig. 6
to check the order of magnitude of the rate coefficients
given in Fig. 10. We see that the typical collisional ioniza-
tion cross section in Fig. 9 is about 10 times smaller
than the typical collisional excitation cross section in Fig.
5. Upon integrating these cross sections over a Maxwelli-
an distribution of free carriers, we expect a further reduc-
tion of a factor of exp[(56. 1 —339)/25. 875]
= 1.78 X 10 at room temperature as a result of the very
different threshold energies for the collisional excitation

E,; =56. 1 meV and the collisional ionization U,-=339
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meV. Using the room-temperature collisional excitation
rate coefficient given by the upper curve in Fig. 6, we esti-
mate that the room-temperature collisional ionization
rate coefficient for the 1S,&z state is about
10 X1.78X10 X10 cm s '=1.78X10' cm s
in good agreement with Fig. 10.

In the collisional ionization of holes, Eq. (26) must be
modified to include an integration over the correct hole
velocity distribution. The mixing' ' of the light and
heavy hole eigenstates means that the correct hole veloci-
ty distribution at a particular eigenenergy must contain
some component proportional to the heavy hole wave
vector and some to the much smaller light hole wave vec-
tor. This is a subject for future work. For now, we note
that in the InSb/CdTe system, the valence band potential
barrier (850 meV) is much larger than the conduction
band potential barrier (420 meV), and (80) gives a rough
indication of how much sma11er the hole ionization rates
could be. Collisional ionization of electrons by incident
holes can be studied using the formalism given by
Vriens for the incidence of heavy particles. For now,
we note that as a result of the much larger valence band
potential barrier in the InSb/CdTE system, the concen-
tration of free holes n, will be much smaller than that of
the free electrons n„ if the free carriers have a Maxwelli-
an distribution as discussed in a future' work. Thus, the
collisional ionization rate of bound electrons by incident
electrons considered above should be the largest collision-
al ionization rate.

IV. CONCLUSIONS

We have applied to quantum dots formulas from atom-
ic physics for collisional ionization (binary encounter
model) and dipole allowed collisional excitation (Van Re-
gemorter and classical path methods) rates. Given that
experimental values of collisional cross sections in quan-
tum dots are not available now, our methods are perhaps
the simplest numerically reliable ones at present. The
Van Regemorter, classical path, and binary encounter
cross sections, which are known to be very successful in
modeling atomic collisions, were shown to have accura-
cies comparable to (and are much easier to use than) the
methods currently being used to study collisional rates in

bulk excitons.
Collisional excitation and ionization cross sections for

a 150-A-radius InSb quantum dot surrounded by CdTe
barriers were shown to be much smaller than the
geometric area ~R . The reason that these cross sections
are so small is that the Coulomb energy associated with
the collision is typically much smaller than the collisional
energy exchange. When bound quantum-dot carriers can-
not interact with phonons, the collisional processes dis-
cussed in this paper could make significant contributions
to the ionization balance in semiconductor quantum dots.

Explicit formulas were given for quantum-dot intra-
band oscillator strengths.
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APPENDIX A: QUANTUM-DOT OPTICAL DIPOLES

In the k p theory of the allowed energy bands in the
presence of a periodic potential, the electronic wave func-
tion is a product of a Bloch part, which is defined within
the unit cell only, and an envelope part, which is defined
at the lattice sites only. The physical significance of the
wave vector associated with the envelope part is the
translational symmetry of the bulk lattice. In many ma-
terials, the energy bands in reciprocal space can be ap-
proximted as having spherical symmetry. In such materi-
als, it is possible to write all wave functions ' as eigen-
states of the total angular momentum. The total single
particle angular momentum is the vector sum of the elec-
tron spin, the microscopic or Bloch angular momentum,
and the envelope angular momentum.

The effect of an external potential whose typical range
of interaction is many unit cells can be expressed as an
effective Schrodinger equation acting on the envelope
part of the wave function. For our quantum dots, the en-
velope wave functions "see" the potential formed by the
barrier material to be rotationally symmetic. Boundary
conditions are satisfied ' by choosing the particle wave
functions to be total angular momentum eigenstates.
Quantum-dot eigenstates are thus of the form' '

4(r) =C) (crIIr
~

J= ,',L =F+ ,';K )c+C2 (c—rQr—~J= ,',L =F+ ,';E)——
+C3 ~ o«Ij= ', L ='F+ ,' K—)+Cp ( o Qr

I
J—=,' L =F+ —,';K )s, — (A I)

where the C coefficients are obtained' ' by diagonalizing the k.p Hamiltonian and j denotes the quantum number as-
sociated with the vector sum of the spin and Bloch angular momenta, L is the quantum number for the envelope an-
gular momentum, F is the quantum number associated with the toal angular momentum, and E is the magnitude of the
wave vector associated with the envelope function. For quantum dots surrounded by very large barriers, the electron
wave functions can be approximated by the first term in (Al), whose radial component is proportional to a simple Bessel
function. The literature shows that the light and heavy hole bands in a semiconductor quantum dot mix significantly,
so tht the bound hole states can be accurately approximated, to within an overall multiplicative normalization factor, as

~ H(r) = [ ( o'&
IJ= „L=L2 ) ( bj)r, (K—HHR ){jz 2(Kt HR )j—r 2(KHHr) —jr 2(KHHR )jr ~(K„Hr ) j

+ ( o II
~
J= , ,L =L 3 ) (a +2)jr 2(K—HHR)[jr 3(Kt HR )jr 3(KHHr) jr 3(KHHR )J'r 3(K&H r—) J ] . (A2)
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The oscillator strength f, = (2m oE,; /& ) I ( i
I
r

Ij ~ I

used in (4) is that appropriate for the collisionally excited
intraband [both i and j must be in the same energy (con-
duction or valence) band] dipole transition between the
bound states i,j. We neglect collisional processes involv-
ing an interband transition because the latter are much
weaker than those involving only intraband transitions.
There are two reasons for this. The first is that the
Coulomb interaction acts on the envelope part rather
than the lattice periodic Bloch part of the wave functions
involved. (This fact is often used when calculating Auger
rates ' and bulk electron-electron, hole-hole, or
electron-hole scattering rates. ) The remaining multipli-
cative factor in the matrix element (3) is the overlap in-

tegral between the initial and final lattice periodic Bloch
functions, which is much smaller for an interband than
for an intraband transition. (This overlap integral is
identically zero for an interband transition involving a
pure s type conduction band lattice periodic Bloch func-
tion and a pure p type valence band lattice periodic Bloch
function. In this paper, we take this overlap integral to
be unity for intraband transitions and zero for interband
transitions. ) The second reason is that collisional pro-
cesses usually involve an energy exchange E,, which is

1. Radial envelope overlap integrals
for interband dipole transitions

Optical dipoles for quantum-dot conduction to valence
band transitions have already been calculated in the
literature. "' The dipole operator is taken between the
s- and p-like cell-periodic Bloch functions. Since analyti-
cal expressions for the radial envelope overlap integrals
were not presented in these papers, we list them below.
We have checked that these analytical expressions agree
with our previous" numerical results. Using the fact that

2Z

' 1/2

~n + / yz(z) (A3)

and the integrals given in page 254 of Luke's book, ' we
have, for k, Wkz,

larger for an interband transition than for an intraband
transition. We will see in Figs. 6 and Eqs. (B2) and (D2)
that larger energy exchanges result in smaller collisional
rates. Thus, in the dominant collisional processes, the
bound (and the incident) particles make intraband transi-
tions.

f R
r dr J/'(k2r)J/(k, r)=

2 [k2g/+, (k2R)J/(k/R) —k/j/(k2RV/+/(k/R)I .
0 k22k2

Normalization integrals can also be calculated:

Rf r dr[j (kr)j =
Ij (kR) —j &(kR)j +,(kR))

0 2

(A4)

R j (kR)+j +, (kR) — j (kRj)+,(kR ) .

R j (kR)+j &(kR) — j (kRj)&(kR) . . (A5)

When j (kR) =0, this becomes

R R
p pj kp = j +)kR= j )kR

4~z=r
3

1/2

Y&=i,M=0 . (A7)

(A6)

2. Dipoles for intraband transitions

Suppose we want to calculate the z component of the
dipole,

In intraband transitions, the dipole operator acts on the
envelope part of the particle wave functions. If we write
rM as the component of r proportional to the spherical
harmonic Y&, M, then, using the notation for the wave
function given in the literature, ' '"

1/2

( J, ,L, ;F, ,F,, I Y/, M I J,', L,'; F,', F,', ),4m
&@;lrMIQ,' &= g g Csc, /L, ,s, IJ, , t. Cz /L z /J L &fl. lrlf~&.

/
' B/ / / /
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where the C coefficients are obtained' ' by diagonalizing the k-p Hamiltonian. The angular factor is

(J;,L;;F;,F;, I Yi Ml J,L;F,F,', )=5,5,(L, III IIL,') (I,M;F,F;,'II, F,';F, ,F,, )

X[(2F,'+1)(2L;+1)]' W(IL F;J;;L;F,')( —1) (A9)

3. Radial integrals for intraband electron transitions

We can differentiate (A4) with respect to the wave vector kz and use the recursion relation among Bessel functions
and their derivatives to obtain

R
r dr J (k, r)g' +,(k2r}r=

0

R

k, —k

—2k, k~j +, (k,Rj)(k2R)
k2i —k2'

—2k2
+j (k)R)j +, (k2R) —(2m+1) .

+(k~R)j +~(k&R)j +&(k2R)+(k2R)j (k, R)j (k2R) (AIO)

The selection rules enforced by the reduced matrix element in (A9) ensure that these are the only types of radial in-
tegrals to calculate. For the electron eigenstates in the conduction band of a quantum dot, we have, approximately,

j (k)R)=j +,(k2R )=0,
from whence we have

(A 1 1)

for drj (k&r)j +~(k2r)r 4(k iR )(kqR )
-

&y2
=R

fOr/dr&j (k&r& )f or22dr2j +&(k&r2) l(k&R) (k2R) I

The reduced matrix element (L III IIL') is defined' "' in the standard way. Using the fact that

(A12)

Q l(I,M;F,F, II,F;FF,, )l =
r

tZ) lZ

2F, +1
21 +1 (A13)

and working out the angular factors in (A8) and (A9), we have, assuming that the conduction band wave functions have
no valence band character,

F~ Fix

(E;R ) (E R )

I(E;R ) —(E R) I

(E(R ) (E R)

l(E;R )'—(E R)'I'

4(2F; + 1)

3(F,+1) F;

4(2F; + 1)

3(F,+1)

for F =F;

for F =F, +1 .
(A14)

Upon further assuming that the bulk conduction band is perfectly parabolic with an effective mass of m„ the oscillator
strength is

2m, fF, ,-I
If, ;I= 2

'' l(IlrlI') I
= '

mo (E,R ) (E,'R)

mo (E;R}(E R)
m, I(E,R)' —(E,'R)'I'

4(2F;+ 1)

3(F;+1} F,
for F,-'=I,.

4(2F;+1)
(2F, +3) for F,'=F, +1 .

(A15)

The conduction band in small band gap semiconductors such as InSb could deviate very noticeably (see Fig. 1.20 of
Ridley's book) from a parabolic wave vector dispersion relation of effective mass m„and (A15) should be used with
caution.
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4. Radial integrals for bound-free intraband electron transitions

For bound-free electron intraband optical dipoles, we use (A5) and (A10) above, with (Al 1) applying for the bound
state only. For quantum dots surrounded by large potential barriers, the wave vector of the free particle (while it is in
the quantum dot) approximately satisfies (kR) »1, so that the large argument asymptotic limit of the spherical Bessel
function may be used,

j (z)=

7T
cos z —(m+1)—2,

' lz»1. (A16)

j (k, R)=0, (k,R)»1,
we have

fo r drj (k 1 r)j +1(k2r)r

fOrldrlj (klrl )fOr2dr2j +1(k2r2)

2R

l(k R)2 —(k,R)'I

(A17)

—2( k 1 R )(k2R )
cos kzR —(m +1)—

(k, R )
—(k2R )z 2

J

+(k,R) cos k2R —(m +2)— (A18)

and for

j +,(k,R)=0, (k, R)»1,
we have

f 0 r drj (k, rj)m+, (k2r)r

f,"rl«,j'(k, r, )f,"r',dr,jm+, (k, r, )

2R

l(klR)' —(k R)'l

(A19)

X
—2(k,a )(k2R)

. cos klR —(m +2)—
(k R) —(k R) 2

+(k2R) cos klR —(m +1)— (A20)

Though (A20) is a convenient way to present the bound-free intraband dipole, it should be remembered that the free
particle is normalized to L the macroscopic volume of the sample and not to the volume of the quantum dot as in
(A20).

5. Radial integrals for intraband hole transitions

The mixing of the light and heavy holes makes the expressions for intraband hole optical dipoles much more
cumbersome than for intraband electron optical dipoles. These expressions are useful for checking numerical work in
this area, and we present them for completeness. The normalization integrals are

r'«[ j (&HHR )jm (&LHr) —jm (&LHR)j (&HHr) ]'
0

~ 2 ~ 2 2m+1 .
Jm (IL HHR ) ' Jm (l~ LHR)+ Jm+ I ( J~ LHR) Jm (l~ LHR)Jm+1(1~ LHR)m

+LHR

g 3 .2 -2 2m+I .+ Jm (+LHR ) ' Jm (+HHR ) Jm +1 (+HHR ) Jm (+HHR )Jm + 1(+HHR )
2

—2j (KHHRj)(ELHR)
R

2 2+LH +HH
I+LHJm+1( LH )Jm( HH ) +HHJm LH Jm+1( HHR
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The dipole is
R
r d"[J (I~ ]HHR)j (&ILHr ) —j (&]LHR)J (I~ IHHr) ]

0

2K1LH K2LH
J m+I(+ ILH )Jm(+2LH

K1LH K2LH

2—2K2LH
+Jm(1~ ILHR)Jm+1(IL2LHR )

1LH K 2LH

Xr[j +I(&2HHR)j +1(1~2LH") jm+1(1~2LHR)j +l(I~2HH")j

J (&IHHR )J +]«2HHR)
2 2K 1LH K 2LH

—(2m+1) .

+ (+ILH )Jm + I(+ILHR )Jm + I(+2LHR ) +(+2LHR )Jm (+]LHR )Jm (+2LHR )

Jm (+IHHR )Jm + I(+2LHR )

2K 1LH K 2HH

2K 1LH K2HH
2 2K 1LH K 2HH

2K2HH
2 2

K1LH K2HH

J +](JL]LHR)J «2HHR) '

—(2m +1)+j «ILHR)j +I(+2HHR)

+(E]LHR )Jm+ I(E]LHR )Jm + I(E2HHR )+ (IC2HHR )Jm (E ILHR )Jm (E2HHR )

Jm(l~ ]LHR)j +1(&2HHR) 2K 1HH K2LH
Jm+1(1~]HHR)Jm(I~2LHR) '

K 1HH K 2LH K 1HH K2LH

2—2K2LH+Jm (I~]HHR )Jm+1(1~2LHR )
K1HH K2LH

—(2m+1) ~

+(+IHHRU +]«]HHR)J +I(+2LHR)+(+2LHR)J (+IHHR)J «2LHR)

Jm (+]LHR )Jm+1(I~ 2LHR )+
K 1HH K2HH

—(2m +1) .

K1HHK2HH
Jm+l(J~ IHHR)Jm(J] 2HHR) '

K 1HH K 2HH

22K 2HH
+Jm(J] IHHR)Jm+1(IL2HHR )

K1HH K2HH

+(+IHHR)Jm+ I(+]HHR)Jm+ I(+2HH )+(+2HH )Jm(+IHHR)Jm(+2HH

(A22)

APPENDIX B THE VAN REGEMORTER PyR( EJ'g /k~ T )

The Van Regemorter PvR(E, Ik]]T) integral is de.fined to be
r

Pv„' =f dA exp( —C)gG(6), (B1)

where 4 =E;„,Ikj] T and gG is the Van Regemorter Gaunt factor (7). Using Eq. (7), this integral is evaluated to be

PvR(@)= E, ([xl'1+1]A')— — exp( —26')V3 3 0.051

+p() f(+g)()3+30.051I

v'6' 2 2

T

in~xo+ 1~
—0. 124

xo —1) 2'

+erf(x0v'A ) in~xo+1~ —0. 124
(xo —1) 2m

(B2)



2572 JANET L. PAN AND PETER L. HAGELSTEIN 49

where we will choose xo=4 to match the large incident
energy limit of the correct Gaunt factor, the error func-
tion is erf(x)=(2/v m) J oexp( —t )dt, and the exponen-

tial integral is E, (x)= f (dtIt) exp( —t) T. he exponen-

tial integral has the asymptotic forms

—0.57721 —lnx for lx
1

« 1

E (x)= exp( —x) 1 2
&
——+

X X
forlxl »1 .

(B3)

For very small E, Ikz T, Pvtt(E&, Iks T) can be approxi-
mated as

R, E-,

~vine

and the function

1/2
2@i;

inc R;
E.;

inc ji
(C4)

g(P)=P [Ko(P)+K, (P)] (C5)

1. Weak coupling limit

has been tabulated and approximated by Seaton. The
Ko, (p) are Bessel functions. Our expression (C3) differs

slightly from that of Seaton in order to account for
semiconductor materials parameters.

VR
B

E,
2~ kB TE] (B4)

When the states i and j have a relatively weak coupling
(small oscillator strength), then the probability in (C3) is
less than unity and we may integrate over all impact pa-
rameters greater than a certain cutoff parameter R„ to
find the cross section

APPENDIX C: THE CLASSICAL PATH METHOD

Qcpw(i~j)= f P,, (R, )2mR;dR, . (C6)
The details of Seaton's classical path model, which we

now present, applies to scattering off a neutral target.
Burgess and Summers' have generalized the classical
path model to charged targets. A very good review of
these semiclassical methods for calculating the collisional
excitation cross sections, as well as a comparison of these
with quantum mechanical results for all multipole orders,
was discussed by Alder et al. for nuclear scattering
problems.

In the classical path method, we assume that the path
of the incident particle can be described classically. For
neutral targets, this incident particle's path r (t) is a
straight line whose closest approach to the quantum dot
is the impact parameter R, ,

r'(t) =R,x+(U;„,t )y, (Cl)

Rj degenerate i, degenerate j
f dt exp i t Vi;(t)

(C2)

where g, is the degeneracy of the initial state and V; (t) is

determined by (3) and (Cl). The Coulomb interaction in

(3) can be expanded in terms of multipole moments. Us-
ing the classical path in (Cl), it is easy to show that, for
dipole allowed excitations,

where the x-y plane contains both the quantum dot and
the path of the incident particle and y is the direction of
the velocity of the incident particle.

The probability of making a transition from the upper
state j to the lower state i is

12

R„,.= [(i lr'li ) (j r' j ) ]'" (C7)

Numerically, this choice of R „allows the CP cross sec-
tions to match the Bethe approximation as given by Van
Regemorter at large incident energies, as we would ex-
pect.

In the weak coupling limit, we have

2+f,,

pw ~(~i ) = 1

Eji Eincmo

2
2

X $(P„)(m.R ),
4~@„R

(C8)

where p„ is (C4) evaluated at the cutoff' impact parame-
ter R „., and the function

f(p„)=f dp=p„KO(p„)K, (p„) (C9)CO p

has been tabulated by Seaton. For small p„(large in-

cident energies),

1. 1229
(C 10)

which is the Bethe limit.

Physically, since the weak coupling limit of the CP model
assumes that the incident particle does not penetrate the
target, we choose R„ to be the physical size of the elec-
tron "orbits, "which we take to be the geometric mean of
the root mean square orbit size of the i,j states,

~ji, cpw~Ri ~

e2

4m@„R

2
m, 2. Strong coupling limit

R
R,

2

j(p; ), (C3)

where we Use the symmetrized P parameter of Seaton,

Both of the Van Regemorter and the classical path
CPW cross sections are based on the Bethe approxima-
tion, which is valid for incident particle energies much
larger than the threshold energy. As such, the Bethe ap-
proximation accurately models the high incident energy,
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Pi, (R i )=
2

(Cl 1)

and integrate only over those impact parameters greater
than Ri. For impact parameters less than R, (the near
collisions), we would not use (C3), since it gives unphysi-
cal probabilities. Instead, for these impact parameters,
we assume that the transition probabilities have an aver-
age value of —,'.

The cross section is then

Qcps(i~j)= ,'&rR i+ J—P,(R, )2&rR, dR, .
1

This evaluates to

(C12)

distant encounters (those which do not penetrate the
quantum dot or atom) of the incident particle. Near the
threshold energy, the Bethe approximation fails, and both
the Van Regemorter and classical path cross sections
make allowances for this. Van Regem orter used an
empirical Gaunt factor obtained from the best experi-
mental data then available.

In the strong coupling limit, the dipole between states i
and j is characterized by a large oscillator strength. This
classical path model will still give reasonable answers if
we limit the transition probabilities in (C3) to physically
accessible values; i.e., P; must be less than unity.
Seaton accomplished this by choosing as the lower limit
of the integration over impact parameter that value of
impact parameter which allows the transition probability
tobe —,'. That is, we

define

, from

are still taken as (C3). Hagelstein further proposes that
a better model for the near collisions would be to take the
transition probability to be linear (i.e., "triangular" ) for
small impact parameters,

P
&

cpw(R&. ) for R&. )Rc&

Pj, crr(R )= '

P; cpw(R ) for R; (R„p, cpw co

(C15)

QcpF(' ~J)= m;

mp EjiEinc

2

4m.e„R

X [P(P„)+,'g(P„)](~—R'). (C16)

The collisional excitation cross section obtained from
(C15) is

and continues at the cutoff radius R„. Good agree-
ment has been obtained between experiment and this in-
termediate form of the CP model for those ions in
which collisional excitation is dominated by near col-
lisions.

The intermediate form of the CP model will be used in
this paper to describe collisional excitation, which is seen
to be dominated by near collisions, in quantum dots. The
collisional excitation cross section obtained from (C14) is

Qcps(' ~J)= mi

mp

2gf,;.
I&J

EjiEinc

'2
2

4m@„R
QcpT(' ~J)= m;

mp

2gf,;.
i&j

ji inc

r

2

4m@„R

X [P(P, )+—,'g(P, )](&rR ), (C13) (C17)

3. Intermediate coupling

Recently Hagelstein has proposed a classical path
model intermediate between the strong and weak cou-
pling limits just discussed. In this intermediate form of
the CP model, contributions to the collisional excitation
cross section from those impact parameters less than R„
are not ignored as they are in the weak coupling limit
(C6). However, transition probabilities for these near col-
lisions cannot be taken, as in the strong coupling limit
(67), to be —,', which could result in cross sections much

larger than those observed, as in the case of highly
stripped ions. Instead, the transition probabilities for
small impact parameters are taken to be a constant (i.e.,
"fiat") equal to its value at the cutoff radius R„,

Pii, cpw(R; ) for R,. )R

PJ" cpw(R ) for R (R (C14)

For large impact parameters, the transition probabilities

where pi is (C4) evalautd at R i. In practice, we choose
the smaller of the two expressions (C8) and (C13) as the
classical path cross section for the collisional excitation
to a final state which is strongly dipole coupled to the ini-
tial state.

4. Approximate adjustment for the quantum-dot dielectric

The classical path cross sections shown in Fig. 4 were
calculated numerically with the correct dielectric every-
where: e=t.QD when the incident particle is inside the
quantum dot and e=e„otherwise. Use of the correct
dielectric is important in obtaining the correct limiting
forms for the collisional excitation cross section. At large
incident energies, the cross section is dominated by the
far collisions, for which the appropriate dielectric is e„
(=12.7 in the InSb/CdTe system), but at incident ener-
gies near threshold, the cross section is dominated by the
near collisions, for which the appropriate dielectric is eQD
(=17.7 in the InSb/CdTe system). In the equations
above, we have not accounted for this difference in dielec-
trics, since we have assumed a dielectric of e„every-
where, as in (C5), (C16), and (C17).

Though the use of the correct dielectric everywhere is
the correct way to use the CP method, it is also unwieldy
because it must be done numerically. We now propose a
new version of Seaton's CP model which approximately
accounts for the dielectric difference between the quan-
tum dot and barrier, but which does not require a numer-
ical integration. Our version of the CP model is based on
the observation that when the impact parameter is less
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than the quantum-dot radius, the dominant contribution
to the CP cross section occurs when the incident particle
has penetrated the quantum dot. Therefore, we propose
that the dielectric e&D is to be used for all incident trajec-

tories with impact parameters less than R, and e„ is to be
used otherwise. Thus, Eqs. (C8), (C16), and (C17) are to
be used for R„larger than the quantum-dot radius, but

[p&D is (C4) evaluated at the quantum-dot radius 8]

Qcpw('~J') =
mo

2+f,
l,J

3g;

1

ji inc

2

4m e„R

2

p(AD)+
&ce

~QD

2

[p(p„)—p(pgD)] (~&'), (C18)

&cpF(' ~J}=
m;

mo

2+f,,
17J

2
1 e

p(p d)+
EQD

2

[p(p„)—p(pgD)+ —,'g(p, 9)] (~&'), (C19)

and

&cpT('~ J') = m;

mo

2+f,;
l,J 1

EjiEinc

2

4m '„R
2

$(pgD)+
~QD

[P(P„)—P(PqD)+ —,'g(P„)] (rrR ) (C20)

are to be used when R„is less than R to approximately account for the difference in the quantum dot and barrier
dielectrics.

APPENDIX D: THE BINARY ENCOUNTER Pq~ {U, /k~ T,g2 /k~ T )

The Binary encounter PBE( U, /ks T,E2/kB T ) is defined as

U; E2
p BE i k T& 2

B BT
6,d6, exp( —6, )

6', +u +62
1 2+—6,

] 3

1

g2
1

ln
6, +u,

(D 1)

with 6,=E, /kB T, u, = U /ks T, and 6'2=E2/ks T. This integral can be evaluated as

PBE(u''@2}
exp( —u;) exp(u, + B2)—(2u, + 6'2) E, (2u;+ 6'2)

ZC g.

2@2 u; 62(2u;+62)
+

2
exp( —u;) — E, (u;) — exp(u, +6'2)E, (2u;+82)

3u,2 ' u;+82 ' '
(u, +82

6,d 6, exp( —6, ) ln
00 u(.

(6', +u;+ 62)(6, +u; )
(D2)

A good approximation for the last integral can be made with the help of

6,d 6', exp( —6', ) ln
Ll ).

(@]+u-+@2){8]+u. )

ez
ln +1

X exp( —u, )
—1+exp(2u, . +6'2)[E,(2u;+ A'2}

u, +6"2
E, (eF +2u, + 6'2) ]—(2u, +6'2)

2

exp(2u; )[E&(2u, ) —E
&
(ez+2u, }](2u,. ) (D3)

where eF satisfies exp( —eF) =0. For large (normalized) ionization potentials u; (and small bound energies E2), the in-
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tegral PBF ( U; 1k' T,E~ /k' T) in (D2) can be approximated as

exp( —u, ) 1

2(2u, + @~)

2

(2u;+ 6'z)PnF(u, , A'~) =

indicating that the tightly bound states have very small collisional ionization rates.

(D4)
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