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Ionization balance in semiconductor quantum-dot lasers
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The commonly assumed quasiequilibrium particle distribution with the same quasi-Fermi-level for all
quantum-dot carriers in the same energy (conduction or valence) band is found not to be valid for a wide
range of temperatures at the inversion populations and bound energy separations (greater than a LO
phonon energy) used in the literature. Bound state occupation factors obtained from the steady state

0
solution of rate equations describing the ionization balance in room-temperature 100-A-radius GaAs

0
quantum dots whose centers are separated by 400 A are found to be very different from the quasiequili-
brium distribution used in an example from the literature. In such quantum dots, bound state transitions
result from collisions between charged particles via the Coulomb interaction, and from interband and in-

traband radiative processes. The critical free electron concentration above which collisional processes
can establish a quasiequilibrium in the conduction band is found to exceed 10' cm '. Our numerical
solution is in good agreement with Pitaevskii's model from atomic physics of an electron random walk in

energy as modeled by a Fokker-Planck equation. In our simple model, electrons are captured into a
bound conduction band state via three-body recombination and phonon emission, and drop into lower

energy bound states via a series of collisional deexcitations before combining with a valence band hole.
Solution of the rate equations is standard in numerical studies of stimulated emission in atomic plasmas,
but our present discussion is, to our knowledge, the first in the literature on semiconductor quantum-dot
lasers.

I. INTRODUCTION

The optical transitions between discrete bound energies
in ideal semiconductor quantum dots could be spectral-
ly' very narrow. This has lead to speculation' that
quantum-dot lasers could have efficiencies which are
higher than those of conventional semiconductor lasers.
Further, the possibility of having typical adjacent bound
energy separations in quantum dots greater than k~T
could render the laser characteristics in quantum dots
less ' temperature sensitive than in conventional semi-
conductor lasers.

Having typical adjacent bound energy separations
greater than k~T could also render inconsequential the
intraband relaxation of bound quantum-dot carriers via
phonon emission, since typical LO phonon energies in
semiconductors have values on the order of the room
temperature k~T. When the intraband relaxation of
bound quantum-dot carriers via phonon emission is
unimportant, the scattering of bound carriers resulting
from other processes must be considered, as discussed in
Sec. II. These processes include collisions between .a
charge bound particle and a charged free particle, and
could result in a bound state transition or in ionization
of the bound particle. Interband ' and intraband radia-
tive processes are also summarized in Sec. II. We also
discuss processes which affect the ionization state of a
quantum dot: collisional ionization, photoionization,
ionization through absorption of an LO phonon, as well
as their inverse processes. We give numerical values for
the rates of these processes.

In previous work, ' we found that when the interac-
tion of bound carriers with phonons is unimportant, in-

traband collisional and radiative processes affecting
bound states occur on a time scale much longer than an
interband spontaneous emission lifetime for the electron
and hole concentrations assumed' in the literature.
This result of our previous paper casts serious doubts on
the validity of assuming a quasiequilibrium in either ener-

gy (conduction or valence) band in quantum dots, as is
commonly done in the literature. The assumption of
quasiequilibrium is indicated by the same quasi-Fermi
level (EF, or EF, ) in the direction function'

f, „(E)=
1+exp([E E«F, jlkit T—) '

for all the carriers in the same energy band in all the
quantum dots and barrier. The assumption of (1) within
an energy band is justifiable' ' in bulk semiconductors
where intraband (mainly carrier-phonon and carrier-
carrier) scattering is much faster than the interband
(conduction-to-valence band) radiative emission. Section
III describes a condition under which local thermo-
dynamic equilibrium (LTE) in either the conduction or
valence band may be assumed in quantum dots.

The numerical solution presented in this paper of the
rate equations governing the conduction band population
distribution in a realistic quantum-dot structure confirms
the inadequacy of (1). Figure 4 and Eq. (27) show this re-
sult to be valid for a wide range of temperatures. Solu-
tion of the rate equations is standard in numerical studies
of stimulated emission in atomic plasmas, but this paper
discusses semiconductor quantum-dot lasers.

Section IV gives details of our study state solution to
the population rate equations for 100-A-radius GaAs
quantum dots whose centers are separated by 400 A, a

0163-1829/94/49(4)/2536(18)/$06. 00 49 2536 1994 The American Physical Society



49 IONIZATION BALANCE IN SEMICONDUCTOR QUANTUM-DOT LASERS 2537

particular example already dealt with in the literature.
We will find that at room temperature and at typical in-
version populations assumed in the literature, most of the
conduction band electrons remain free and do not remain
in quantum-dot bound states. A careful study of our nu-
merical results in this section yields a simple physical pic-
ture in which electrons captured into a quantum-dot
bound conduction band state through three-body recom-
bination and phonon emission drop into lower energy
bound states through a series of collisional deexcitations
before combining with a valence band hole. Our numeri-
cal solution is in good agreement with Pitaevskii's model
from atomic physics of an electron random walk in ener-

gy as modeled by a Fokker-Planck equation.
In order to assess the validity of assuming (1), we will

be comparing our results with work done at Caltech, for
100-A-radius GaAs quantum dots whose centers are
separated by 400 A. We will find that the numerical solu-
tion of the population rate equations for all the states in
an energy band in all the quantum dots and barrier is in-
consistent with the assumption of quasiequilibrium (1)
used in this work. We will use the materials parameters
presented in previous work for GaAs quantum dots sur-
rounded by A1Q36aQ7As barriers. GaAs has' a room-
temperature bulk band gap of 1.424 eV, a spin-orbit split-
ting of 340 meV, a LO phonon energy of 35.34 meV, an
index of refraction of 3.3, light hole, heavy hole, and con-
duction band effective masses at the I point of 0.082mQ,
0.45mQ, and 0.067mQ, respectively, and a low frequency
dielectric of 12.85E'Q. Bulk A1Q36aQ7As has light hole,
heavy hole, and conduction band effective masses at the
I' point of 0.096mp 0.51mp and 0.092mp, respectively, a
conduction band edge which lies 289.1 meV above that in
GaAs, a valence band edge which lies 192.7 meV below
that in GaAs, and a room-temperature' low frequency
dielectric of 12.01'. Unless otherwise specified, we will
assume room-temperature operation of our quantum-dot
lasers throughout this paper.

librium distribution describes the photons and phonons,
although this condition can easily be modified.

A. Collisional excitation

Collisional excitation and deexcitation by incident elec-
trons can be indicated by the forward and reverse reac-
tions, respectively (E; & 0),

X(Z,i)+e—X(Zj)+e . (2)

q,
f=—

q,fexp
J

E;

where f =c,v denotes the energy band (conduction or
valence) containing the incident free particle and g; is the
degeneracy of the state i.

Appendix A summarizes our calculation of the
colllisional excitation rate coefficients in quantum dots.
A more detailed discussion of collisional excitation in
quantum dots has been given previously.

B. Collisional ionization

Collisional ionization and its inverse, three-body
recombination, can be indicated by the forward and re-
verse reactions, respectively,

A similar equation can be written for incident holes.
Here X(Z, i) denotes the quantum dot which has a total
charge of Z on it and an electron (hole) in state i. In col-
lisional excitation processes, the incident free particle
loses energy E,. as it excites a bound particle in the quan-
tum dot from state i to state j, via the Coulomb interac-
tion between the two charged particles. The collisional
deexcitation rate coefficient q; is related to the collisional
excitation rate coefficient q, through the principle' of
detailed balance:

X(Z —l,i)+e—X(Z)+e+e, (4)

II. PROCESSES AFFECTING QUANTUM-DOT
BOUND CARRIERS

When intraband scattering is much slower than inter-
band radiative emission in quantum dots, we cannot
blithely assume that each energy (conduction or valence)
band is described by the quasiequilibrium (1), as can be
done in the bulk. This section considers the processes
determining the steady state population of bound carriers
in such quantum dots. The collisional excitation and ion-
ization processes discussed in Secs. II A and II B are sum-
marized from the literature. ' ' Intraband and inter-
band radiative bound-bound and bound-free transitions
are summarized in Secs. II C and II D. The effects of LO
phonons on the quantum-dot ionization balance and of
acoustic phonons in equilibrating nearly degenerate
bound states are discussed in Sec. II E.

We will assume that the free carriers, which have ener-
gies beyond the barrier band edge, are in a Fermi-Dirac
quasiequilibrium (1) with other free carriers in the same
energy band. For simplicity, we will assume that an equi-

for an incident electron and for i in the conduction band.
A similar equation can be written for incident holes
and/or for i in the valence band. In collisional ionization
processes, the incident particle loses an energy of at least
the ionization potential of the bound particle as it excites,
via the Coulomb interaction between the two charged
particles, the bound particle in the quantum dot from the
bound state i to the continuum.

If we define N(Z —l, i) as the concentration of quan-
tum dots X(Z —l, i) and N(Z) as the concentration of
the parent "ion" X(Z), then the collisional ionization
rate out of and the three-body recombination rate into
state i are, respectively, X(Z —1,i)nf q; and
N(Z)nfnba3 (i), where f =c, v denotes the energy band
(conduction or valence) containing the incident free parti-
cle, b =c, U denotes the energy band containing the bound
state i, and n, nb denote free carrier concentrations.
The principle' of detailed balance relates the coefficient
for collisional ionization q; to that for three-body
recombination a3 (i ),



JANET L. PAN

q' g (Z) —U(Z —l, i)
k~T = phonon or photon

where the room temperature
=2(2vrmoos zkz Tlh ) is 6.73 X 10' cm in
AlQ 36aQ 7As and 4.19X 10' cm in GaAs, where
U(Z —l, i) is the ionization potential of the quantum dot
with total charge Z —1 and a particle in state i, and
where g(Z) and g(Z —l, i) are the statistical degenera-
cies of the initial and final quantum dot "ions."

Appendix B summarizes our calculation of the col-
lisional ionization rate coefficients in quantum dots. A
more detailed discussion of collisional ionization in quan-
tum dots has been given previously.
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C. Intraband and interband

bound-bound radiative processes
Radiative processes between bound states in a quantum

dot can be either interband or intraband, as shown in
Figs. 1 and 2. Interband radiative processes involve
bound states in both the conduction and valence bands,
such as states 1 and 1' of Fig. 1. Intraband radiative pro-
cesses involve bound states within the same energy band,
such as states 2 and 3 of Fig. 2.

Spontaneous emission and photoexcitation can be indi-
cated by the forward and reverse reactions, respectively
(E,, &0)

X(Z,j)=X(Z,i)+hv .

Stimulated emission is indicated by

X(Zj )+hv~X(Z, i)+hv+hv .

(6)

n„e E;gf,
l,j

27TA c Pl QE'Qg.

8mn„h v; 8vrn„h v; g;

j

Barrier Well

I
1

Barrier

FIG. 1. Interband radiative processes involve bound states in
both the conduction and valence bands, such as states 1 and 1'

in the figure.

Detailed balance relates the spontaneous' emission rate
A; to the stimulated emission B; and photoexcitation
8; (Einstein) coefficients:

FIG. 2. Intraband transitions involve bound states within the
same energy band, such as states 2 and 3 in the 6gure, and can
be accomplished with the emission or absorption of either a
photon or a phonon.

where the sum is over all degenerate initial (j) and degen-
erate final (i) states, n„ is the refractive index, gj is the in-
itial (upper) state degeneracy, E&, =hv, , and fr; is the os-
cillator strength.

The quantum-dot bound states used to calculate optical
dipoles for both interband (conduction to valence band)
and intraband transitions have been discussed in detail
elsewhere. ' ' These bound states are calculated in k p
theory. ' In materials such as GaAs, where the energy
band structure near k=O has an approximate spherical
symmetry in wave vector space, it is possible to write all
wave functions ' as eigenstates of the total angular
momentum, where the total single particle angular
momentum is the vector sum of the electron spin, the mi-
croscopic or Bloch angular momentum which is associat-
ed with the cell-periodic part of the wave function, and
the envelope angular momentum which is associated with
the part of the wave function changing slowly over many
unit cells. The effect of the rotationally symmetric poten-
tial formed by the barrier material surrounding the quan-
tum dots is then included in a Schrodinger equation act-
ing ' ' on the envelope part of the wave function.
Boundary conditions are satisfied by choosing the particle
wave functions to be total angular momentum eigen-
states.

The oscillator strengths for interband transitions have
been calculated ' in the literature. In Table III, A,„(i) is
the average net spontaneous emission rate out of the
bound conduction band state i; it denotes the average
(over all valence band ionization configurations) of the
sum of the spontaneous emission rates out of the bound
conduction band state i to all bound valence band states
occupied by a hole. [See Eq. (44) below. ] The A,„(i) are
seen to be the largest rates in Table III.

Intraband transitions differ from interband transitions
in that the former involve a change in the symmetry of
the carrier envelope function. In a previous paper, the
bound-bound intraconduction band dipole (summed over
degenerate initial and final bound states) was found to be
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I
I'tz Fg

for F =F;

for F =F;+1,

(K;R) (K R) 4(2F;+1)
R

l(K, R)' —(K,'R)'l' 3(F;+1) F;

(K;R) (K R) 4(2F, +1)
R

l(K;R) (K—R) l
3(F;+1) (2F;+3)

assuming that the conduction band wave functions have
no valence band character, and where F is the total (spin
plus Bloch plus envelope) angular momentum quantum
number.

Table I shows the oscillator strengths for intraconduc-
tion band bound state transitions. These numerical
values were obtained assuming ' that the conduction
band has a nonparabolic dispersion relation and that the
conduction band wave functions have a small degree of
valence band character appropriate to k p theory. The
oscillator strengths in Table I are in good agreement with
the approximate values obtained from (9}.

Tables II and III show that in our numerical example
of 100-A-radius GaAs quantum dots, the typical inter-
band spontaneous emission is much faster than the typi-
cal intraband spontaneous emission. In Appendixes C
and D, we show that when the bulk energy band gap is
larger than the typical adjacent bound energy separa-
tions, the interband spontaneous emission will be faster
than the intraband radiative emission. The consequence
is that in order for LTE to be established in all of an ener-

gy band within the interband spontaneous emission life-
time, there must be an intraband process which acts on
the bound carriers at a rate which is faster than both in-
terband and intraband spontaneous emission, as we dis-
cuss in Sec. III.

D. Bound-free radiative processes

Spontaneous radiative recombination of free electrons
into a bound state i and photoionization of electrons from
a bound state i into the continuum can be indicated by
the forward and reverse reactions, respectively,

X(Z)+e—X(Z —l, i)+hv .

Stimulated radiative recombination is indicated by

X(Z)+e+hv~X(Z —l,i)+hv+hv .

(10)

P;(i)=—J A; (E + U; )n (fico)L g (EJ )dEJ (12)

and

Similar equations for holes can be written when i is a
valence band state. An example of the spontaneous radi-
ative recombination of a free electron into a bound state
is shown in Fig. 3.

The photoionization, stimulated radiative recombina-
tion, and spontaneous radiative recombination rates
from/into the bound state i are N (Z —l, i )pz, (i ), .

N(Z)n, „P„„(i),and N(Z)n, „a(i) The . coefficients for
photoionization pz, (i), stimulated radiative recombina-
tion p„„(i),and spontaneous radiative recombination a(i)
are

TABLE I. Oscillator strengths (summed over the initial and
final state degeneracies) for intra-conduction-band bound state
transitions. The conduction band (Refs. 8 and 20) was modeled
to have a nonparabolic dispersion relation and conduction band
wave functions, whose symmetries are given in Table III, to
have a small degree of valence band character as appropriate to
k p theory. The oscillator strengths in this table are in good
agreement with the approximate values obtained from (9).

nb [p„„(i}+a(i) ]

A;E.+U; n fico+1 E L g E E
0

(13)

2
= photon or phonon

Initial

level

Final

level

Initial Final

level level

8.58
16.86
1.34

7.39X 10-'
0.222
0.433

27.05
4.20

1.95 X 10
1.41

48.29
5.47
8.02

5.60
1.41

7.81X10-'
90.01
4.60

14.59
0.0173

63.54
7.99
1.73

10.68
20.39
0.111

Barrier Well Barrier

FIG. 3. Capture of a free electron into the bound state 1 can
be accomplished by the spontaneous or stimulated emission of a
photon or a phonon.
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TABLE II. Room-temperature intraband collisional (de)excitation and radiative rates affecting the
0

ten conduction band single particle bound states in a 100-A radius GaAs quantum dot. Intraband col-
lisional rates are usually largest and intraband radiative rates are smallest for those states which have
the smallest energy difference. The free electron concentration was taken to be n, =1.493X10' cm
from the solution of the rate equations (29).

Initial
level

1

Final
level

Collisional
rate

C

ncaa'ij

(1/s)

5.70 X 10
1.12X 10
4.68 X 10
3.19X 10
3.26 X 10
6.35 X 10
4.29x10'
7.46 X 10
1.00x10'
8.67 X 10
6.29 x 10'
4.21 X 10
6.66x10'
7.56x10'
9.59 X 10
2.91 x 10
3.15 X 10'
1.73 X 10
4.77x10'
4.44x10'
2.27x10'
1.81 x 10
1.89 X 10
4.01x 10'
8.12x10'
8.27 X 10

Radiative
rate

~„(n+1)
or B;,n

(1/s)

2.57x10'
5.05 x10'
1.56x10'
4.47 x10'
1.29 x }0'
2.52x10'
1.93 x10'
7.52x10'
7.85 x10'
5.07x10'
3.68x 10'
1.90x 10'
6.71 X 10'
7.62 x10'
7.49 x10'
2.26 X 10"
1 ~ 84x10'
1.01x10'
4.80x10'
7.72 x10'
3.95 x10'
5.75 x 10
6.32x10'
4.03x10'
8.18 x10'
2.50x10'

Initial
level

1

Final
level

Collisional
rate

C
nc gij

(1/s)

4.70 X 10
1.48 x 10
3.23 x10'
7.61x10'
3.18x10'
6.07x10'
4.88 X 10'
3.75 X 10
7.17x10'
4.65x 10'
2.91 X 10
3.17X 10
4.38 x10'
5.38x10'
2.06x10'
7.27x10'
5.28 x10'
2.32 X 10
9.94x10'
2.01x10'
2.64x10'
1.45 x10'
2.12 X 10
2.52x10'
9.49 X 10
4.51x10'

Radiative
rate

~„(n+1)
or B;,n

(1/s)

8.18x 10'
4.72x 10'
1.02x 10'
1.06 X 10'
2.48x 10'
4.75 X 10
1.47 X 10
2.16x 10'
4.12x10'
8.09 X 10
2.26x10'
5.52x10'
7.62 X 10
1.15x 10'
8.18X 10
4.26x 10'
3.09x10'
7.39 X 10
5.72 X 10
7,97 x10'
1.54 x 10
8.52 x10'
6.75 X 10
8.03 x10'
5 45x10
9.67x10'

respectively, where E is the free particle energy mea-

sured from the barrier band edge; E.+ U, is the energy of
the bound-free radiative transition; AJ, (EJ+U;) is the
Einstein A coefficient (g), which is written with its expli-
cit dependence on the free particle energy, of the bound-
free radiative transition; f (E) is the free particle (Fermi-
Dirae) energy distribution; L g(E) is the free particle
density of states per unit energy; the explicit L in the
formulas will be canceled by the free particle normaliza-
tion; and

1
n (Aco=E + U;)=

conductor in thermal contact with equilibrium surround-
ings. The reason is that typical semiconductors have
macroscopic dimensions and are thus much larger than
the optical depth (inverse absorption coefficient) at the
frequencies of interest. A thermal distribution of photons
is consistent with a population inversion in semiconduc-
tor lasers, since it is the injection current and not the
photon distribution which determines the population dis-
tribution in each energy band.

The integrals (12) and (13) were computed numerically
and checked with the analytical results of previous
work.

The photoionization and radiative recombination
coefticients manifestly satisfy the principle of detailed bal-
ance

E. Carrier-phonon interaction

LO phonons could enable the recombination into (see
Fig. 3) and ionization out of those bound energies which
are within a LO phonon energy of the barrier band edge,
as indicated by the reactions

where b =Cor V.
The use of a Planck distribution in (14) is valid, except

at the frequencies of any stimulated emission, for a semi- and

X(Z)+e—X(Z —l, i)+AcoLo
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TABLE III. Room-temperature collisional ionization, three-body recombination, photoionization, radiative recombination, and
0

total interband spontaneous emission rates for ten conduction band single particle bound states in a 100-A radius GaAs quantum dot.
As discussed in the text, three-body recombination is the dominant capture process into weakly bound single particle states which are
located more than an LO phonon energy below the barrier band edge. A„(i) is the average (over all valence band ionization
configurations) net spontaneous emission rate out of the conduction band bound state i. Interband radiative emission is the dominant
process depopulating lower energy conduction band bound states. Radiative recombination is insignificant, mainly as a result of the
relatively small ionization potentials for the quantum-dot bound states. Not shown are the lifetimes associated with ionization
through absorption of a LO phonon, which at typical values of 0.1 ps are much faster than all other rates. Electrons in the single par-
ticle bound states 8,9 are within a LO phonon energy of the barrier band edge at 289.1 meV and are in equilibrium with the free elec-
trons. The free electron concentration was found from solution of the rate equations (29) to be n, =1.493 X 10' cm out of a total of

a

n, „,=3.125X10' cm [two electrons and two holes in every (400 A)'] carriers in the conduction band. The bound state energy
levels and symmetries have been discussed (Ref. 8) elsewhere. All energies are measured from the GaAs conduction band edge.

Level
number

1

Conduction
band
state

1Str2
1P]y2

1P3y2

1D5y2

1D3yp

2S~y2

1F7)2
1F5y2

2P& y2

2P3 y2

Energy
(meV)

53.7
105.9
105.9
167.4
167.4
195.4
235.6
235.6
280.2
280.2

Collisional
ionization

rate
n, q;"
(1/s)

5.46X10'
8.92X10'
8.92X10'
2.86 X 10
2.86X10'
1.59 X 10
2.63X10'
2.63X10'
5.08X10'
5.08X10'

Three-body
recombination

rate

(1/s)

2.05 X 10
4.44X 10'
8.88 X 10'
3.98 X 10
2.66 X 10
2.50 X 10
3.49X 10'
2.62 X 10
3.02 X 10
6.03 X 10'

Photoionization
rate

p~;(i)
(1/s)

5.46X 10'
3.47 X 10'
3.79 X 10'
1.44 X 10
1.39X10'
3.08 X 10
8.38 X 10'
7.98X10'
1.03 X 10
1.12 X 10

Radiative
recombination

rate
n, a(i)
(1/s)

2.05 X 10'
1.73 X10'
3.77X 10'
2.01 X 10
1.29X 10'
4.85 X10'
1.11X10'
7.95X10'
6.11X10'
1.32 X 10

Total
interband

spontaneous
emission

rate
A,„(i)
(1'/s)

1.58X 10'
1.06X 10'
7.86X 10'
4.08 X 10'
6.22 X 10
5.67X 10'
2.13X10'
3.58X10'
3.02 X 10
3.11X10'

PLo; ( i) =(0. 1 ps ) (18)

which is also very similar to bulk" LO phonon scattering
rates.

For an equilibrium (Bose-Einstein) distribution of LO
phonons, the LO phonon assisted recombination rate of
free electrons into a bound state is related to the LO pho-
non assisted ionization rate by detailed balance

. + . ~Lo, , (i) g(Z —l, i) U;
aLo „(i)+Pro „(i)= ' '

exp

(19)

The use of a Planck distribution for phonons is justifiable
in a lattice which is in thermal contact with equilibrium
surroundings and which is in the absence of nonequilibri-
um phonon sources, such as an externally applied vibra-
tion of the lattice or temperature gradients.

The LO phonon modes in a quantum dot are quantized
because the bulk LO phonon energies differ in the dot
and barrier materials. In a previous work, ' we have
shown that the quantization of the LO phonons does not
greatly affect any process in which all LO phonon modes
participate, such as the example discussed in this paper of

X(Z)+e +A'co&o~X(Z —l, i)+ficoLo+AroLo . (17)

Based on our other numerical work, ' we assumed that
the phonon assisted ionization rate is

the LO phonon coupling of a weakly bound electron state
to the continuum. The reason is that the quantization re-
sults in fewer LO phonon modes in the quantum dot than
in the bulk, but the strength of the interaction of each
mode is proportionately ' greater. Thus, the use of ei-
ther bulk or quantized LO phonon modes does not great-
ly affect the numerics of this paper.

Emission and absorption of an acoustic phonon, as in-
dicated by the reactions

and

X(Z,j )+fico„+X(Z,i)+fin)„—+fico„

X(Zj )
—X(Z,i)+fico„,

(20)

(21)

W„;.=(10.0 ps) (22)

and that the acoustic phonon assisted deexcitation rates
8 „-;for an equilibrium distribution of acoustic phonons
are found through detailed balance

result in bound state transitions, as shown schematically
in the intraband transition of Fig. 2. Electronic bound
state transitions resulting from interaction with phonons
are ignored in much of the work on quantum dots be-
cause electronic bound state separations are greater than
a LO phonon energy. In our numerical work, some
bound states are degenerate or almost degenerate. In
such cases, we will assume the acoustic" ' phonon assist-
ed excitation rates 8'„, are
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g,- E.,
~ac,ji ~ac, ij exp

g
' k~T

(23)

III. CRITICAL FREE CARRIER CONCENTRATION
FOR LTE IN AN ENERGY BAND

In the collisional-radiative recombination of free elec-
trons with atomic ions, Pert has stated that a require-
ment for LTE in an energy band is that collisional pro-
cesses relax electrons into the lowest bound state in that
energy band much more quickly than the spontaneous
emission to all lower energy states. In our quantum-dot
example, the energy band is the conduction " band the
spontaneous emission is to all valence band states. Thus,
the critical free carrier concentration n, „;, for LTE to
exist in the conduction band is

(These energy degeneracies could be lifted by the
Coulomb interaction between bound particles or by the
nonideal fabrication of quantum dots. Carriers in states
between which there is just a small energy separation will
also be in LTE because of interaction with acoustic pho-
nons. ) The fast acoustic phonon scattering relative to in-
terband spontaneous emission creates a LTE among de-
generate or almost degenerate bound states.

The phonon scattering rates (18) and (22) are used in
Sec. IV in calculating the quantum-dot ionization bal-
ance. The exact values of the LO and acoustic phonon
scattering rates are not important. It is only significant
that these rates are very large, much larger than that of
interband spontaneous emission, and will create a LTE
among those states connected by phonon processes.

cussed in (24).] The critical free carrier concentration
defined in (25) is usually very small, on the order of 10'
cm for the "typical E, ,

"of the j= 1 (the 1P,&2 state) to
i =0 (the 1S

& &2 state) transition. Our free carrier concen-
tration in Sec. IV of 1.493 X 10' cm satisfies (25).

The curve labeled "Pert" in Fig. 4 shows the tempera-
ture dependence of Pert's critical free carrier concentra-

0
tion (24) for i=1 and j=0 in our 100-A-radius GaAs
quantum dots. The collisional rate coefficients used in
Fig. 4 were obtained from the classical path model (49).

The free electron concentration n, =1.493 X 10' cm
of Sec. IV is much smaller than the typical value of n, „;,
shown in Fig. 4 to be about 10' cm . [In a previous pa-
per, we showed that the erroneous assumption of (1) for
all states in an energy band in all the quantum dots and
barrier leads to a free carrier concentration of
n, =8.50 X 10' cm, which is even further from satisfy-
ing (24).] Thus, by Pert s criterion (24), collisional excita-
tion is not strong enough to establish a quasiequilibrium
(1) among all the conduction band states.

Figure 5 shows that at free carrier concentrations
greater than the critical value of (24), the quantum-dot
conduction band bound state populations are described
by a LTE. The figure shows the room-temperature con-
centrations of singly ionized quantum dots,

g(Z = l, i =9)N(Z = l, i)/g (Z = l, i)N(Z = l, i =9),

LTE

ji, typical

U
C

c,c it&ji
ji, typical

=102„(j). (24)

The fraction (U~/E;, „;„)[ni, ,„;,q', ~z ]
' is roughly

Jt, typical

the time it takes for an electron to lose an energy of U in
increments of E, typ c ] via collisions. The typical conduc-
tion band bound state energy separation E; typ a] is the
appropriate energy separation to consider for a collisional
cascade through the conduction band bound states. (The
adjacent bound energy separation in quantum dots is fair-
ly constant, unlike the situation in atomic ions where the
adjacent bound energy separation is smaller for higher
energy bound states. For our example, Table III shows
adjacent quantum-dot bound states to be separated by
about 40—60 meV. )

We are justified in assuming a collisional cascade in
(24) because we shall see that at room temperature and
the free carrier concentration of Sec. IV, bound electrons
deexcite mainly by collisional rather than intraband radi-
ative processes. Bound carriers deexcite via an intraband
collisional cascade when the free carrier concentration
satisfies

n, q', ) 3, (for a typical E, ),
where the energy E, is the typical adjacent bound state
energy separation. [When (25) is satisfied, LTE does not
exist within an energy band unless interband radiative
processes are also slower than the collisional rates, as dis-
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FIG. 4. The temperature dependence of the critical free car-

rier concentration defined by Pert and McWhirter in Sec. III.
For Pert we use E=1 (the 1P&/2 state) and j=0. For McW we
use the two most widely separated conduction band bound
states i=0 [the 1S,~z state of the literature (Ref. 20)] and j=9
(the 2P3/2 state). When the free electron concentration exceeds
this n, ,„,all conduction band bound states are in quasiequilibri-
um. The point labeled X is the room-temperature free carrier
concentration of 1.493X10' cm found from the numerical

0
solution of the population rate equations in Sec. IV for 100-A-
radius GaAs quantum dots whose centers are separated by 400
0
A. The point labeled o is the room-temperature free carrier
concentration of 8.50X 10"cm obtained (Ref. 9) by assuming
(1) for all the carriers in the conduction band of the same quan-
tum dots and barrier. In either case, (24) is not satisfied.



49 IONIZATION BALANCE IN SEMICONDUCTOR QUANTUM-DOT LASERS 2543

100000

10000—

II
1000—

X
100—bQ

II
N

X
bD

0: n, =1.56 x 10 crn 3

+: n, =1.56 x 10 cm

[]: n, = 4.51 x 10~7 cm 3

6 —3

300
0.1

0 100 200
Bound Energy E; (meV)

„«,tqJ'I Jf (27)

The reasoning in (27} is that collisional excitation is the
dominant process by which bound particles are excited
upward when the energy difference E; is large. In order
for the populations of states i and j to be in LTE, the
dominant downward process must be the inverse (in the

(1}to exist within a band of bound energy states of ions in

a plasma is that collisional deexcitation rates n, „q' ' be
much greater than the spontaneous radiative rates A.,- for
all pairs i,j of bound states in the energy band. The criti-
cal free carrier concentration is defined as that concentra-
tion at which collisional deexcitation is ten times faster
than the intraband spontaneous emission between the
bound states i,j (in the same energy band) with the largest
energy separation,

FIG. 5. The room-temperature concentrations of singly ion-

ized quantum dots,

g(Z = l, i =9)N(Z = l, i)
g(Z = l,i)N(Z = l, i =9)

normalized to the concentration of singly ionized quantum dots
having one electron in the highest energy bound state 9, as a
function of the bound electron energy E; for various values of

0
the free electron concentration for our 100-A-radius GaAs

0
quantum dots whose centers are separated by 400 A. The ion
populations corresponding to the critical free carrier concentra-
tion in (24) of 1.56X10' are indicated by crosses and are very
close to the Saha-Boltzmann equilibrium (26) values, indicated
by the solid line. The normalized ion populations correspond-
ing to free carrier concentrations less than that in (24) are seen
to be much smaller than the Saha-Boltzmann values.
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normalized to the concentration of singly ionized quan-
tum dots having one electron in the highest energy bound
state 9, as a function of the bound electron energy E; for
various values of the free electron concentration for our
100-A-radius GaAs quantum dots whose centers are
separated by 400 A. These ion concentrations are ob-
tained from solution of the population rate equations, as
described in Sec. IV. The solid line corresponds to the
Saha-Boltzmann equilibrium

N(Z = l, i) =N(Z+1) ' exp, (26)
(z)n, U;

where i is a bound conduction band state. The ion popu-
lation corresponding to the critical free carrier concen-
tration in (24) of 1.56X10' are indicated by the crosses
in Fig. 5 and are very close to the Saha-Boltzmann equi-
librium values. The normalized ion populations corre-
sponding to free carrier concentrations less than that in
(24) are seen to be much smaller than the Saha-
Boltzmann values.

To check our numerical evaluation of n, „;, in Fig. 4,
we now compare (24) with another criterion from the
atomic physics literature for establishing LTE in an ener-
gy band. McWhirter's' ' criterion for quasiequilibrium

FIG. 6. The vast discrepancy at room temperature between
occupation factors obtained from our Rate Eqs (labeled as stars)
solution (34) and the quasiequilibrium distribution function (1)
[Fermi-Dirac {all e's) with E~, =56.7 meV corresponding to two
electrons per quantum dot] commonly assumed in the literature
for all conduction band electrons. The Fermi-Dirac (all e's) dis-
tribution is assumed in work done at Caltech (Ref. 4). All num-

0
bers in this figure are for the conduction band of 100-A-radius

0
GaAs quantum dots whose centers are separated by 400 A. Our
rate equation solution is in good agreement with a simple model
(Ref. 28) of the random walk, as described by a Fokker-Planck
equation, of electrons in energy. A quasiequilibrium was as-
sumed for all holes and for free electrons. Any electrons in
quasiequilibrium with the free electrons would have the distri-
bution labeled Fermi-Dirac (free e's only). For example, the
electrons in the bound states at 280.2 meV, which is well within
a LO phonon energy of the Alo 3Ga07As band edge at 289.1

meV, are clearly seen to be in quasiequilibrium with the free
electrons. The solid lines representing the Fermi-Dirac equilib-
rium for all and for free electrons only do not coincide because
of differing values of the free electron concentration [where
N, /Nc-exp(E~, Ike T)]: the assumption of a Fermi-Dirac dis-
tribution for all electrons yields a free electron concentration
(Ref. 9) of 8.50X10' cm, while the Fermi-Dirac (free e's

only) distribution in the figure assumed the free carrier concen-
tration of 1.493 X 10' cm found in Sec. IV.
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detailed balance sense) of collisional excitation, whence
the requirement (27). A formula for n„„,in terms of the
Van Regemorter collisional excitation rate coeScient is
given in the literature.

The curve labeled "McW" in Fig. 4 shows the temper-
ature dependence of McWhirter's' ' critical free carrier
concentration (27) for the two most widely separated con-
duction band bound states i=0 and j=9 in our 100-A-
radius GaAs quantum dots. Pert's n, „;,is very similar to
McWhirter's except at low temperatures. At low temper-
atures, Pert's n,,„;,is much larger than McWhirter's be-
cause (24) requires that both collisional excitation and
deexcitation be much faster than interband radiative
emission.

10000

v) 1000—

100— e
10—

In summary, we expect that the occupation of the
bound states in the conduction band of our quantum dot
cannot be described by a quasiequilibrium distribution,
but that electrons will drop through the bound states by a
collisional cascade. This is confirmed in Sec. IV. The ac-
tual occupation factors f (E) given in Fig. 6 as the aster-
isks labeled "Rate Eqs" are very diFerent from those in
quasiequilibriurn (1). Figures 7 and 8 indeed show that
the downward cascade through the conduction band
states is via collisional deexcitation and not intraband ra-
diative processes.

IV. THE IONIZATION BALANCE

In this section, we solve the rate equations for the
steady state ionization balance for a particular quantum-
dot example taken from the literature. We determine
which processes are most important and find a simple
model for understanding the quantum-dot bound state
population distribution.

The time rate of change of the concentration of
quantum-dot ions is

X
C)

D
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'I
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100 150 200 250

Bound Energy (meV)
50 300

FIG. 7. Flux (concentration per unit time) at room tempera-
ture and a free electron concentration of n, =1.493 X 10' cm
depopulating those quantum-dot ions having exactly one elec-
tron as a function of the energy of the one bound electron.
Depopulation of these singly ionized quantum dots is accom-
plished mainly through interband radiative processes (eh) and
intraband collisional deexcitation (CDE). This figure and Fig. 8

show that after an electron is captured from the extended con-
tinuum into a weakly bound state, it drops into lower energy
bound states via collisional deexcitation until it combines with a
valence band hole. For visual ease in this figure and in Fig. 8,
straight lines have been drawn through the points associated
with each discrete bound energy. Depopulation by intraband
emission (Ems) and absorption (not shown) are weaker than in-

traband collisional processes at this free carrier concentration
because the typical adjacent bound state energy separations are
relatively small (the regime of collisional cascade of Sec. III) ~

Collisional ionization (CI) is important mainly for bound states
in the extended continuum, such as those at 280.2 meV. Not
shown in this figure or in Fig. 8 are the cruxes, which are much
larger than the fluxes shown in these figures and which affect
only the states at 280.2 meV, associated with ionization (or
recombination) through absorption (or emission) of a LO pho-
non. Observe that there are no bound states into which elec-
trons originating in the lowest bound states at 53.7 meV can col-
lisionally deexcite or emit (Ems) via an intraband transition.
Contributions from quantum-dot ions having exactly two bound
electrons were not considered in this figure or in Fig. 8.
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FIG. 8. Flux (concentration per unit time) at room tempera-
ture and a free electron concentration of n, =1.493 X 10' cm '
populating those quantum-dot ions having exactly one electron
as a function of the energy of the one bound electron. At this
free carrier concentration and relatively small typical adjacent
bound state energy separations, population of the singly ionized
quantum dots is mainly via collisional deexcitation (CDE) and
not radiative (Erns) intraband transitions (the regime of col-
lisional cascade of Sec. III). Three-body recombination (TBR)
is important mainly for bound states in the extended continuum,
such as those at 280.2 meV. Population of the bound states via

radiative recombination is insignificant, as shown in Table III,
mainly as a result of the relatively small ionization potentials for
the quantum-dot bound states. Insignificant fluxes were found
to result from processes which appeared in Tables II and III but
which are not shown in Figs. 8 and 7. Observe that there are no
bound states from which intraband collisional deexcitation or
emission could terminate in the most weakly bound states at
280.2 meV.
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= g [C(I,J)+ A„(I,J)+P(I,J)]N(J)
dt

N—(I) g [C (J,I)+ A „(J,I)+P (J,I)],
JWI

(28)

where I,J are particular ion configurations (Z, ji] }, and
where C(I,J)N(J), A„(I,J)N(J},and P(I,J)N(J) are the
fiuxes contributing to a decrease in N(J) and an increase
in N(I) resulting from, respectively, collisional, radiative,
and phonon processes. More specifically, (28) can be
written for the ion configuration X(Z —l, i) (for i in the
conduction band) as

dN(Z —1 i) . . fb= gN(Z 2,—ij) g nfq, +Pp, (j)+A,„(j)+PLo;(j)
J f =c,v

+ gN(Z —l,j) g nfqf+ g N(Z —1 j)[A;+B;p(v))+ g N(Z —1 j)B;p(v)
f=c, v

+N(Z)nb, X nfa3 (i}+a(i}+p-(i}+aio(i}+pio,.(i}
f=c, v

N(Z——l, i) g nf q; + gq;~ + g nfnb ga3 (j)
f=c, v jWi f=cv J

+ g [A, +Bjp{"v)]+g Bjp{v)+nb ga(j)+nb QP„„(j)+Pz(i)+A,„(i)

+ b X Lo(j}+ b

DIPLO,

,{j)+PLO, '(

J J
(29)

where we have included the contributions of adjacent ion-
ization sequences to the cruxes resulting from collisional,
radiative, and phonon processes.

Equations (29} are solved in the steady state subject to
the boundary conditions that the total concentration of
carriers in each band and the total concentration of ions
are conserved. The total concentration of ions is found

0
from the known spacing d (=400 A in our example) be-
tween quantum-dot centers,

(30)

The total concentration n„„ofconduction band elec-
trons is

c tot c +
bound i

n;, (31)

the sum of the concentration of the free electrons n, and
of the electrons in all bound states i In (31), n; i.s the
number of electrons in the bound state i, averaged over
all quantum-dot ion configurations,

gn; tN( [I])

Q N([I] )
(32)

where n; I is the known number of electrons in the single
particle state i in the particular quantum-dot ion
configuration I.

As a check of our numerical rate equations, we have
considered quantum dots which are doped with irnpuri-
ties to have the total electron concentration in (31}and
no steady state hole population. These quantum dots are

modeled to have no net interband radiative emission and
no injected current. The steady state solution of the rate
equations then gives an equilibrium distribution (26) of
ion concentrations, as expected.

A. Solution of the rate equations
for a particular example from the literature

To discuss the ionization balance in quantum dots, we
solve the rate equations for a particular example taken
from the literature, that of 100-A-radius GaAs quantum

0
dots whose centers are separated by d=400 A. The ma-
terials parameters for GaAs and the barrier material
Alp 3Gap 7As barriers were given in the Introduction.
Since typical bound hole states are separated by only a

8 0
few meV in our 100-A-radius GaAs quantum dots, we
will assume that the valence band is described by a
quasiequilibrium (1). Thus, in this section, we are only
interested in the rate equations describing the popula-
tions in quantum-dot conduction band states.

The total concentration of electrons and holes was
chosen to be the same as that used in the example from
the literature, n„„=3.125X10' cm . This value of
nc tot is equal to 2N;,„=2d, corresponding to two elec-
trons and two holes per quantum dot. Numerically, this
means that there are three types of ion configurations to
consider: nonionized (with Z=O and two bound conduc-
tion band electrons per quantum dot), singly ionized
(with Z= 1 and one bound conduction band electron per
quantum dot), and doubly ionized (with Z=2 and no
bound conduction band electrons per quantum dot). Not
including the angular momentum degeneracies in Table
III, there are only ten types of single particle bound con-
duction band states to consider. (The angular momen-
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turn degeneracies are accounted for by assuming that
phonon scattering enables the occupation of degenerate
states to be described by a quasiequilibrium distribution. )

This problem is small enough for the concentrations of all
the 66 types (1 doubly ionized, 10 singly ionized, and 55
nonionized) of ions to be found numerically.

The steady state ion population is found iteratively by
guessing a value of the free electron concentration n, and
using a biconjugate gradient method to invert the matrix
equation formed by (29) (with time derivatives set to zero)
and (30). The ion population is used in (31), together
with previous estimates of n„ to get a quasi-Newton esti-
mate of n, .

Upon solution of the rate equations (29), the free elec-
tron concentration was found to be n, = 1.493 X 10'
cm and is a large fraction of the total concentration of
conduction band electrons, n, „,=3. 125 X 10' cm
The concentration of doubly ionized quantum dots
N (Z=2) was found to be 4.356X 10' cm, a large frac-
tion of the total concentration of ions
N;,„=1.5625X10' cm . Table IV shows the concen-
trations of ions containing exactly one electron in a
bound conduction band state. The concentrations of
quantum dots with two bound conduction band electrons
was found to be at least two orders of magnitude smaller
than the typical concentrations shown in Table IV, and
are available from the author by request.

The deviation of the ionization balance from equilibri-
um is defined through the coefficients b (Z = 1,i) in

TABLE IV. The concentration of ions containing exactly one
electron in a low lying conduction band bound state is much
smaller than in quasiequilibrium (1) because interband spon-
taneous emission is much faster than capture rates into bound
states from the continuum. Since the conduction band bound
levels 8,9 are within a LO phonon energy of the barrier band
edge at 289.1 meV, the concentrations N(Z=1, 8),N(Z=1, 9)
are related to N(Z=2), the concentration of quantum dots with
no bound conduction band electrons, via a Saha-Boltzmann dis-
tribution, as indicated by a value of unity for b(Z=1,8) and
b(Z=1,9) in (33). [N(Z = l, i) is the concentration of those
quantum dots whose one bound electron in state i ].N(Z=2)
was found from the rate equations to be 4.356X 10"cm '. The
total concentration of ions is N;,„=1.5625X10' cm ', for

0
quantum dots whose centers are separated by 400 A. The con-
centrations of quantum dots with two bound conduction band
electrons was found to be at least two orders of magnitude
smaller than the typical concentrations shown in this table.

N(Z = l, i) =N;+
l (10" cm-')

2.03
2.53
5.06

10.01
6.67
2.97

14.35
10.76
2.58
5.17

N(Z =l,i)=N(Z+1) '
exp b(Z = l, i),g(Z ) n, U,

(33)

where i is a bound state in the conduction band. For an
ionization equilibrium, all the coefficients b(Z = l, i) are
equal to unity.

As a quick check of our numbers, observe that elec-
trons in states connected by an acoustic or LO phonon
are in LTE because the phonon absorption and emission
rates (18) and (22) are much larger than all other transi-
tion rates. For example, Table IV shows that the ratio of
the concentrations of ions having exactly one electron in
bound state 2 to those with one in bound state 1 to be 2:1,
which is exactly the ratio of their degeneracies (see Table
III). As another example in Table IV, since the bound
states 8,9 are within an LO phonon energy of the
Alo 3Gao 7As band edge, then the concentrations
N(Z=1, 8) and N(Z=1, 9) are related to the concentra-
tion of doubly ionized quantum dots N(Z=2) through a
Saha-Boltzmann equation (26) with a value of unity for
b (Z= 1,8) and b (Z= 1,9). Equivalently, Fig. 6 shows
both the electrons in the bound states 8,9 (located at
280.2 meV in the figure) and the free electrons to have the
same quasiequilibrium ["Fermi-Dirac (free e's only)"] dis-
tribution whose Fermi level is determined by the free
electron concentration 1.493 X 10' cm through
n, /N~ =exp(&p, /kg T).

Non-LTE occupation factors

f, (E;)=
n i

7

g;N;,„
(34)

where n, is the number of electrons in the bound state i,
averaged over all quantum-dot ion configurations (32).

Figure 6 shows the room-temperature quasiequilibrium
distribution function (1) [Fermi-Dirac (all e s) with

EF, =56.7 meV corresponding to two electrons per quan-
tum dot] commonly assumed in the literature for all con-
duction band electrons to be very different from our Rate
Eqs (labeled as asterisks) solution (34). Equation (1) is as-
sumed in work done at Caltech for the conduction band
of 100-A-radius GaAs quantum dots whose centers are
separated by 400 A. Our rate equation solution is in

good agreement with a simple model of the random
walk, as described by a Fokker-Planck equation in Sec.
IV C, of electrons in energy. The small size of the Rate

By analogy with the occupation factor defined under

the assumption of quasiequilibrium within an energy
band (1), the quantum-dot conduction band bound state
occupation factor is
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Eqs occupation factors relative to the commonly assumed
Fermi-Dirac (all e's} occupation factors is a result of the
small size of the three-body recombination rates shown in

Table III relative to interband spontaneous emission
rates, as discussed in Sec. IV 8. Clearly the quasiequili-
brium assumption (1) is not valid for all conduction band
electrons in our quantum-dot example.

B. Dominant processes
determining the bound level occupations

As is the case in atomic plasmas, capture of free car-
riers via three-body recombination affects mainly high

energy bound states located near the extended continu-
um, as indicated in Table III. Also by analogy with
atomic plasmas, radiative recombination into bound
states is important only when large ionization potentials
are involved because of the cubic dependence of the Ein-
stein 3 coefficient on radiative energy. Radiative recom-
bination into the quantum-dot bound states in our exam-

ple is shown to be insignificant (and three-body recom-
bination to be significant) in Table III, and Figs. 7 and 8,
because of the relatively large (1.493X10' cm ) free
carrier concentrations consistent with the current
quantum-dot literature.

In this section, we show that collisional and interband
radiative processes determine the quantum-dot ion and
bound level populations. We will use Figs. 7 and 8 to
show that after an electron is captured from the extended
continuum into a weakly bound state, it drops into lower

energy bound states mainly via collisional deexcitation
until it combines with a valence band hole. For quantum
dots, the extended continuum will usually include bound
states within an LO phonon energy of the barrier band
edge, as room-temperature LO phonon processes are
much faster than all collisional and radiative processes.

Figures 7 and 8 show the relative contributions of vari-
ous processes on the right hand side of (29) tending to de-
crease and increase, respectively, the concentration of

I

n, q4&N4+ ——[ A,„(1)+n,qto ]N &+,

c + c +n, q74N7 =n, q4, N4

n, a3'(7)N+ =[n,q74+n, q7'+ A,„(7)]N7+ .

(35)

(36)

(37)

These three equations show that after being captured into
state 7, an electron [Eq. (37}]which does not ionize again
and which does not combine with a valence band hole
will collisionally deexcite [Eq. (37}] into bound state 4
from which it collisionally deexcites [Eq. (36)] into bound
state 1.

The concentration N &+ is found from

0

singly ionized 100-A-radius GaAs quantum dots at room
temperature and a free electron concentration of
n, =1.493 X 10' cm . Contributions from quantum-dot
ions having exactly two bound electrons were not con-
sidered in either of these two figures. Figure 7 shows that
all singly ionized quantum dots, except those with an
electron in bound states 8 or 9 at 280.2 meV, are depopu-
lated mainly through collisional deexcitation or interband
spontaneous emission. Figure 8 shows singly ionized
quantum dots containing an electron in low energy bound
states are populated mainly through collisional deexcita-
tion. Singly ionized quantum dots containing an electron
in an intermediate energy bound state are populated
mainly through three-body recombination.

As shown in the figures, population and depopulation
of the quantum-dot bound states by intraband radiative
processes are much slower than by intraband collisional
processes at this relatively large free carrier concentra-
tion because the typical adjacent bound state energy sepa-
rations are relatively small (see Sec. III). Insignificant
fluxes were found to result from processes which ap-
peared in Tables II and III but which are not shown in
Figs. 7 and 8.

In quantitative terms, one can use the numbers shown
in Tables II—IV to show that [N(Z=1, i)=N;+ and
N(Z =2}=N+ ]

[ A,„(1)+n, q', o ]N )+ —— n 2acc(7)N+ 2

n, q74+n, q7'+ A,„(7)
(38)

The fraction on the right-hand side above is the fraction
of the electrons captured into bound state 7 which do not
ionize (with rate q~') again and which do not combine
with a valence band hole [with rate A,„(7)];it is about
0.5. The concentration N&+ is determined by the steady
state flow via collisional deexcitation into level 1 resulting
from this fraction of all electrons captured into state 7 by

I

I

three-body recombination [n, a3'(7) =1/38.2 ns] and the
steady state flow out of level 1 through interband spon-
taneous emission [A„(1)=1/9.4 ns] and collisional deex-
citation (n, q', o=1/23. 3 ns). N,+ is much smaller than
N+ because n, a3'(7) is much smaller than A,„(1). Simi-

larly, one can show that

[ A„(2)+n, q 2o ]N2+ —— n a"(6)N+
n, q 63 +n, q 6'+ A,„(6)

(39)

C. Fokker-Planck equation of
electron random walk in energy

The simple model presented in Sec. IVB shows that
quantum-dot bound carriers relax to lower energy bound

states via intraband collisional processes before combin-
ing with a valence band hole. Using ideas described
more fully in the atomic plasma literature, this collisional
cascade can be modeled as the random walk of electrons
through conduction band bound states via a Fokker-
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Planck equation. Appendix E1 reviews Pitaevskii's
model of this electron collisional cascade as a "diffusion"
in energy. In Appendix E2, we will follow Pert in
modifying Pitaevskii's equations to include other pro-
cesses (mainly interband radiative emission from and
three-body recombination into conduction band bound
states) involved in the relaxation of bound carriers to
lower energies.

I

In this section, we highlight some of the results of Ap-
pendix E. Within reasonable assumptions, we will be able
to calculate occupation factors analytically. We will find
good agreement between our solution of the full rate
equations and Appendix E.

From Appendix E2, the steady state downward flux in
energy of bound carriers past the bound state with energy
Eis

E E—J=B(E) —— + + dE"F(E")A,„(E")+ g [n, a3'(E")N(Z+1) n, q—E'N(Z, E")),dE p dE k~T E
min

(40)

where the diffusion coefficient in the Fokker-Planck equa-
tion is

B(E )=—,
' gX(E;)E;, (41)

where X(E, ) is the rate for the collisional process in
which the bound particle makes a transition from state j
to state i, where the energy density of states is
(b,E~ =EJ+, )2 EJ )n)—

p(E, ) =g, /b, E,

and the distribution function in energy is

F(E )=N(Zj)/bE

(42)

(43)

where E;„is the lowest energy conduction band bound
energy, E, is the energy above which a Saha-Boltzrnann
equilibrium exists with free electrons, and, in the notation
of this paper, A,„(E) includes all rates originating at the
conduction band bound energy E and terminating in the
valence band,

b(E)=exp[(E E, }/k&T] —for E (E, .

Since most of the electrons remain unbound, so that

(4&)

gy and initial degeneracies. (Table II shows the largest
collisional rates all to be within the same order of magni-
tude. )

The discussion of Eqs. (El 1) and (E12) in Appendix E
shows that the quantum-dot bound level populations are
determined mainly by the collisional cascade. Interband
radiative emission and three-body recombination make
smaller contributions, on the order of
,' [2A„(E)—(kz T) /B (E)]——,'. As discussed in Appendix
E, we can then make two further approximations: (i) that
A,„(E) is relatively independent of the conduction band
bound state energy E, and (ii} the net three-body recom-
bination flux is largest for states near the barrier band
edge.

Appendix E shows that when [B(E)/
2A„(E)(k&T) ]'~ -2 or larger, which is true for our
quantum dots, (40) yields the solution for (33),

A,„(E")=J dE'F(E')A„(E",E'),
valence band

(44)
N(Z =2)-N;,„, (46)

where E" is a conduction band and E' is a valence band
bound energy. The assumption of a quasicontinuous dis-
tribution of states in (62) is valid whenever (60) can be ap-
proximated by (62). Numerically, we have verified this to
be true for our quantum-dot example.

The first three terms in the parentheses in (40) is the
downward flux resulting from collisional excitation and
deexcitation only. [See Eq. (60).] The integral in (40) is
the interband radiative flux originating from states with
energy greater than E. The sum in (40) is the three-body
recombination Aux terminating in states with energy less
than or equal to E.

Though Eq. (40) can be solved numerically for N (Z,j),
more insight would be obtained by making a few approxi-
mations. We will assume that the energy density of states
p(E') is roughly a constant, since the quantum-dot bound
states shown in Table III have degeneracies which are
constant to within a factor of 4 and since adjacent bound
states are separated by roughly a constant amount (E,
varies between 40 and 60 mev). We will also assume that
B (E) is roughly constant, since the collisional rates de-
pend on the (roughly constant) intraband transition ener-

the occupation factor for each of the single particle
bound states E; comes mainly from the singly ionized
quantum dots and is approximately, using (33),

n, U;
f, (E;)= exp b(Z=1, i) .

Nc k~ T
(47)

Equations (45) and (47) yield

n,
f, (E, ) = exp

Nc
E, (E, , (48)

where Vz is the barrier band edge as measured from the
quantum-dot band edge.

Equation (48) is plotted in Fig. 6 as the curve labeled
"Fokker-Planck. " In Fig. 6, we took E, to be the barrier
band edge V~, above which a Saha-Boltzmann equilibri-
um exists with free electrons. Good agreement is ob-
served between the results of our Rate Eqs and the
Fokker-Planck solutions. This powerful result is an addi-
tional check of our simple model of the populating of
quantum-dot bound levels via intraband collisional cas-
cade of conduction band electrons followed by recorn-
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bination with a valence band hole.
The fact that the Rate Eqs. and Fokker-Planck solu-

tions in Fig. 6 are (roughly} independent of bound state
energy is a result of the roughly equal spacing between
conduction band bound state energies, as the collisional
rate coeKcients are very similar for very similar intra-
band transition energies. The very similar values of col-
lisional rate coefficients and intraband transition energies
in our quantum dot, regardless of the initial bound ener-

gy, forces 8 (E), and thus the occupation factor f (E), to
be roughly independent of bound state energy, as shown
in Fig. 6 and Appendix E. This is a very important
difFerence between atomic ions and quantum dots; the in-

creasing bound energy separations for the lower energy
bound states in atomic ions introduces the concept, not
necessary for quantum dots, of a collisional limit, which
separates the two regimes where collisions and radiative
processes dominate.

V. CONCLUSIONS

We find the use of a quasiequilibrium particle distribu-
tion (1) with the same quasi-Fermi level EF for all the
quantum dot carriers in an energy (conduction or
valence) band not to be valid for a wide range of tetnpera-
tures (see Fig. 4) at the inversion populations and bound
energy separations (greater than a LO phonon energy) as-
sumed in the literature. An important consequence is
that the Bernard-Duraffourg condition, whose deriva-
tion assumes quasiequilibrium in each energy band, for
net stimulated emission in conventional semiconductor
lasers does not apply for quantum-dot semiconductor
lasers. The condition for population inversion, as well as
the calculation of the threshold current densities, in
quantum dot lasers must account for the results of Sec.
IV: both the non-LTE bound state populations and the
large number of free carriers found in our example. This
is the subject of a future work.

The bound state occupation factors in Fig. 6, obtained
from the steady state solution of the rate equations (29)
describing the ionization balance in the conduction band
of room-temperature 100-A-radius GaAs quantum dots

0
whose centers are separated by 400 A, are found to be
very different from the commonly assumed quasiequilibri-
um distribution (1). Our numerical solution is in good
agreement with Pitaevskii's model (Appendix E) from

atomic physics of an electron random walk in energy, as
modeled by a Fokker-Planck equation. Our simple model
is that electrons captured into a quantum-dot conduction
band bound state through three-body recombination and
phonon emission drop into lower bound states through a
series of collisional deexcitations before combining with a
valence band hole.

Included in our rate equations are processes (Sec. II)
which fundamentally exist even in ideal quantum dots for
which trap and defect states have no significant effects:
collisional excitation and deexcitation as well as collision-
al ionization from and three-body recombination into all
bound states resulting from the Coulomb interaction with
incident free particles, interband spontaneous emission,
intraband absorption and emission as well as photoion-
ization and radiative recombination resulting from a
Planck distribution of photons, ionization from and
recombination into weakly bound states resulting from
interaction with an equilibrium distribution of LO pho-
nons, and excitation and deexcitation resulting from an
equilibrium distribution of small energy acoustic pho-
nons. The simple models for quantum-dot collisional
rates presented in this paper are expected to be useful in
giving convenient dependences on materials parameters,
collisional exchange energies, and temperatures.

The critical free electron concentration (24) above
which collisional processes can establish a quasiequilibri-
um, with its associated quasi-Fermi level EF„ in the con-
duction band is found to exceed 10' cm in our exam-
ple.
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APPENDIX A: THE CLASSICAL PATH MODEL
OF COLLISIONAL EXCITATION IN QUANTUM DOTS

We use the intermediate coupling strength form of the
classical path (CP) method to describe collisional excita-
tion in quantum dots. The suitability of this method for
quantum dots has been discussed in detail elsewhere. In
this model, the collisional excitation cross section is

m;

mp

2+f,,
EJ 1

Eji Einc

2 2

[P(P„)+,'g(P„) j(mR ), —
4m'„R

(Al)

e„=—,'(egg) +2eb~, ) (A2)

where m; is the effective mass of the incident particle, R
is the radius of the quantum dot, E;„, is the incident par-
ticle energy (measured from the band edge of the barrier
material}, f; is the oscillator strength o.btained using (9)
and summed over degenerate initial and final states, the
appropriate dielectric constant is

' 1/2
R;E) -; 2m; E),P;= = E;„, R;

inc ~ inc Eji

evaluated at the cutoff impact parameter R„; the func-

(A3}

(where e&z, eb„are the quantum-dot and barrier dielec-
tric constants} for collisions in which the incident particle
does not penetrate the quantum dot, and P„ is the P pa-
rameter of Seaton, '
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R,.=[&i[r'/i) & j/r'/j)]'" (A4)

In a previous work, we have given another intermedi-
ate form of the CP cross section, which accounts for the
difference between the quantum dot and barrier dielec-
trics when the incident particle penetrates the quantum
dot.

The collisional excitation rate coefficient is found by in-

tegrating the product of the free carrier velocity and (49)
over a quasiequilibrium distribution of free carriers,

tions P(P„) and g(P&) are given by Seaton. ' The cutoff
impact parameter R„ is chosen to be the physical size
of the target, which we define as the root mean square or-
bit size of the i,j states,

0
rates for our 100-A-radius GaAs quantum dots with a

0
center-to-center separation of 400 A are presented in
Table II. The intraband oscillator strengths used are
those calculated in Table I. The bound state energy lev-
els and symmetries shown in Table III have been dis-
cussed ' ' elsewhere. The free electron concentration7, 8, 18

was taken to be n, =1.493 X10' cm from the solution
of the rate equations (29} (to be discussed in Sec. IV).

The collisional rates shown in Table II and in (AS) are
usually largest for those states which have the smallest
energy difference. For states separated by small energy
differences, collisional deexcitation is much larger than
intraband radiative emission.

n, q', =n,—& uQcpz(i~j) ), (A5) B. THE BINARY ENCOUNTER MODEL
OF COLLISIONAL IONIZATION IN QUANTUM DOTS

of which more details have been given in the literature.

Collisional rates in our example

A detailed discussion of the Van Regemorter and CP
collisional excitation rates in quantum dots has been
given elsewhere. Collisional excitation and deexcitation

I

We use the binary encounter model to describe
collisional ionization in quantum dots, of which the suita-
bility has been discussed in detail elsewhere. The col-
lision al ionization cross section in the symmetrized
binary encounter (BE) model of Thomas and Burgess as
described by Vriens ' is

4776QD

2

E&+ Ui +E2
1

U;

1 2 1 1+—E2
3 U2 E2

Ei
E)+U; U;

ln (Bl)

where E, —:—,'m*v& is the incident particle energy (mea-

sured from the quantum barrier band edge), E2 —= —,
' m *u

2

is the bound particle energy (measured from the
quantum-dot band edge), and U; = Vs Ez is the io—niza-

tion potential of (the bound) particle number 2. We have
used the quantum-dot (and not the barrier) dielectric con-

stant eQD as the relevant dielectric constant for the
Coulomb interaction because this would be consistent
with the assumption of a near collision between the in-

cident particle and the quantum dot.
The collisional ionization rate of an electron by an in-

cident electron is, using (Bl),

2

n, q;"=n, &Q;v ) =n,
4m eQDR

'2
v,~ ~R U; E~2

4~'~'(k, Z)' " k, T' k, r~BE

where PBF ( U, Ik~ T,E2 Ik~ T ) is an integral evaluated in

the literature.

Collisional rates in our example

I

body recombination rates shown in Table III relative to
interband spontaneous emission rates is the reason that
most of the electrons in the conduction band remain free
and are not in a quantum-dot bound state.

A detailed discussion of collisional ionization out of a
quantum-dot bound state has been given elsewhere. Col-
lisional ionization and three-body recombination rates for

0
our 100-A-radius GaAs quantum dots with a center-to-

0

center separation of 400 A are presented in Table III.
The free electron concentration was taken to be

n, =1.493 X 10' cm from the solution of the rate equa-
tions (29}.

In Sec. IV B, we construct a simple physical model (see
Fig. 9) in which electrons are captured into a weakly
bound state from continuum states (and states in LTE
with the continuum) mainly through three-body recom-
bination. %'e will see that the small size of the three-

APPENDIX C: COMPARISON OF INTERBAND
AND INTRABAND SPONTANEOUS EMISSION

We now show that interband spontaneous emission is
usually stronger than intraband spontaneous emission.
To show that interband spontaneous emission rates are
almost always greater than intraband spontaneous emis-
sion rates, we first establish that the typical oscillator
strengths associated with both interband and intraband
transitions are comparable. This is done in Appendix 13.

Having observed that the oscillator strength associated
with both interband and intraband spontaneous emission
are similar in magnitude, we note that interband transi-
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E3

E2

Eg

E4

mp
i =CB,j=CB

i =CB C

(D3)

not contain quantum-dot envelope overlap integrals,
which are known to deviate from unity.

Since the sum of the oscillator strengths is unity, we
conclude that the sum of the intraband oscillator
strengths is roughly

Barrier Well

E
Barrier

FIG. 9. Simple model for populating the conduction band
bound states in our numerical example of 100-A-radius GaAs
quantum dots: after an electron is captured from the extended
continuum (state 4 in the figure) into a weakly bound state (state
3 in the figure), it drops into lower energy bound states (states 1

and 2 in the figure) via collisional deexcitation until it combines
with a valence band hole (state 1' in the figure).

Equation (D3} can also be arrived at by approximating
the quantum dot as having infinite potential barriers. By
assuming that the conduction band is decoupled from the
valence band, then the Hamiltonian inside the quantum
dot in the effective mass approximation is (fi /2m, )V' .
For a free electron which has an effective mass m, and
which is governed by this Hamiltonian, the sum of the
"effective" oscillator strengths is unity:

gz (2I,E~; /fi ) I &i fr fj & I
=1, for which (D3) becomes an

equality. For small effective masses (m, =0.067 for
GaAs), (D2} and (D3}show that the typical interband and
intraband oscillator strengths are comparable in magni-
tude.

APPENDIX E: FOKKER-PLANCK DESCRIPTION
OF THE DIk'FUSION IN ENERGY

OF BOUND CARRIERS

APPENDIX D: COMPARISON OF INTERBAND
AND INTRABAND OSCILLATOR STRENGTHS

To show that interband spontaneous emission rates are
almost always greater than intraband spontaneous emis-
sion rates, we first show that the typical oscillator
strengths associated with both interband and intraband
transitions are comparable. We now consider the inter-
band oscillator strengths. We invoke the well known
equation for conduction band effective mass (Ij,k=O&
are bulk states at the I point),

I &i =CB,k=Ofp, Ij,k=0& I'
(D 1)

o 2

mo j~; &i =CB,t=o Ej.,a=o

and the definition3 of oscillator strength, f;
=(2moE, .;/fi')I & ilrl j & I'=2I &(lp, Ij & I'/~, E,, to ap-
proximate the sum of the interband oscillator strengths as

m,

fi = v8,j =cB
i=VB

mp
(D2)

Equation (D2) is only approximately true since it does

tions usually involve larger transition energies (greater
than a bulk band gap energy) than intraband transitions.
Of two processes with similar values of oscillator
strengths, the one with the larger typical transition ener-
gies (interband spontaneous emission) would have the
larger spontaneous emission rate, as indicated by (8).
Thus, intraband spontaneous emission is too weak to es-
tablish a Saha-Boltzmann equilibrium within an energy
band. In order for quasiequilibrium to be established
within an energy band, we would require that the col-
lisional excitation rates be at least comparable to inter-
band spontaneous emission rates.

g [X,N(Zj ) X,,N(Z, i)]=0-,
j& 1

(E1)

where X., is the sum of the rates for all processes in
which a carrier goes from state j to state i. It has the
general solution

IX( +() (
. .)N[Z (j + I)]

1=1 i=p

—X(J;) ( +()N[Z, (j —i)] I
= —J,

(E2)

where —J is the downward Aux of carriers past state
(j+—,').

The simple model presented in Sec. IVB shows that
quantum-dot bound carriers relax to lower energy states
by intraband collisional deexcitation before combining
with a valence band hole. Using ideas from the atomic
plasma literature, ' this dominance of collisional pro-
cesses in bound state transitions can be modeled as the
random walk of electrons among bound states. In Ap-
pendix E1, we review the random walk of electrons
through a set of discrete energy levels as modeled by Pi-
taevskii.

In Sec. IVB, we found that interband radiative emis-
sion and three-body recombination, as well as collisional
deexcitation, must be accounted for in determining the
quantum-dot ion population. In Appendix E2, we will
augment Pitaevskii's equations to include the downward
fIux in energy of conduction band bound carriers via in-
terband radiative emission and three-body recombina-
tion. This will allow occupation factors to be calculated
analytically within reasonable assumptions.

The steady state solution of the rate equations must
satisfy
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1. Intraband collisional processes only

r

g.
X-, =—X; exp

g,
" k~T

(E3)

When only terms with small l and i contribute
significantly in (E2), and when X, and X, are related by
detailed balance,

given by

b(E)=
f g exp[(E' E—, )Iks T]dE'

p(E')& (E')
exp[(E' E—, )Iks T]dE'E;. p(E')& (E')

(E6)

then Eq. (E2) can be written as a Fokker-Planck equa-
tion ' for a steady state problem,

~(E) dF F dp+ F
dE p dE kqT

(E4)

F(E)= p(E)exp[(E, E)Ik&—T]b (E)
nc N(Z+1)
Nc g Z+1

(E5)

with the deviation from Saha-Boltzmann equilibrium

If we impose the boundary conditions ' that the
bound carriers with energy greater than or equal to E,
(near the barrier band edge) are in Saha-Boltzmann equi-
librium with free carriers, and that bound states very far
below the barrier band edge (E ~E;„)have zero occu-
pation [F(E ~E;„).=0), then the solution to (E4)

23, 28

The bound carriers with energy greater than or equal to
E, are in Saha-Boltzmann equilibrium with free carriers,

b(E)=1 for E)E, . (E7)

As discussed in Sec. IV C, we can approximate p(E')
and 8 (E) as constant in E, and (E6) reduces to

exp[(E E, )/k—sT] for E &E,
b(E)=

1 for E ) (E8)

Equation (E8) shows that the deviation from a Saha-
Boltzmann equilibrium is greatest for states very far from
the continuum.

2. Inclusion of capture and interband radiative processes

When three-body capture and interband radiative pro-
cesses are included, the steady state downward flux past
the bound state with energy E is

dF Fd F E, E—J =8(E) —— + + dE"F(E")A„(E")+ g [n, a3'(E")N(Z+1) ncqfN(Z—,E")]-,
dE p dE ksT z

min

(E9)

where E;„is the lowest energy conduction band bound energy.
Though (E9) can be solved numerically, a few approximations allow a simple analytical answer which provides physi-

cal insight. Clearly, if the sum of the fluxes resulting from the net three-body capture and the interband radiative pro-
cesses [the sum and the integral in (E9)] is a constant, then (E6) still applies. Thus, Eq. (E6) applies whenever the fiux
resulting from the net collisional deexcitation is constant.

For our quantum-dot example, we find that we can make the numerical approximation

E E

f dE"F(E")A„(E")+ g [n, a3'(E")N(Z+1) n, qF" N(Z, E")—]=[E, E]F(E)A,„(E)—,
E"=E

min

(E10)

which, with (E9), says that the downward fiux resulting
from collisional processes is linear in the bound state en-
ergy to within an additive constant.

The right hand side of (E10) comes from two approxi-
mations: (i) that A,„(E) is relatively independent of the
conduction band bound state energy E, and (ii) the net
three-body recombination Aux is largest for states near
the barrier band edge. Approximation (ii) allows us to ig-
nore the net three-body recombination in comparison
with interband radiative rates on the right hand side of
(E10). Departure from the approximation (i) comes from
the hole population function F(E) in (44); A,„(E)would

be independent of E if the same population F (E) existed
for all holes with a wave vector matching a conduction
band bound state wave vector (in a model in which light
and heavy hole states were ' ' decoupled). Table III
shows A,„(E) to remain constant to within a factor of 5

for the states shown. Approximation (ii) is almost always
true because of the decaying exponential dependence of
the collisional ionization rates on the ionization poten-
tial.

With the approximation (E10) and constant values of
p(E) and B (E), one can show that the deviation from
Saha-Boltzmann equilibrium is
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A,„(E) B (E)
b (E)=exp [E E—, ] erfc Q A,„(E)/2B (E) E, E—+

2B (E}

X, erfc g A,„(E)/2B (E) B(E) for E&E, . (El 1)

b(E)=exp[(E E, )—/kttT] for E &E, , (E12}

When [B(E)/2A, „(E)(ksT) ]'~ -2 or larger, (69)
reduces to n,

f, (E;)= exp
C

I

quantum dots, (E12) is applicable, and (47) becomes

Va Ec
for E, &E, ,ksT

(E13)

which agrees with (E8) and makes sense, as this is the
limit in which interband radiative rates do not have a
large effect on the collisional random walk. For our

where V~ is the barrier band edge as measured from the
quantum-dot band edge. In Fig. 6, we took E, to be the
barrier band edge Vz, above which a Saha-Boltzmann
equilibrium exists with free electrons.
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The Fokker-Planck equation with this boundary condition is
valid (Refs. 23 and 28) when E;„ is far enough away [in
terms of the transition lifetime X;; in (60)] from the energy
continuum.


