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Energy spectrum and size quantization in partially ordered semiconductor alloys
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We present the analytical theory for the conduction-band spectrum in partially ordered semi-

conductor alloys. It is assumed that the ordering causes the coupling of the electronic states of I'

minimum with the states of the closest-in-energy L minimum only. We analyze the reduction of the
band gap, change of the eff'ective mass, nonparabolicity, and anisotropy of the electronic spectrum,
caused by ordering. Using the spectrum obtained we study the size quantization in an ordered
domain sandwiched between two disordered regions. We also calculate the electronic spectrum in
the region of interpenetration of two variants of ordering along the [111]and [111]directions. The
localization of an electron in such a region is studied.

I. INTRODUCTION

Spontaneous long-range ordering in mixed semicon-
ductor alloys has recently become the object of intensive
study. In the ordered phase of a compound A Bi C
the cation sublattice represents a system of alternating
planes predominantly occupied by type A and type B
atoms. The same also applies to the alloys with anion
substitution.

The observation of ordering has been reported for

nearly all III-V ternary [In Gai As, Ga Ast P,
and In Asi Sb (Refs. 4 and 9], In Asi, P,

In~P i Sb, Ga Asi Sb, and quaternary
[In Ali Ga„Pi „(Refs. 4 and 16) and
In Gai As„Pi „(Refs. 2, 3, and 8)] alloys. Most of the
works, however, investigate the ordering in In Gai P
with x 054'i7 25

The experimental studies of ordered materials are be-
ing conducted in the following directions: (i) The investi-
gation of atomic structure of ordered alloys by transmis-
sion electron microscopy (TEM) and x-ray analysis, (ii)
the optical study of electronic properties, and (iii) the
use of ordered materials for device design. The TEM ex-
periments indicate that the ordering of CuPt type occurs
in two variants: with the axis along the [111]and [111]
directions. ' Moreover, these two variants may coex-
ist within one sample. Structural studies also show that
the ordered regions form a domain-like structure within
a disordered matrix. s

Photoluminescence studies indicate that the order-
ing leads to a splitting of the valence band which,
in turn, manifests itself in the polarization of emitted
light. However, the major effect is a considerable
ordering-induced reduction of the band gap, revealed
both in luminescence and electroreHectance ex-
periments.

To our knowledge the Erst device applications of or-
dered materials were reported in Refs. 37 and 38. Lee,
Horng, and Haung made use of the fact that the de-
gree of ordering and hence the width of the band gap are
functions of the growth temperature. By changing the

temperature during the growing process they created a
potential well in the form of the ordered layer sandwiched
between disordered ones. This potential well worked as
a visible light-emitting diode. Also, the fabrication of a
semiconductor laser with ordered In Gat P active re-

gion was reported in Ref. 38.
The formation of ordering was studied theoretically

in a number of papers. Zunger and co-workers
have performed the detailed investigation of the thermo-
dynamic stability of ordered alloys. They have predicted
a few ordering con6gurations to be more stable than the
random distribution. ' The same authors have also
studied the role of the surface for the formation of or-
dering in the growing process.

The band-gap reduction due to ordering was repro-
duced in numerical calculations. The qualitative rea-
son for gap lowering is believed to be as follows. Ordering
couples electronic states in the center and at the bound-
ary of the Brillouin zone. In particular, in the case of
CuPt ordering the I' and L points are coupled. Such
a coupling causes the repulsion of F and I, minima in
k space. 5 As a result the bottom of the conduction
band moves down. Ordered In Gai P is known to ex-
hibit strong band-gap reduction as compared to other
III-V solid solutions. This property should be attributed
to the anomalously small energy distance between I' and
L conduction-band minima ( 100 meV) in the disor-
dered phase of this material.

Previous calculations of electronic structure were
focused on the band edge positions in the ordered
phase. The consequences of ordering for the elec-
tronic spectrum were not studied. In the present paper
we develop the elementary theory of the conduction-band
spectrum, based on the idea of band repulsion. Our
theory predicts strong nonparabolicity of the conduc-
tion band, a perceptible increase in the electron effective
mass, and the appearance of its anisotropy caused by the
anisotropy of the I valley. Ordering enters in the theory
through only one parameter the strength of I'-I cou-
pling, which can be found from the experimental value of
band-gap reduction. We express all characteristics of the
electronic spectrum using this parameter and the band
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structure of the random alloy.
Unfortunately, the conventional way to study the elec-

tronic spectrum using magneto-optics and cyclotron res-
onance is strongly impeded in In Gaz P ordered al-
loys having low mobility and a relatively large band gap.
For this reason we apply our results to the problem of
size quantization in a quantum well caused by ordering.
Since the energy-level positions obtained are quite dif-
ferent from those for a conventional quantum well, the
experimental study of size quantization can be the direct
test for the applicability of our theory. Note, however,
that the ordering-induced potential wells studied up to
now were too wide for size quantization to be relevant.

Another question we address in the present paper is
the effect of interpenetration of two variants of ordering
on the electronic spectrum. The TEM data do not allow
one to judge the presence of the regions in which two
variants overlap in the samples studied. From the point
of view of the atomic configuration such an overlap is
not forbidden. We show it with a concrete example of
the distribution of atoms over the lattice sites. We also
show that the interpenetration of two variants of order-
ing results in an additional reduction of the band gap
as compared to a single variant. Therefore, the region of
overlapping represents a quantum well. We study the size
quantization in such a well as a function of its thickness
and the degree of ordering.

The paper is organized as follows. In Sec. II the dis-
persion relation for the conduction band in the ordered
material is derived. In Sec. III we calculate the positions
of the energy levels in one-dimensional quantum well con-
stituted by an ordered domain, sandwiched between two
disordered regions. In Sec. IV we study the size quan-
tization in the region of overlapping of two variants of
ordering. Section V concludes the paper.

the true potential of the cation sublattice

4p(r) = Q c,V~(r —r, ) + (1 —c,)Vii(r —r, )

is replaced by the periodic potential

4p(r) = ) xV&(r —r, ) + (1 —x)V&(r —r, ),
z

(2)

C'(r) = ) c,V~(r —r, ) + (1 —c,)V~(r —r, )

+Q d~V~(r —r~) + (1 —d~)V~(r —r~),

where the summation is performed over sites i of the first
and sites j of the second sub-sublattices. Ordering means
that c, g dz.

The average composition x is related to c, and d~ as

(4)

We define the ordering parameter v as

VQ and V~ being the potentials of atoms A and B, re-
spectively. In Eq. (1) the coefficients c, take the values of
unity or zero depending on which atom A or B occupies
the site i,. In Eq. (2) these coefficients are replaced by
their average value e, = z. Such a replacement implies
the equivalency of the all cation-lattice sites.

In the case of ordering the cation sublattice is di-
vided into two sub-sublattices rich with type A and type
B atoms, respectively, while all sites within each sub-
sublattice can be still treated as equivalent. Then the
potential of cation sublattice should be written as

II. CONDUCTION-BAND SPECTRUM
OF PARTIALLY ORDERED ALLOY

Consider, for example, an alloy with cation substitu-
tion A Bq C. The conventional approach to the cal-
culation of the band structure is the so-called "virtual-
crystal approximation. " In the frame of this approach

2x

so that v is zero for the disordered phase while v = 1

corresponds to the strongest possible ordering at a given
composition x.

After averaging of (3) we get the following form for the
virtual-crystal potential in the presence of ordering:

4(r) = Q[x(1+ v)]V&(r —r, ) + [1 —x(1+ v)]V&(r —r, ) + ) [x(1 —v)]V&(r —r~) + [1 —x(1 —v)]V&(r —r, ) . (6)

The symmetry of this potential corresponds to the dou-
bling of the period in the direction of ordering. The per-
turbation b4(r) = 4(r) —@p(r) caused by ordering takes
the form

I

the direction of ordering. We also introduce the wave vec-

tor cr directed along the axis of ordering with the length
~o'~ = vr/a. Then the potential (7) can be presented in

the form

84(r) = vx ) V(r —r, )
—) V(r —r~)

where V(r) = VA(r) —Vip(r) is the difference between the
A and B atomic potentials.

Let a be the period of the unperturbed potential (1) in

where

64(r) = vxe' 'P(r),

P(r) =) e ' ' '* V(r —r, )
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ei, (r) = e*"' urk(r) + Ai, e * 'uri, (r) (10)

Here uzg and uL, g are the Bloch amplitudes of the I' and
L minima, respectively; Ak is the coupling coefBcient.
The combination in the square brackets represents the
corresponding Bloch amplitude for the ordered phase.

The energy spectrum E~ should be found from the
solution of the Schrodinger equation

A

P + Co(r) + bC (r) ilik = EkiIik,
2mo

where p is the momentum operator and mo is the free
electron mass. Substituting (10) into (11), multiplying
alternately by u&k and uL&, and integrating over the
volume we obtain the following system:

is the periodic function with the periodicity of the un-
perturbed lattice. Summation in (9) is performed over
all sites of the cation sublattice.

For concreteness we will consider the ordering of CuPt
type. In this case the potential b4 couples electronic
states of the I' minimum with electronic states of, gen-
erally speaking, all energy minima at the L point of the
Brillouin zone.

The main assumption we will adopt is that the cou-
pling occurs mainly with the L minimum closest in en-
ergy to the F point. This implies that the energy dis-
tance W (see Fig. 1) is much smaller than the energy
distance to the next L minimum. This assumption is
justified for most wide-gap III-V compounds. For exam-
ple, in the case of Inq Ga P with x 0.5 according to
the band-structure data we have W = 120 meV while
the distance to the next L minimum exceeds 3 eV. This
allows a search for the wave function in the conduction
band of the ordered phase in the form

(Wi WhE=
/

—
f

+V' ——.i2) 2

The main consequence of Eq. (14) is the significant
change in the electron effective mass due to ordering.
Another consequence is the anisotropy of the conduction
band originating from the anisotropy of sl, (k). Expand-
ing (15) at small k we obtain for the longitudinal and
transverse effective masses of the lower branch E

2m+

W1+ gW'+ 4V'

1 lV
+

2mLII & ~W2+ 4V
(17)

The analogous expression for the upper branch E+
reads

1 1 W

m~~ & 2mr gW + 4V

W+ 1+
2mL,

~~
~ QW2 + 4V2

The ratio m~~/mg for both branches can be written as

- 2

Here and in what follows, for simplicity of notation, we
denote by V the absolute value of the matrix element

(14)
This formula describes two branches of the conduction-

band spectrum shown schematically in Fig. 1. At k = 0
it gives the value of ordering-induced band-gap reduction

[sr (k) —E(k) ] + Ai, V = 0,

Ai, [sI.(k) —E(k)] + V* = 0,

(12a)

(12b)

mr + mL, ~
II

mL
II

mf (mLg)
mr + mL,

II

(2v)' + + ~v

(w)2+1~ w
- 2

where the functions cr(k) and sL, (k) are defined as

h2k2 h2k2
Er(k) =, ~l, (k) = W+ +

2m' '
2mL,

II
2mL, g

sr(k) being the energy spectrum of I' minimum with the
effective mass mp., kII and k~ are the components of the
vector k parallel and perpendicular to the direction of
ordering; mL,

II
and mL, & are, respectively, the longitudi-

nal and transverse effective masses in the L minimum.
Note that the energy spectrum of L minimum is given
by sL, (k —cr) The coup. ling parameter V is defined as

(19)

In the limit mI, )) mr the electronic spectrum (15)
reduces to

V = i ~ drur„P(r)uli, ~. (i4)

The energy spectrum obtained from (12) has the form

E~(k) = s'r (k) + el, (k) (sr(k) —sl. (k) l
2 +V.

)
(15)

FIG. 1. Schematic illustration of the I'-L splitting caused
by ordering. Left, energy spectrum of the conduction band
without ordering; right, same spectrum in the presence of
ordering.
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=1 hk t' hk)E (k)=-&W+ — JW —
f

+4V2 p

2 2mr ( 2mr)

(20)

2

/
/

/

/
/

and does not contain the effective mass of the L min-
imum, which is not known exactly. In the same limit
Eqs. (17) and (18) can be simplified to

m =2mr
~ ~

+1
(2V)

. (21)
t'Wi W

q2V) 2V

We see that in this case the masses in both branches
are isotropic and independent of mL, . The maximal value
of the effective mass for the lower branch is achieved for
V )) W and is equal to 2m'.

Let us perform the numerical estimates. As mentioned
above for Inq Ga P with x = 0.5 the energy distance
W 120 meV. The maximal reported value of bE in this
compound is 140 meV. With these values we obtain
from Eq. (16) V 190 meV. Estimating the effective
mass ml,

~~

from the dispersion curves as ml,
~~

——20m'
we obtain from (16) m~~

= 1.5mr. Such a change should

manifest itself in the magneto-optics experiments as well
as in the change of binding energy of shallow impurities.

To estimate the anisotropy (19) of the effective mass
one needs to know the anisotropy of the L valley. We
could not find these data in literature. Taking, for exam-
ple, mL, /ml, ~ = 5, we obtain (m~~

—mz)/mr = 0.14.
Though the anisotropy is small, it could be easily ob-
served in the cyclotron resonance experiment. However,
as mentioned in the Introduction, such an experiment is
difficult to perform in the wide-gap compounds.

The electronic spectrum E (k) is strongly non-
parabolic. The expansion of (20) at small k gives

52k2 ( k2 lE (k)= bE+ i—1—
2m q ko)

(22)

where

4m V /'W) W t'Wl'
h2 2V 2V 2V

(23)

We see that nonparabolicity becomes important starting
from k ko, which is much smaller than JmrEg the
characteristic value in the absence of ordering, E~ being
the energy gap.

In Fig. 2(a) we show the calculated dependences E~ (k)
for different ratios mL, /mr. It is seen that the spectrum
(23) is a good approximation already for ml. 10mr.
For the upper branch the spectrum does not change with
ml, already for mL, ) 3mr. Figure 2(b) shows the evo-
lution of the energy spectrum with increasing ordering
parameter. We see that in the vicinity of k = 0 the up-
per and lower branches are almost parallel to each other
for large ordering parameter. It means that if the absorp-

5.— (b)
3-

v/w:

I

—2

Wave Vector k/(m, W)

FIG. 2. Energy spectrum of the conduction band of ordered
alloy as defined by Eq. (15) for (a) V = W and different ratios
of the effective masses in L and I' minima and (b) in the limit
mL, —+ oo for different degrees of ordering.

tion of light between these two branches is studied the
absorption spectrum will represent a very narrow peak.

In conclusion of the section let us discuss the validity of
the approach employed. Although we derive the form of
the ordering-induced perturbation (8) using the virtual-
crystal approximation, in fact formula (8) is general if
we understand by P(r) some periodic function with the
periodicity of the unperturbed lattice. Since this func-
tion appears only in the expression (14) for the param-
eter V, which is supposed to be determined from the
experimental data, the dispersion relation (15) [as well
as (20)] for the electronic spectrum in the ordered phase
is also general. Correspondingly, the consequences we
draw from these equations (nonparabolicity, anisotropy,
and the change in the electron effective mass) are not
specific for the virtual-crystal approximation.

There is another point worth discussion. Namely re-
placing an alloy by the equivalent crystal one neglects
the effects caused by compositional fluctuations. These
effects are the smearing of the band edge, resulting from
the alloy scattering, and the fluctuation-induced shift of
the band edge. Both effects are discussed in the review
in Ref. 55.

For an alloy with composition x the smearing is small
and proportional to x (1—x) while the shift, being larger
than the smearing, is proportional to x(1 —x) (see, e.g. ,
Ref. 55). This shift provides a contribution to the bow-

ing parameter. To our knowledge, the role of this con-
tribution in the experimental values of the bowing pa-
rameter is not well established by now. In other words,
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it is not known whether the compositional dependence
of the equivalent periodic crystal already gives the ma-

jor contribution to the bowing or it comes mainly from
the fIuctuation-induced shift. Indeed, the ordering sup-
presses the statistical fiuctuations and thus diminishes
the contribution of the disorder to the shift of the band
edge.

Actually we can relate the shifts in the disordered and
in the ordered phases to each other. Let us denote with
z(1 —z) b the shift in the disordered alloy with composi-
tion x. Assuming the random distribution of the atoms in
the planes, perpendicular to the ordering axis, it can be
shown that the corresponding shift in the ordered phase
is equal to z[1 —z(1 + v2)]6, v being the ordering pa-
rameter (5). In particular, for z = 0.5 and v = 1 we have
a superlattice without any disorder, so that the shift is
zero. We also see that the relative decrease of the shift,
caused by ordering, is zv2/(1 —z). This means that,
strictly speaking, the band-edge position in Eq. (13) is
measured &om the energy x v 6 above the actual value
in the disordered phase. However, such a shift does not
afI'ect the shape of the electronic spectrum, shown in Figs.
1 and 2.

FIG. 3. Schematic band profile in the quantum well formed

by ordered domain sandwiched between disordered regions.
The position E of the size quantization level is measured from
the bottom of the j. minimum in the disordered material.

caying with [z~. The problem is therefore to match the
inner and outer envelope functions together with their
derivatives at the boundaries z = kd/2.

It is obvious that the wave functions of the all size
quantization levels are either even or odd. For even size
quantization levels the wave function outside the well

~z] ) d/2 has the form

III. SIZE QUANTIZATION
IN AN ORDERED DOMAIN

iII(r) = Dre —~rl&iur(r) + Dr, e I l&le' 'ur, (r), (24)

where the decay constants B.p and ml, are equal to

In this section we calculate the positions of size quan-
tization levels in a plane ordered domain sandwiched be-
tween two disordered regions. The band diagram of the
structure we study is shown schematically in Fig 3. It is
easy to see that when the band-gap reduction bE is much
smaller than the I'-L energy distance W, i.e., in the case
of weak ordering, the problem just reduces to the usual
size quantization in a potential well of width d and depth
bE.

If, however, the ordering is not small, so that bE W,
both branches participate in the formation of the size
quantization wave functions inside the well. Correspond-
ingly, the wave functions outside the well ([z~ ) d/2)
should be chosen as a combination of the Bloch functions
of I' and L minima multiplied by envelope functions de-

(25a)

(25b)

For an even level the wave function inside the well has
the form

4(r) = C cos(k z)[ur(r) + Ai, e' 'ur, (r)]

+ C+ cos(k+z)[ur(r) + Ag e' 'uL, (r)], (26)

where ky are the solutions of the equations E+(k+) = E
and E (k ) = E correspondingly. Here E is the sought
size quantization energy. The dispersion laws E+(k) and
E (k) are defined by Eq. (15). Using the expressions
(13) for cr(k) and sr, (k), we obtain

ky = —&z&mr~E~+ inr. (~EI+ W) + g[nir~E~ —mr. (]E]+W)] + 4mrmr& } .

Here mL, is the effective mass of the L minimum in the x direction. For an odd level one should change the sign of
the wave function to the left (or to the right) of the well and replace cos by sin.

The coupling coefficients AI, ~ are to be found substituting E(k) = E into Eq. (12):

(28)

Bound states in the quantum well correspond to the energy E within the interval bE ( E ( 0 (Fig. —3). For such
E the value k is positive and k+ ———a.+ is negative.

Matching the envelope functions and their derivatives at the boundary z = d/2 results in the following system for
the coeKcients C+, C, Dz, DL, .
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k d 3 +8 ~rD&
C cos + C+ cosh —Dr exp ~—

2 2 )
k d a+dC Ak cos + C+AA, cosh + —DI, exp ~—

2 2 ( 2 )
k d . m+d sez'D l

C k sin —C+a.+ sinh + —Drarex. p ~—
2 2 2 )

k d cc+2 ( a I D l
C Ak k sin —C+Ay a.+ sinh + —Dl. eel, exp ~—

2 + 2 )

=0

=0

(29a)

(29b)

(29c)

(29d)

Solving this system we obtain the following equation for
energy levels of even states: —0.2

k tan(k d/2) —a.'I, a.+ tanh(a. '+d/2) + a.'I,
k tan(k d/2) —a,r + a.'~ tanh(a. +d/2) + a.r

(30)

The analogous equation for odd states reads

k + a.g tan(k d/2) a.+ + a.'g tanh(se+d/2)
k + ser tan(k d/2) + a + + a.r tanh(a. '+d/2)

(»)

—0.4

—0.6

-0.8
—1

0

l02
—0.4

I i I i I I I

d ap
tan

2 k
(32)

The numerical solutions of Eqs. (30) and (31) for dif-
ferent degrees of ordering V/W and mass ratios ml, /mr
are shown in Fig. 4. For comparison we show the posi-
tions of energy levels for an electron with mass mp in the
regular potential well of the same width d and depth bE.

It is seen that for weak ordering the level positions in
the case of ordered domain are close to those for regular
well. With increasing of the ordering parameter the levels
in the domain are, roughly speaking, two times lower
than the levels in the regular well.

We can also see from Fig. 4 that the infinite-mi, limit
gives a good approximation beginning from mL, 10m'.
In this limit Eqs. (30) and (31) for even and odd states
can be simplified to

—0.8

t~l
—0.2

—0.4

—0.6

—0.8

—1
0

V 8'

I i I i I i I i I

1 2 3 4 5

Wic.t~ av'~, aE n,

k d
tan

2
(33)

respectively, where k in the limit mL, ~ oo takes the
form

Q2
+N -E (34)

mrml. V 4 2dv 2mL, W )d4
4h'W 36 (35)

This expression is valid for d «h//2ml, W when the
second term in parentheses is much smaller than unity.
Note the anomalous behavior of the energy level position

In the case of narrow well there is only one shallow
level Eq with ~Er~ (& bE In this case Eq. .(30) can be
solved analytically and yields

—0.1
0 0.1 0.2 0.3 0.4 0.5

Width du'm, ,BE h,
FIG. 4. Energy positions of the first three size quantization

levels in the ordered domain, calculated for di8'erent mass

ratios ml, /mr and degrees of ordering (a) V = 0.3W, (b)
V = W, and (c) V = 3W; S and A stand for symmetrical

(even) and antisymmetrical (odd) states, respectively. Solid

lines show the positions of the energy levels in the regular
potential well of the width d and depth bE; (d) the position
of the Sq level, the same as in (c), is shown for the small width

of the well.
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)Eq[ oc d . In the case of a regular well one has ]Eq) oc d .
The region of small d, in which the anomalous behavior
occurs, is shown in Fig. 4(d).

IV. ENERGY SPECTRUM
AND SIZE QUANTIZATION IN THE

DOUBLE-ORDERED REGIONS

Consider now a region in which two diferent variants
of ordering coexist. In principle, the formation of such
a region can be the result of overlapping of two domains

I

with different variants of ordering. Distribution of atoms
in the double-ordered region is illustrated schematically
in Fig. 5. Figures 5(a) and 5(b) illustrate single order-
ing in both variants. The doubled unit cells are shown
with dashed lines. The corresponding "chemical for-
mula" for the ordered alloy can be written in the form
(A &z+v) Bz z&z+ ) C) (A (z v) Bz z(~ „)C) instead of or-
dinary A Bq C for a disordered material. Superposi-
tion of Figs. 5(a) and 5(b) results in the double-ordered
structure shown in Fig. 5(c). The unit cell of such a
structure is doubled twice, so that the chemical formula
describing the unit cell reads

(Az(1+van+vv)B1 —z(1+vq+vu) C) (Az(1+vq —vv)B1 —z(1+vq —vu) C) (Az(1 —vq+vg) Bl—z(l —vq+vg) C) ( z(1—vq —vv) 1—z(1—vq —vv) ) &
C ~A B C)).

a arian
(111j

v(1&v))

vq, v2 denote the ordering parameters for each variant.
It is seen from Fig. 5(c) that within the double-ordered
region these parameters should satisfy the condition
vq + v2 & 1. In particular, this means that within the
double-ordered region the full ordering in one variant is
impossible.

The electronic spectrum in the double-ordered region
can be easily found using the approach of Sec. II. By
analogy to Eq. (8) the ordering-induced perturbation of
potential can be written as

hiu(r) = vqze' "Pq(r) + v2xe' "P2(r) (36)
GTMQ

(~iij
, - v(lov, )

'..
v(1~&v)

.' v(l-v, )

with the wave vectors crq and cr2 corresponding to each
variant of ordering. The functions Pq and P2 having the
periodicity of the crystal are defined by Eq. (9) with
cr = crq and ur = cr2, respectively. The perturbation (36)
couples the I' minimum with both Lq and L2 minima.

Thus we search for the wave function in the form

@(r) = e*"'[ur(r) + Aze* "uL„(r) + A„e* "uL,, (r)]

(37)

(c) Variants I+II:
: v(l-v, uv, )

~ v(ltv(-v)-.

v(lou, tv}..~ v(f-v, -v) &.'u(flu, uv)

v(l-u, tv, )
~

v(1)v,-v)...- v(l-v, uv, )
~ v(ltv, -v,)

v(l-u(-u, )
v v(l&u, tv,)

~ v(f-v, -u,)
v

o v(1-v kv ) v(lkv -v
)

o
1

v(l-u-u) &

FIG. 5. Schematic illustration of interpenetration of two
variants of ordering. The cross section of the crystal by the
plane (110), parallel to both [111]and [111]ordering axes is
shown. (a) Average compositions x(1+vq) and x(1—vq) of the
atomic rows perpendicular to the plane of the Sgure are shown
for variant I; (b) the same for variant II. (c) Compositions of
the same atomic rows in the double-ordered region. Dashed
lines show the elementary cells in each case.

with two coupling coefBcients A& and Ak.
Performing the procedure analogous to that in Sec. II,

we obtain the following system for the coupling coeK-
cients Az' and the spectrum E(k):

[s (k) —E(k)] + &4V + &kV2 = 0

A„'[sl., (k) —E(k)] + V,
* = 0,

Af [El„(k) —E(k)] + V2' = 0,

(38a)

(38b)

(38c)

h2A:
sl„(k) = el„(k) = W+ = sL, (Iu)

2mL
(39)

where Vj and V2 are the coupling parameters for each
variant, defined by Eq. (14) with P = Pq and P = P2,
respectively; sL„(k—crq) and sL„(k —a'2) are the energy
spectra of Lq and L2 minima. As in Sec. III, we mean
by Vj and V2 the corresponding absolute values.

For simplicity we will not take into account the
anisotropy of the L minima and assume
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In this case two branches of the spectrum are given by
Eq. (15), with V replaced by V~ + V2 .

sr(k) + El, (k)E~ k
2

(sr (k) —si. (k) l + V,'+ V,'.
)

(4o)

The third branch of the electronic spectrum, which we
will denote as Ep(k), remains unshifted and equal to the
unperturbed energy of the L minima:

h2k2
Ep(k) = W+

2mL
(41)

The corresponding wave function has no admixture of
ur(r):

Cp(r) = e'"'[e' "ul„(r) —e' "ug, (r)]. (42)

The main consequence of the result obtained is that an
overlapping between two domains with different variants
of ordering results in an additional band-gap reduction
compared to the band-gap reduction outside the region of
overlapping. For equal ordering parameters vq ——v2 ——v
this additional reduction is given by

(Wi (W t

I

—
I

+2V2 —
(

—
~

+V2,
E2) &2)

where the matrix element V corresponds to the single
variant of ordering. Therefore the region of the interpen-
etration of two variants, if it exists, represents a quantum
well.

The size quantization in such a well exhibits nontrivial
behavior. In contrast to the conventional case, when the
bound state exists in the well of arbitrary small width,
there is a threshold width for the first level to appear.
The origin of such a threshold can be understood by
considering the situation of zero width of the well, i.e. ,

when the two variants are separated by a plane bound-
ary. Note that if vq

——v2, the band structures to the
left and to the right of such a boundary are completely
identical so that there is no band offset. However, the
Bloch functions in the left half-space represents the com-
binations of up and uL„, whereas the Bloch functions in
the right half-space are the combination of up and ul,
As a result, a simple interdomain boundary should scat-
ter an incident electron. The reason for the scattering is

the difference in the Bloch functions corresponding to the
same energy in the left and in the right half-spaces. This
difference causes the effective asymmetry of the potential
well which results in a Rnite threshold thickness for size
quantization.

It seems instructive to study the reflection from the
boundary between two domains. The specific of this
problem is that an incident electron wave belonging to
the branch E (k) cannot be just reflected into the state
of the same branch only. The reason is that one needs
to match the envelope functions of up, uI... and uL„at
the boundary x = 0. As a result, the rejected and trans-

mitted waves must represent the combinations of waves
belonging to three branches: E (k), E+(k), and the un-
perturbed branch sl, (k).

We consider the energy of the incident electron lying
within the interval —bE ( E ( W. In this range only the
lower branch component of the wave function represents
the propagating wave. Two other components decay with
the distance ~x~ from the boundary. Therefore we can
write the wave function in the left half-space (x ( 0) as

@(r) = (e' -*+Se '" )[ur(r)Aq e' "ul„(r)]
+A(e +*[ur(r) + Ag e' "uL, , (r)]
+8(e '*e' "ul„(r), (44)

whereas the wave function in the right half-space has the
form

@(r) = Te*" *[ur(r)-+ AA,
e' "ul„(r)]

+A, e +*[ur(r) + Ay e' "ul, , (r)]

(45)

Here A~, A„and Bl, B„are the amplitudes of the compo-
nents from the branches E+(k) and eL, (k), respectively.
T and S are the amplitudes of the transmitted and re-
flected waves.

Matching the envelope functions with their derivatives
at the boundary x = 0 we obtain the linear system of six
equations for six amplitudes T, S, A~, A„, BI,B„, similar
to Eq. (29). The energy dependence of the reHection
coefficient R = ~S~ obtained from this system is shown
in Fig. 6. We see that when the kinetic energy E-
E (0) tends to zero, the total reflection occurs as if the
boundary represented a potential step. With increasing
energy the reflection coefBcient falls off within the range
ro given by

V' (m, l
sp ——

~

for V((W4W' i ml, )
(46)

0.8

g 0.6 ~

u 047
(D

0.2

I I

0. 1

m„=10m r

0.2 0.5 0.4 0.5

Energy (E—E (0))/8'
FIG. 6. Energy dependence of the reHection coefBcient

from the boundary between two domains with diKerent vari-
ants of ordering.
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(mr 't

ep ——W
~

~

for V )) W.
(ml, )

(47)

i'(r) = D e -*[ur(r) + Ai, e* "ul„(r)]
+D+e +*[ur(r) + AI, e* "ul„(r)]

(48)

Here D, D+, and Do are the numerical coefEcients. The
decay constants a.L, and a.y (a.2+ ———k+2 ) 0) can be
obtained from Eqs. (25b) and (27). It can be seen that
all levels in the double-ordered well can be classified as
"even" and "odd." Namely for the region z ) d/2 we
can write

4(r) = +(D e [ur(r) +Ai, e' "ur„(r)]
+D+e + [ur(r) + A~ e* "uL„(r)]
—Dpe ~ e' "uL„(r)), (49)

The energy interval co is much smaller than W because
of the large difference between mi, and mp. Reflectance
disappears for all energies in the limit ml, /mr ~ oo.
This occurs since the contributions of the upper branches
of the spectrum to the formation of the electronic wave
function vanish according to the increase of the decay
constants mL, and 3.+ in this limit.

Consider now the size quantization in the region of
overlapping ]z~ ( d/2 (Fig. 7). The wave function out-
side the well has the form similar to that studied above
[see Eqs. (44), (45)]. The only difFerence is that for E ( 0
all three components of the wave function decay with ~z~.

Hence, the wave function for z ( —d/2 can be written in
the form

L Lq
—La

Lq (t

add

FIG. 7. Schematic band pro61e in the region of interpene-
tration of two variants of ordering. The energy E of the size
quantization level is measured from the bottom of the conduc-
tion band in the disordered material. E (0) is the bottom of
the conduction band in the single-ordered material.

where the plus or minus sign should be chosen for even or
odd states, respectively. Note that for the state we call
even the third component of the wave function is odd.
This fact is the consequence of the actual asymmetry of
the well, discussed above. Correspondingly, for the odd
states the third component of the wave function is even.

The wave function inside the well is a linear com-
bination of three functions corresponding to the three
branches E (k), E+(k), and Ep(k) of the spectrum of
the double-ordered region. Corresponding wave num-

bers k, k+, and ko should be obtained from the so-

lution of the equations E (k ) = E, E+(k+) = E,
and Ep(kp) = E, respectively. The dispersion laws

E (k) = E and E+(k) = E are defined by Eq. (39).
The solutions for k and k+ are similar to Eq. (27) and
have the form

k+ ————
2 mp E +mr, E +8' + mj. E —mL, E +8' +8mpmL, V2

The value ko ———3..& is negative in the energy region under consideration.
The expression for the wave function of an even level inside the well can be written as

@(r) = C cos(k z)(ur(r)+A~ [e* "uL„(r)+e' "uL„(r)])
+C+ cosh(a. +z)fur(r) + A~ (e' "uL,, (r) + e' "uL„(r)])+Cosinh(a.'I,z)[e' "uL„(r) —e* "uL„(r)]. (5I)

Note that in order to satisfy the boundary conditions at
x = +d/2, the envelope function of the third component
is chosen to be odd. For the odd state one should replace
cos, cosh, and sinh by sin, sinh, and cosh, respectively.

Matching the envelope functions and their derivatives
at the boundary x = d/2 we find the linear system for the
coefBcients D, D+, Do, C, C+, and Co. The equation
for the energy level positions can be found by equating to
zero the determinant of the system. The numerical solu-
tions of these equations for diferent degrees of ordering
V/W and difFerent mass ratios mr/ml, are shown in Fig.
8. For comparison, the positions of energy levels for an

electron with mass mp in the regular potential well of the
same width d and depth bE gg are shown.

It is seen that the energy levels are lower than in the
regular well. This is the consequence of the fact that
the efFective mass corresponding to the branch E (k) is
larger than mz. However, the di6'erence is not as strong
as in the case of the ordered layer studied in Sec. III.
Even in the case of strong ordering the decrease in the
energy level positions compared to those in the regular
well is about 30'Fp.

Figures 8(a)—8(c) show the existence of the threshold
width for the 6rst level. The energy level positions for
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small d are shown in detail in Fig. 8(d). The threshold
disappears in the limit ml, /mr ~ oo. The reason for
that is exactly the same as for the disappearance of the
reHectance &om the simple interdomain boundary in the
same limit.

—0.2

—0.4

— V—0.3 W

—0.6

Q -o.s
—1

0

~ -O.2

+ -o.4

I i I i I i I

—0.8

—1
0

V—3W
1 2 3 4 5

Ihtic. t,:i dv'm, BE.„h,

-O. 1
0 0.1 0.2 0.3 0.4 0.5

Width du'm, ,6E.«/h,
FIG. 8. Energy positions of the first three size quantization

levels in the double-ordered region, calculated for different
mass ratios mr, /mr and degrees of ordering (a) V = 0.3W,
(b) V = W, and (c) V = 3W; S and A stand for symmetrical
(even) and antisymmetrical (odd) states, respectively. Solid
lines show the positions of the energy levels in the regular po-
tential well of the width d and depth bE ss', (d) the threshold
behavior of the level Si as a function of width d is shown for
V=3W.

V. CONCLUSiON

In the present paper a simple analytical theory of the
conduction-band spectrum in partially ordered semicon-
ductor alloys is developed. In our calculations we de-
scribed the ordering by the change in the crystalline po-
tential in each sub-sublattice, neglecting the change in
the lattice constant due to ordering. Taking this eH'ect

into account may result in additional shifts in the band-
edge positions. We did not estimate this shift since we
have not found in the literature the corresponding de-
formation potential for the conduction band. The im-
portant point, however, is that the form of the energy
spectrum will not change, since such a shift will cause
only the renormalization of the parameter W.

Our theory predicts the existence of two branches of
the conduction-band spectrum, spaced in energy by rel-
atively small interval QW2+ 4V2. For strong ordering
V &) W these branches are almost parallel. Such a pic-
ture is also supported by the numerical calculations per-
formed by Kurimoto, Hamada, and Oshiyama in Ref.
53 (see also Ref. 52). In this paper the band structure
of (111) InGap2 superlattice was calculated. Note that
such a superlattice can be viewed as a completely or-
dered Ino 5Gao 5P. The calculations show the presence of
two nearly parallel branches spaced by 900 meV. This
allows us to estimate the parameter V for full ordering
(v = 1) as V „=450 meV. The value of V „can be
also estimated using the table of band gaps in ordered
alloys calculated by Wei and Zunger in Ref. 49. Tak-
ing the band-gap reduction bE = 260 meV we obtain
V „=gbE(W + bE) = 320 meV, which is about 30%
smaller.

In our consideration we assumed the disordered ma-
terial to have a direct gap. Our results for the energy
spectrum, however, apply also for indirect alloys with
the I minimum lower than the I minimum. In this case
the value of the parameter W is negative. Note that
ordering in indirect materials causes nonzero matrix el-
ement for the optical transition between the minima of
the conduction and valence bands. This occurs due to
the admixture of up to the Bloch function of the bottom
of conduction band. This admixture is proportional to
the ordering parameter v for V (( iWi and it saturates
when V iWi.

Experiments using transmission electron microscopy
frequently indicate the presence of two variants of order-
ing within one sample (see, for example, Refs. 4, 7, 17,
and 18). In the present paper we have considered three
plausible situations. (i) Domains with different variants
are surrounded by the disordered region so that there
is no contact between them. In this case each domain
represents a quantum well. (ii) Domains with difFerent
variants of ordering have common boundary. %e have
shown that, although such a boundary is not associated
with any potential jump, it behaves as a scatterer for an
incident electron. (iii) Domains with different variants
of ordering overlap. We have shown that the region of
overlapping represents a quantum well. As follows from
Eqs. (16) and (43), the depth of the well in the case
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of strong ordering is about 70Fo of the band-gap reduc-
tion in a single-ordered region. Electronic states in such
a well should manifest themselves as a peak in the low-

energy region of the luminescence spectrum. Note that
the existence of these states is an intrinsic property of the
structure and is not related to defects or any statistical or
technological disorder. Important is that the low-energy
part of the luminescence spectrum caused by these states

should be absent in the samples with the single variant
of ordering.
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