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The criticai behavior of charge-density waves (CDW s) in the pinned phase is studied for applied
fields increasing toward the threshold field, using recently developed renormalization-group tech-
niques and simulations of automaton models. Despite the existence of many metastable states in
the pinned state of the CDVV, the renormalization-group treatment can be used successfully to find
the divergences in the polarization and the correlation length, and, to first order in an e = 4 —d
expansion, the diverging time scale. The automaton models studied are a charge-density wave model
and a "sandpile" model with periodic boundary conditions; these models are found to have the same
critical behavior, associated with diverging avalanche sizes. The numerical results for the polariza-
tion and the diverging length and time scales in dimensions d = 2, 3 are in agreement with the
analytical treatment. These results clarify the connections between the behavior above and below
threshold: the characteristic correlation lengths on both sides of the transition diverge with different
exponents. The scaling of the distribution of avalanches on the approach to threshold is found to
be different for automaton and continuous-variable models.

I. INTRODUCTION

The static and dynamic behavior of sliding charge-
density waves (CDW's) is perhaps the most well studied
example of a class of problems involving the transport of
an elastic medium through a disordered background. The
CDW, which behaves like an elastic medium, is pinned
by impurities distributed randomly throughout the ma-
terial. As the magnitude of an externally applied electric
field is varied, a depinning transition is seen, from a sta-
tionary phase at weak fields, to a moving phase at strong
fields where the CDW slides through the material. In the
vicinity of this depinning transition, the dynamics of the
CDW are correlated over long distances, with character-
istic correlation lengths diverging at the threshold field.
It has been shown that the behavior near the threshold
field can be studied as a critical phenomenon associated
with a second order phase transition.

Extensive numerical simulations on a number of
classical models for CDW's have helped in understand-
ing the critical properties in the vicinity of the depin-
ning transition. In particular, critical exponents describ-
ing the scaling of physical quantities can be determined
for various spatial dimensions of the CDW. Recently, it
has also proved possible to obtain analytically the be-
havior in the moving phase above threshold, through a
renormalization-group treatment. The results, obtained
within an e expansion for d = 4 —e spatial dimensions,
agree very well with the numerical simulations.

While the critical behavior above threshold is fairly
well understood, it is more diKcult to carry out an an-
alytical treatment below threshold. The reason why the
analysis is simpler in the moving phase is that, for mod-

els in which the elastic interactions within the CDW are
strictly convex, and no dislocations ("phase slips" ) are
allowed, the system approaches a unique steady-state
configuration at long times (up to time translations). io

A perturbation expansion around some relatively simple

configuration is thus more likely to succeed. In the sta-
tionary phase, on the other hand, the impurities can pin
the CDW in any of several diferent states; the partic-
ular state that the CDW reaches depends on the past
history of the system. Any analytical treatment must in-
clude this history dependence, instead of being the simple
search for a single attractor, as is sufBcient above thresh-
old.

The history dependence of the CDW below threshold
is most easily seen in the polarizability. If the driv-

ing force F (produced by the external electric field) is
raised monotonically towards the depinning threshold
Fz, the response y~(F) to infinitesimal increases in the
force becomes larger and larger, and diverges at Fz as
yt(F) (F~ —F) ~, with an exponent p. Also, at any
value of F, the response of the CDW to increasing the
force further is dominated by localized regions of activity,
or "avalanches, " whose characteristic size can be used to
define a diverging correlation length ( (Fz —F)
(The characteristic time scale for the dynamics diverges
with ( as (', defining the dynamic exponent z. ) In-
stead of this monotonic approach, we can also de6ne a
downward polarizability, by lowering the force &om F to
F —AF and measuring the response as AF m 0. As
a function of F, the resulting yt(F) does not diverge at
Fz (although, depending on the specific model used for
the CDW, it may have a cusp singularity). It is thus nec-
essary to distinguish between the upwards polarizability
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yt(F) and the downwards polarizability y~(F).
In this paper, we show how it is possible to obtain ana-

lytically the critical behavior for the "natural" monotonic
approach to threshold, through an expansion around the
mean field solution with the proper history dependence.
Our results are in good agreement with recent numerical
simulations, as well as new data that we present here.
We find that the correlation length exponent is given by

p = 4/d. (2)

These exponents can in fact be obtained for a simpli6ed
CDW model that can be solved exactly. However, the
dynamic exponent z for more physical models with pe-
riodic pinning cannot be obtained from this simplified
model: we show that in the general case z is equal to its
value above threshold,

z = 2 —e/3+ O(e ),

in d = 4 —e dimensions. Later in this paper, we discuss
how the model of Ref. 11 corresponds to a nongeneric
limit, and. why, despite this, it obtains v and p correctly.

The solution that we obtain is similar in form to the
solution above threshold. However, there are complica-
tions with two-sided scaling. This is because, as was seen
above threshold, there is an extra relevant operator at the
6xed point of the renormalization group, which affects
only the statics and not the dynamics. This operator
has very different consequences in the pinned and mov-

ing phases of the CDW, resulting in difFerent correlation
length exponents on the two sides of the phase transi-
tion. The absence of two-sided scaling is unlike the be-
havior for phase transitions in equilibrium systems, and
conventional arguments about the properties of scaling
functions must be used with caution here.

In "phase-only" models for CDW's, the CDW is de-
scribed by a periodic modulation in the density of elec-
trons in the material; the phase of this modulation is as-
sumed to be the only dynamical variable of importance
and is assumed to be a continuous function of position.
In numerical simulations, the system is discretized to a
lattice, with a continuous phase variable at each site. Al-
though simulations on such continuous-variable models
have been performed, it is much more efficient to sim-
plify the model, with the phase of the CDW at any lattice
site restricted to being an integer multiple of 2' away
&om a (site dependent) preferred phase, and time being
incremented in discrete steps. ' The resulting automaton
models, which differ in details of how these approxima-
tions are made, yield far more precise results. Within the
numerical uncertainties, much of the critical behavior is
the same for both classes of models. In particular, the
correlation length exponent v and (with larger numer-
ical uncertainties) the polarizability exponent p appear
to be the same. An important exception to this is the
downward polarizability y~: as already mentioned, the
nature (or even the existence) of a cusp singularity in y~

v=2/d

for a d-dimensional system, while the polarizability ex-
ponent is

z(d = 2) = 1.32 + 0.04,

z(d = 3) = 1.65 6 0.06.
(4)

The approach to threshold for sandpile models has been
treated through numerics and scaling arguments by Tang
and Bak; our results differ in certain respects &om
theirs, which we discuss in detail later in this paper.

The connection between sandpiles and CDW models
can be exploited to obtain the dynamic exponent z for
two-dimensional systems. Majumdar and Dhar 5 have
shown that this exponent is equal to 5/4 for sandpile
models in d = 2; this is in fair agreement with the nu-
merical results fnr CDW's. They are also able to relate
the two exponents that enter the avalanche distribution
to each other, thus leaving only one of the two to be
determined numerically. In this paper we show that it
is in fact possible to obtain the same exponent identity
&om completely different scaling arguments on CDW's,

does depend on the details of the model used, and is in
fact even difFerent in different continuous-variable mod-
els. However, this difference is not seen in the monotonic
approach, which is what we shall be interested in here.

Since the approach to threshold causes the system
to become increasingly unstable, with larger and larger
avalanches and a divergent polarizability, it is perhaps
not surprising that differences between automaton and
continuous dynamics do not affect the critical behavior.
An important exception to this rule is the distribution for
the number of avalanches. For continuous dynamics, an
in6nitesimal increase in F triggers avalanches in which
the change in the phase at any point is bounded above
by 27r (corresponding to unity in the automaton models).
Most of the avalanche area advances by almost 2m. For
large avalanches, it is highly probable that a subsequent
small increase in F will "retrigger" avalanches in the
same region, as the original unstable point is likely to be
nearly unstable at the completion of the first avalanche.
Avalanches of usually decreasing size will be retriggered
until the region is more stable. In the automaton mod-

els, owing to the discretization of the CDW phases, sev-
eral "retriggered" avalanches are grouped together into
a single large avalanche. This difference between the
two classes of models is one that involves the behavior
at short times; this does not alter long-wavelength low-

frequency characteristics that determine v and z (nor p,
which involves a spatial average over the entire system).
However, it may affect avalanche distributions, which do
depend on how avalanches are grouped. In this paper we

present numerical data on the distribution of avalanches
for the automaton models, and examine the differences
with results for continuous variable models.

The automaton models for CDW's are closely related
to some of the sandpile models that have been proposed
and studied recently. 2 We 6nd that the avalanche dis-
tribution that we obtain here for the CDW automaton
models agrees very well with the numerical results on
sandpiles at the critical point. The dynamic exponent
z that relates the characteristic duration of an avalanche
to its size is also found to be the same numerically for
both classes of models:



246 ONUTTOM NARAYAN AND A. ALAN MIDDLETON 49

if we assume that the total rate of avalanche generation
(which is dominated by small avalanches) is not singu-
lar as threshold is approached. (We have verified this
assumption numerically for the automaton models. )

The rest of this paper is organized in the following
manner. Section II carries out the analytical treatment
of the behavior below threshold, and obtains the critical
exponents. Section III examines the numerical results,
which agree quite well with the analytical predictions.
Section IV compares the distribution of avalanches for
CD& continuous dynamics, CD& automata, and sand-
pile models, as well as exploring other connections to
sandpile models. Section V discusses the relationship of
this work to earlier results, and its possible relevance to
other physical systems.

II. ANALYTICAL RESULTS

The model that we use in this section is the Fukuyama-
Lee-Rice model, which assumes that the distortions of
the CDW are continuous (i.e. , that there are no dislo-
cations). The dynamics can then be expressed in terms
of a phase variable P(z; t), which measures the distor-
tions with respect to an ideal undistorted CDW. (The
position z is a d-dimensional vector. ) Assuming that the
dynamics are st;rongly overdamped, and are given by a
simple relaxation of an energy functional H, the equation
of motion is

(5)

In Eq. (5) there are three terms on the right hand side:
a simple elastic force that arises from an elastic energy

2 (7'P) 2, a uniform force F from the external electric field,
and a force h(x)Y[P —P(z)] from the impurity pinning.
The variable P, which measures the deviation from an
undistorted configuration, ranges over (—oo, oo). The im-

purity force has an explicit dependence on the position
x, arising from the quenched randomness in the location
of the impurities, through the functions h(z) and P(z).
These correspond physically to the strength of the impu-
rity pinning, h(z), and a preferred phase P(x) selected
by the impurities. (In order to fix the normalization of
h, we choose ~Y~ to have a maximum value of 1.) Since
the impurities have only short-range correlations, h(z)
and P(z) are taken to be uncorrelated &om one position
to another, with a distribution p(h) for h and a uniform
distribution over (0, 2ir) for P. The pinning force is the
derivative 8~V(P; x) of an i—mpurity pinning potential.
Because of the 2' translational invariance of the COW,
the force Y has to be 27r periodic in P.

Among the quantities of physical interest in this model
below threshold are the polarization P, defined as the
mean displacement from some initial configuration of the
phase P; close to threshold, the singular part of P scales
as

where (4) is the spatial average of P. The derivative

of this with respect to F is the upwards polarizability,
defined earlier as the response to an infinitesimal increase
in F, which scales as

y" (F)—: lim [P(F + b,F) —P(F)]//b F
AI" ~O+

In Ref. 9, the behavior above threshold for models of
this type was analyzed. This was done by expanding
around the solution of Eq. (5) within a mean field ap-
proximation, which is obtained by replacing the short-
ranged elastic term V' P with an infinite-ranged interac-
tion, (P) —P. The mean field solution is known to depend
on the details of the pinning potential V(P): for instance,
the velocity above threshold scales as v (F F~)—~
in the critical regime, with an exponent PMi; = 3/2
for smooth pinning potentials and PMp = 1 for pin-
ning potentials which have wedge-shaped linear cusped
maxima. This lack of universality arises &om the fact
that, as the spatial average of the phase changes contin-
uously, the effective potential for the phase at any site
changes continuously in mean field theory. For smooth
pinning potentials, for small v, when the phase P at any
site passes through an unstable point in its local effective
potential, it spends a long time accelerating before jump-
ing forward to a new stable state. This results in a second
time scale that diverges at threshold (in addition to the
natural scale of 2x/v). No such second divergent time
scale is present for linear cusped potentials, for which at
the point of instability of the effective potential (which
is the same as the location of the cusp in the pinning
potential) the derivative of the potential changes discon-
tinuously, so that the acceleration time remains of O(1)
arbitrarily close to threshold. Despite this difference in
behavior for the two types of potentials in mean field

theory, numerically it is found that the critical behavior
is independent of the shape of the pinning potential for
d & 4, and is in fact even the same for automaton models.
In Ref. 9, it was argued that this is because the dynamics
for small d are very irregular: when the phase at any site
jumps forward, it produces a sharp force on all the neigh-
bors to which it is elastically coupled. For large d, the
total elastic force acting on any phase is the sum of con-
tributions from a large number of neighbors; however, as
d is decreased, the elastic force becomes more and more
jerky. For sufficiently small d, the phase P of the CDW at
any site is "kicked" by its neighbors over the maximum
of the local effective potential it experiences. The details
of the pinning potential are no longer important, and the
second divergent time scale is eliminated, restoring uni-

versality. The expansion around mean field theory above
threshold was accordingly carried out for linear cusped
potentials, for which the second time scale is absent ini-

tially, so that the expansion is better behaved.
When Fz is approached monotonically from below

threshold, the critical behavior is controlled by large
avalanches, in which the COW phase in localized regions
moves forward abruptly in response to a small change in

the field. Since the collapse to universality above thresh-
oM was understood in terms of the jerky dynamics, the
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same should be true even below threshold. This is in-
deed found to be the case numerically. Thus even below
threshold, we seek to expand around the mean field so-
lution for linear cusped potentials.

Before proceeding with the calculations, it is neces-
sary to consider a possibility that might make this pro-
cedure erroneous. While we have answered the question
of history dependence by choosing a specific approach to
threshold, namely, increasing F monotonically, this does
not completely eliminate problems that arise &om the ex-
istence of many metastable states. An expansion around
the mean Beld solution of the type we develop here cor-
responds to first increasing the force within an infinite-
ranged model, and then tuning the elastic coupling to a
short-ranged form [i.e., restoring the V' P term in Eq. (5)
which was replaced by (P) —P in mean field theory]. On
the other hand, the physically relevant critical behav-
ior corresponds to first tuning the elastic coupling to a
short-ranged form, and then increasing the force within
a short-ranged model. When there are many metastable
solutions, as is the case below threshold, the two meth-
ods could in principle yield difFerent critical behavior. A
proper understanding of why the expansion around mean
field theory yields correct results is lacking at present, al-
though we believe that it is related to the universality for
the monotonic approach to threshold.

In expanding around mean Geld theory, we work with
the full dynamical equation, Eq. (5), with the force F
a (monotonically increasing) function of time. There are
thus two time scales in the problem: the characteristic
time scale associated with the system at any particu-
lar value of F and the rate at which F is increased.
The quantities that we are interested in evaluating are
all steady-state quantities; that is, the force F is to be
held constant, and the long time limit taken. In order to
obtain these steady-state quantities kom our dynamical
method, it is necessary to increase the force adiabati-
cally. Such an adiabatic increase, in addition to being
necessary to obtain steady-state quantities, also has two
simplifying consequences for the technical details of our

I

procedure. First, the mean Beld solution that we expand
around is now only a function of the (adiabatically in-

creasing) value of F, instead of also depending on the rote
at which this F is approached. Second, in the generating
functional that we obtain for response and correlation
functions, F can be treated as a constant.

The remaining time derivative in the generating func-
tional shows up in the response to perturbing forces
added to the slowly changing F. Under renormalization,
the scaling of this term reflects the characteristic time
scale for the dynamics at any value of F; this time scale
diverges at Fz. Although the response to perturbing
forces is made up of a collection of localized avalanches,
the renormalization-group procedure that we use does
not resolve the individual avalanches, and the character-
istic time scale thus determined is a spatially averaged
quantity.

The expansion around mean Geld theory is car-
ried out following the prescription of Sompolinsky and
Zippelius; the details are given in Ref. 9. The method
yields a generating functional for the correlation and re-
sponse functions of the phase P, which is then averaged
over realizations of randomness. This impurity-averaged
generating functional depends explicitly on correlation
and response functions calculated in the mean Geld limit.

As the system approaches threshold, more and more
of the phases move forward from their initial state, to be
held back only by a few strongly pinned sites. As a func-
tion of the spatial average of the phase, (P(t)), the be-
havior of such weakly pinned phases is the same as above
threshold, with vt replaced by (P(t)). At threshold, the
number of strongly pinned sites goes to zero, and the
correlation and response functions cross over smoothly
to those in the moving phase, discussed in Ref. 9. One
might then expect that, for F just below F~, the gener-
ating functional should dier from that at F&+ by a set of
terms whose coefBcients vanish as F ~ F~. An explicit
calculation using linear cusped pinning potentials veri-
Ges that this is indeed the case; the impurity-averaged
generating functional is

Z = d4 d4 exp — d"mdtro z, t q
—V' +r 4 z, t +4 x, t F —FMp

d"xdtgdt2 4 x) tg 4 x) t2 | tg + 4 x) tg — t2 —4 x) t2 (8)

The coeKcient r vanishes at threshold, and has a physical interpretation that is discussed shortly. Here 4 and 4 are
dummy Beld variables, in terms of which the long-wavelength low-frequency forms of the truncated correlation and
response functions of P are given by

B"(P(x~, t~) .P(x~, t~))„„„,/Be(x~+„ t~+, ) . .Be'(x~+„,t~+„)
= (4(xg, tg) . . 4(x, t )4(x +g, t +,)4(x +„,t +„)),

where the left hand side represents the generalized re-
sponse to a perturbing force e(x, t) added to the right
hand side of Eq. (5), and the right hand side is the ex-
pectation value using the measure of Eq. (8). 4'(x, t)

is like a coarse-grained version of the phase P(x, t). It
gives the deviations of P(x, t) I'rom its spatially averaged
value, (P(t)), and must satisfy the consistency condition
(O) = G, which determines F —FMp.
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Various other terms, which do not affect the critical
behavior, have been suppressed in Eq. (8). For instance,
the mean field phase-phase correlation function, that is
the coeKcient of the 44 operator, consists of two parts.
The Brst comes from the weakly pinned phases that, close
to threshold, have already moved forward from their ini-
tial configuration. The contribution Rom these phases to
the correlation function is the same as above threshold
(with vt replaced by (P)). The second part of the correla-
tion function comes &om the few strongly pinned phases
that hold the system back. These give a contribution to
the correlation function that vanishes at threshold. With
the scaling of the fields that we shall obtain later, this
second contribution does not affect the critical behavior.
Accordingly, it has been omitted from Eq. (8), where

A A

the coefBcient of 44 is the same as the mean field phase-
phase correlation function above threshold.

For any value of (P), the function FMF ((P)) is the force
that would result in an average displacement (P) in the
mean field approximation to Eq. (5), while the func-
tion F is the force that would produce the same average
displacement in the full short-ranged model of Eq. (5).
As mentioned above, the difference between these two,
which is the coefficient of the second term in Eq. (8),
can be found by the consistency condition (4) = 0. This
again is similar to the case above threshold. [The coef-

Bcient of the 4 term also has higher-order corrections of
O([FT —F]z). These, like the corrections to the corre-
lation function discussed in the previous paragraph, do
not affect the critical behavior, and have been omitted in
Eq. (8).)

Despite the similarities between Eq. (8) and the cor-
responding generating functional above threshold, there
are important differences between the two. First, there
is a nonzero "mass term" in Eq. (8), re@, which re-
sults in a finite response of P to a spatially uniform dc
force. The bare value of r is the inverse of the mean Beld
polarizability yt(F) (along the monotonically increasing
path); r vanishes at threshold. The manner in which r
approaches zero at FT depends on the distribution p(h) of
the pinning strengths; we expect there to be universality
in low dimensions, independent of the form of p(h), al-
though the nature of this presumed collapse to universal-
ity has not been addressed here. Above threshold, r = 0;
this is because (O4), which is the linear response to a
perturbing force, must have a 1/i~ singularity at q = 0,
corresponding to a finite response in the velocity of P.
This implies that the bare propagator 1/(0& —V + r),
must also diverge at q = w = 0, so that r = 0. Second,
it is only when the mean field correlation and response
functions are evaluated within the monotonically increas-
ing approach to threshold that we obtain the functional
forms in Eq. (8) that resemble those above threshold. For
other (nonmonotonic) approaches, this will not be the
case. Above threshold, where the steady-state behavior
is unique, no particular path needs to be specified.

As discussed above, the variable (P{t)) in the argu-
ments of the functions FMF and C in Eq. (8), which
implicitly controls the dependence on F, is increased adi-
abatically. Because the force increases much more slowly
than the dynamics of the CDW, the equal time response

b
—d/2 —z C, I b2 —d/2@1 (10)

The scaling of the 4 field is fixed by requiring the invari-

ance of the |,term, which is unrenormalized by loop
corrections. (This is because all loop terms involve dif-

ferences between the function C at two di8'erent values

and correlation functions really give the static behav-
ior .Although the time derivative in Eq. (8) and the e
derivatives in Eq. (9) seem to imply that the full time-
dependent response functions can be obtained, the coef-
ficients of the various terms in Eq. (8) only behave in the
manner shown for monotonically increasing F. (For in-

stance, the inverse of the polarizability does not vanish at
FT for a decreasing F.) Thus, in using Eqs. (8) and (9)
to obtain response functions, a constraint c(ti) ) r(t2)
for ti ) t2 must be assumed. This constraint prevents us
from obtaining the ac response y(u, F).

We now carry out a renormalization-group analysis of
Eq (8. ) along the lines of Ref. 9. We rescale space and
time as z = bx' and t = b't', and integrate out modes
of all frequencies in the momentum shell between the
(rescaled) momenta bA and A, where A is the upper cut-

off in momentum. The rescaling of the Belds 4 and 4
are fixed in mean Beld theory by the requirement that all
quadratic terms in the exponential have to be invariant
under this transformation, except the 4r@ term; the vari-
ation of this last term is interpreted as a change in F un-

der renormalization. Fixing the other quadratic terms in
the exponential yields 4 = b ' "~ 4' and C = b' d~ C',
with the dynamic exponent z Bxed at 2 by comparing
the scaling of the Bq and V' terms. The consistency of
the mean field scaling is verified by ascertaining that all
higher-order operators are irrelevant; this is indeed the
case for d ) 4, which is therefore the upper critical di-

mension. This upper critical dimension is the same as
for F ) FT.

At d = 4, the entire function C[(P(ti)) + 4(x, ti)—
(ti ~ tz)] in Eq. (8) becomes marginal. For d & 4, the
critical behavior is changed &om its mean field form. As
discussed in Ref. 9, for d ( 4 the function t splits up
into a constant part t, that controls the static distor-
tions in the phase, and a functional operator C(P) that
controls the dynamics. The two of these decouple from
each other, and scale differently. For the dynamics above
threshold, where the steady-state solution is periodic, it
is necessary to preserve the invariance under the trans-
formation P ~ P+ 2'. For d & d„ the upper critical
dimension, fluctuations in P scale in the same way as

(P(t)) = vt; this then requires 4 to be invariant under
rescaling, as discussed in Ref. 9. The operator whose co-
eKcient is the constant part of C, C„ is then relevant,
leading to anomalous scaling of the static correlations.

Below threshold, it is precisely these static correla-
tions that we are interested in. Since the mean phase (P)
reaches a constant value for any fixed value of F ( Fz
in steady state (with {P) increasing with E), the period-
icity of the phase variable need not be preserved under
the rescaling of the renormalization group. Accordingly,
we choose a scaling for the fields 4 and 4 diferent from
that of Ref. 9:
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of its argument, which are not changed by an addition
of a constant C, . Although it is conceivable that non-
perturbative corrections could affect this result, we as-
sume here that this is not the case. ) As discussed in Ref.
9, any renormalization of the 44 term from the opera-
tor C (as well as from higher-order irrelevant operators)
must be of the form 40q4', and thus the O'V C term also
has no loop corrections, fixing the scaling of 4. The scal-
ing of the r 4 4 term yields a renormalized polarizability
y' = y/b2, so that p/v = 2. The scaling of the C fiel in
Eq. (10) implies that (p —1)/v = 2 —d/2. 2o Combining
these two results, we obtain

v = 2/d

and, from the scaling of y,

p = 4/d.

in Ref. 9, depends on the second derivative of C, and is
given by

z = z(F & FT ) = 2 —e/S+ O(e').

The breakdown of two sided scaling for CDW's, with
v = 2/d below threshold, and v = 1/2 above threshold,
is now seen as the result of the difFerent static and dy-
namic behaviors of the system, rather than being due to
any fundamental difFerence between the properties above
and below threshold. Even above threshold, the static
correlation length still exists, and was indirectly obtained
in Ref. 9 as the length that controls the finite size scaling
behavior. The static correlation function above threshold
varies as a simple power law with distance, and does not
show any crossover at the static (or dynamic) correlation
length, so that the static correlation length could not be
obtained directly.

as mentioned in Eqs. (1) and (2). We emphasize that
these relations are valid to all orders in e = 4 —d.

Although it is possible to obtain these exponents di-
rectly from a simplified model of CDW's, the exponent
z cannot be obtained from a similar analysis and, as we
shall now see, is nontrivial. A more detailed discussion
of Ref. 11 is given in Sec. V. The exponent z is not
affected by the difference between the scaling here and
that of Ref. 9, although under the scaling used here, the
operator C is dangerously irrelevant, fIowing towards a
singular function of zero amplitude, with constant second
derivative C"(P). (With the scaling of Ref. 9, C fiows to-
wards a regular function of constant amplitude, with the
same second derivative. ) The O(e) result for z, obtained

I

III. NUMERICAL RESULTS

We now compare these results with those from numer-
ical simulations. Previous simulations have often been
carried out with the continuous variable dynamics of Eq.
(5), with z discretized to a lattice. However, it is possi-
ble to obtain much more accurate results with automaton
models, '2 which may be viewed as a singular limit of Eq.
(5), in which the pinning potential at any site has very
narrow and steep wells, so that P(z; t) = P(z)+2m m(z; t),
with m an integer variable. A further approximation is
made by discretizing time;2z the dynamics of m(z; t) is
then

m(z;t) = m(x;t —1) + 1

= m(z;t —1)

if F+ V'[2~m(z;t —1)+P(z)]+h(z) & 0

if F + 7' [2vrm(z;t —1) + P(z)] + h(z) ( 0. (14)

c(x) = ) [m(y) —m(z)]
u&(~~)

+Int[(F + V'P(x) + h(z))/27r],

where the sum over y is restricted to sites neighboring
x. The first term in this equation is the discretized form
of V' m. By construction, c(x) is an integer-valued vari-
able. From Eq. (14), we see that the dynamics can be
expressed in terms of c(x) as

c(x) m c(z) —n,

c(~) ~ c(~) + 1 ~~ & (») if c(x) & 0. (16)

Here the V' operator is the discrete Laplacian. This
automaton model (and variants of it) are numerically
much more efficient than direct simulations of Eq. (5).
Since for small d, the critical behavior is independent
of the form of the pinning potential used, we shall rely
mostly on the automaton model simulations in this sec-
tion, referring to continuous dynamics only for compari-
SOIl.

It is more convenient to express the dynamics in terms
of a local "curvature" variable

I

Here n is the number of neighbors that the site x has. We
can view this as a sandpile modeliz if we treat c(z) as the
height of sand at the site x; when this exceeds a preset
threshold [zero in Eq. (16)] one grain of sand falls off
from x to each of its neighboring sites. As I" is increased,
Int[(F + V2P(z) + h(z) j/2m] increases by 1 whenever its
argument crosses an integer. From Eq. (15), we see that
increasing I' towards threshold is equivalent to dropping
grains of sand randomly on difFerent sites of the system.
There is, however, a slight difFerence in the manner in
which sand is added as compared to standard sandpile
models: since the randomness from V' P(z) + h(x) is
quenched, sand grains are dropped in a random order
on the different sites of the lattice one by one, with no
site being revisited twice in a cycle. When every site has
been visited exactly once, the whole cycle is repeated in
the same order. In contrast to this, in standard sandpile
models the addition of each sand grain is an independent
random process, and there are no correlations between
the sites chosen. For a suKciently large system, where
the repeating cycle is very long, it is reasonable to expect
the difference between cyclic and uncorrelated addition
of sand grains to be inconsequential.
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Another difference between CDW's and usual sand-
piles is that open boundary conditions are normally used
for sandpiles, whereas periodic boundary conditions are
used for CDW s. With periodic boundary conditions,
a grain of sand that exits the system at one boundary
reenters at the opposite boundary. Again, when the sys-
tem size is much larger than the characteristic avalanche
size, this difference should not affect the behavior.
In this section, we shall use numerical results from CDW
(grains added in a random cycle) and sandpile (uncorre-
lated grains) models, both with periodic boundary con-
ditions, to compare with our analytical results. Compar-
isons with earlier simulations on sandpiles with open
boundary conditions will be discussed in subsequent sec-
tions.

Figure 1 shows a finite size scaling plot for the polar-
ization P(F, I) (measured from the initial state m = 0
at F = 0) for d = 2 as a function of the driving force F
and the linear size of the system, I.. Each toppling event
in the transformed dynamics of Eq. (16) corresponds to
a unit increase in the polarization. The finite size scaling
of the polarization should be of the form

P= Ifl "'P(~If
l ) (17)

where f is the reduced force, F/FT —1. The collapse to
a scaling form in the numerical data shown in Fig. 1 is
not very good. This is probably due to the fact that the
polarization in any state involves the polarizability inte-
grated &om the initial to the present state. Corrections
to scaling might thus be expected to persist in the polar-
ization until the system is very close to threshold. Figure
2 shows a similar scaling plot for the polarizability, ob-
tained by a numerical derivative of the polarization. The
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FIG. 2. Scaling of the polarizability yt (numerical deriva-

tive of the data in Fig. 1) in the d = 2 CDW automaton
model with fitted exponents p = 2 6 0.15 and v = 1 6 O.l.
The scatter at low scaled fields LIf I" is due to statistical fluc-

tuations.

data here scale better when LIfl" is large, but show a
large scatter very close to threshold due to numerical
uncertainties. Figure 3 shows a scaling plot for the po-
larization in the sandpile version of the dynamics of Eq.
(14); the scaling form works much better here. From the
data in Fig. 3, we obtain estimates for the critical expo-
nents: p(d = 2) = 1.98+0.03 and v(d = 2) = 0.98+0.03,
in agreement with Eqs. (12) and (11).

Simulations with the continuous dynamics of Eq. (5)
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FIC. 1. Attempted finite size scaling of the polarization
P for the CDW automaton in d = 2 with best fits p = 2

and v —1. No set of exponents gives a single curve, due
to the large finite size effects and the arbitrary constant in
the definition of the polarization. Symbols indicate the size
of the system, while the numbers in parentheses indicate the
number of samples averaged over.
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FIG. 3. Scaling of the polarization in the d = 2 sandpile
automaton model. The scaling collapse is much better than in

the d = 2 CDW model. Prom the range of exponents for which

the scaling collapse is within finite size errors and statistical
uncertainties, we find p = 1.98 + 0.03 and v = 0.98 + 0.03, in

agreement with the analytical results in the text.
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have larger numerical uncertainties. As detailed in Ref.
5, a log-log plot of the polarization as a function of f
appears to yield an exponent p = 1.8 + 0.15, although
the slight upward curvature seen as F ~ I'"T allows for
the possibility that the asymptotic value of p is indeed 2,
as given by Eq. (12). The collapse of the data to a sin-

gle scaling function is also not very satisfactory, but can
be used to obtain the correlation length exponent v as
1.0+0.1. A more accurate value for v is obtained kom the
width of the distribution of threshold Belds I'z for var-
ious systems of size L with different realizations of ran-
domness, since one expects Bnite size effects to become
important when the characteristic size of an avalanche is
of the order of the size of the system. Fitting AFT to the
form L " yields v = 1.01 + 0.03. The results are thus
consistent with Eq. (11).

For three-dimensional systems, the numerical uncer-
tainties in the behavior of the polarizability are larger.
Here we show only the results for simulations on the
sandpile model (with periodic boundary conditions) for
which, as in two dimensions, the scaling is better. Figure
4 shows a scaling plot of the polarizability, &om which
we obtain p = 1.31 6 0.08 and v = 0.68 6 0.04. Since
it is possible to determine the location of the threshold
Beld very accurately, one can also plot the polarization
at threshold as a function of system size. As shown in
Fig. 5, P, (I"T, L) appears to scale as Lo s, consistent
with Eqs. (11) and (12), which predict an exponent of
0.5 for d = 3. (The error bars shown in Fig. 4 are Rom
the statistical scatter in the data; owing to the smail
range in L, this is too conservative an estimate for the
true uncertainties. ) The exponent v can be obtained in-

dependently from the scatter in the threshold field to be
v = 0.68 6 0.02, as shown in Fig. 6.

From the duration of an avalanche as a function of its
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size, we obtain the dynamic exponent z. The size s of an
avalanche, defined as the total number of sites participat-
ing in it, scales as t, where l is its linear extent, 2s while z
is defined through t(l) l', so that t(s) s*/ . Figures
7(a) and 7(b) are log-log plots of t(s) versus s for CDW's
in two and three dimensions, respectively. From these we

obtain z(d = 2) = 1.32 +0.04 and z(d = 3) = 1.65+ 0.06.
The dynamic exponent z is obtained here numerically

FIG. 5. Polarization at threshold for the d = 3 sandpile
automaton with periodic boundary conditions as a function of
linear size L. Error bars represent 10' statistical uncertainties.
The fitted slope in the figure indicates only statistical errors
and are an underestimate of the true uncertainty in the ratio

(p —1)/v. From such data, we estimate (p —1)/v = 0.57+0.08.
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FIG. 4. Scaling of the polarizability in the d = 3 sandpile
automaton model. From the range of exponents for which
the scaling collapse is within finite size errors and statistical
uncertainties, we find p = 1.31 + 0.08 and v = 0.68 + 0.04, in
agreement with the analytical results of the text.

FIG. 6. Relative sample-to-sample fluctuations AI"T /I" T in
the threshold field I'~ as a function of linear size for the d = 3
sandpile model with periodic boundary conditions. From
the fitted slope, the finite size correlation length exponent
0.68 + 0.02 is obtained.
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IV. DISTRIBUTION OF AVALANCHES

We now turn to the distribution of avalanches of differ-
ent sizes in the critical region. As discussed earlier, there

M
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V

I IIIII I I l l lIIII I I I I lIIII I I I l IIIII

o 32~ (1000) ~ 256~ (250)a

64' (1000) ~ 5122 (100)
~ 126& (1000) o 1024' (4)

~ I
5

I y I ~ ~

&om the duration of single avalanches. We can com-
pare this result with z obtained above threshold from
the spatially averaged current Bowing through the sys-
tem. The current exponent P is related to the dynamic
exponent z through z(F ) FT) = 2P. From numer-
ical simulations above threshold, P is known to be
P(d = 2) = 0.64 + 0.03 and P(d = 3) = 0.81 + 0.03. The
agreement between z(F ) FT ) obtained Rom a spatially
averaged measurement and z(F & FT) obtained from
a single avalanche measurement substantiates our belief
that there is only one dynamic exponent in the system.
and that its value is given by Eq. (13).

are differences in the forms for the continuous-variable
and automaton models. This is because the total in-
crease in the phase P at any site is bounded above by 2z
in the continuous-variable models. No such constraint ex-
ists for automata, for which several avalanches of roughly
the same size are grouped together into a single large
avalanche. This may lead to different number distribu-
tions for avalanches in the continuous and automaton
models. We first deal with the avalanche distribution
for automaton models, returning later in this section to
continuous-variable models.

We conjecture a scaling form for the number distribu-
tion of avalanches:

n(s; f)ds = n(s~f~ ) —,1 „gct8

where n(s; f)dsdf is the total number of avalanches of
size between 8 and s + ds that occur in a unit volume of
the system when the reduced force (F/FT —1) is changed
from f to f + df This .equation defines the exponent It

(Here we have assumed that the same v is associated
with the characteristic size of the avalanches as well as
the finite size effects. )

We de6ne the moment of an avalanche as the total
change in polarization that results from it. This is related
to the change in the phase at every site in the avalanche

by hP = P; i(bP, ). For continuous dynamics, where

6P, & 27r for all the sites, the moment scales as the size
of the avalanche. For automaton models, the two are
related by a nontrivial exponent:

ci=2 CDW bp 8. (19)
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p = (I'd —r.)v (2o)

Substituting Eqs. (12) and (11) in this equation yields

(21)

Equations (18) and (19) can be used to obtain an expo-
nent identity relating v and 1 to p. The total change in
polarization upon changing the force by df is found by
integrating Eq. (18) to be of the form AP f(" ""1 df
Comparing with Eq. (7), we obtain

(Q

N

V 0 ~
g

0

I ~ t ~

K(d = 2) = 0.36 + 0.03. (22)

Figure 8(a) shows a finite size scaling plot of the dis-

tribution of avalanches for the automaton model in two
dimensions. By fitting to the form of Eq. (18), we obtain

Figure 8(b) shows a similar plot for d = 3, from which
we can obtain

O I I l IIIII I I I I IIIII I I I I IIIII I I l I I IIII I I I I I IIII I I I I I III

10 10 10 10 106 K(d = 3) = 1.00 + 0.06. (23)

FIG. 7. Numerical derivatives of the logarithm of the du-
ration t of an avalanche with respect to the logarithm of the
volume s, for (a) the d = 2 CDW model and (b) the d = 3
sandpile model. The approach to a constant at large s gives
the scaling t s, with z = 1.32 + 0.04 in d = 2 and
z = 1.65 + 0.06 in d = 3. I'(d = 2) = 1.15 6 0.05 (24)

The values of v that are obtained from these scaling plots
are v(d = 2) = 0.98 + 0.03 and v(d = 3) = 0.68 + 0.03,
consistent with Eq. (11) (as well as the scatter in FT)
The scaling of the moment of an avalanche with its size
can be used to obtain numerically
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and

I"(d =3) =1.oooo.o2, (25)

which, together with the numerical values for e, are con-
sistent with Eq. (21). In the limit as F -+ FT, a power
law distribution for the avalanches is obtained. If n(z) is
not a singular function of its argument z for small x, the
limiting form of the distribution can be used to obtain
e and I'. If, however, n(z) scales as z( ~)~2~" for small

z, the apparent power law in the avalanche distribution
would change from rc to K, —(n —1)/2v, while leaving I'
unchanged. A singular form for n(0) would imply that
the total number of avalanches generated by a small in-
crease in F (which is dominated by small avalanches)
would be singular as I'z is approached; we have veri6ed
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FIG. 8. Scaled avalanche distributions seen at difFerent
Belds for (a) 100 samples of size 512 iu the d = 2 CDW
model aud (b) 110 samples of size 128 iu the d = 3 sandpile
model. Avalanches result from the (adiabatically) increasing
Geld. We Snd ~ = 0.36 + 0.03 and v = 0.98 + 0.03 for d = 2
and r = 1.00 + 0.06 and v = 0.68 + 0.03 for d = 3.

(al - (FT —F) "'") (26)

with vth g v. The "thermal" correlation length exponent
has been found numerically by Myers and Sethna to be

numerically that this is not the case for the automaton
models.

It is interesting to note that Eq. (21) has been derived
earlier by Majumdar and Dhar for sandpile models, by
a completely diferent method that relies only on proper-
ties of clusters at the critical point. Since sandpiles at
the critical point are current driven, J = 0+, instead of
being tuned by a driving force F, any prefactor in n(s)
that is singular in f would not be seen in the scaling. The
fact that Eq. (21) and the result of Majumdar and Dhar
are identical can thus be taken as a proof that n(0) is
not singular. Our results in Eqs. (22)—(25) are also con-
sistent with numerical simulations on sandpile models in
two and three dimensions.

As mentioned in the previous section, the dynamic ex-

ponent z can be found numerically &om the scaling of
the duration of an avalanche with its size; the results in
both two and three dimensions are fairly close to a 6rst
order truncation of the e expansion result of Eq. (13).
Even at the critical point, the duration of the avalanches
can be used to obtain z; this allows us to compare with
the result for two-dimensional sandpiles~s that z = 5/4,
which agrees with our numerical results. For three di-

mensions, there is no exact calculation of z at present
to compare our numerical results with. However, previ-
ous simulations on (a transformed version of) the sand-

pile model with open boundary conditions2 have yielded

z(d = 3) = 1.62 6 0.01, in agreement with our results.
For continuous-variable models, we have seen that the

bound on the change in phase at any site in an avalanche
constrains I', to being 1. (The subscript c here de-

notes continuous-variable dynamics. ) From Eq. (21),
we then obtain ~, = d —2, so that both the exponents
involved in the avalanche distribution are determined.
This result is only true if the driving force is increased in-
Pnitesimally. In practice, the force is increased in small

steps; no matter how small the step size, one presumably
eventually crosses over into a regime where successive
avalanches at the same site trigger within a single force
step, and the exponents change to those of the automa-
ton models. Although the analytical treatment of Sec.
III is applicable only for continuous-variable dynamics, a
proper analysis of the singular part of the nonlinear re-

sponse to 6nite increases in I' might yield the automaton
values for the exponent I'; we have so far been unable to
carry this out. Note that the numerical results in Eqs.
(22)—(25) are not very far &om the trivial values I' = 1
and tc = d —2; in fact, in three dimensions they are
consistent to within the numerical uncertainties.

Instead of triggering avalanches by increasing the driv-

ing force, it is possible to do so by applying small random
"kicks" to the phases at di8'erent sites, which may be con-
sidered to mimic the effect of thermal noise. Remarkably,
for small thermal noise, the characteristic linear extent of
an avalanche still scales with the distance from the zero
temperature threshold force, but with a diferent corre-
lation length exponent:
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FIG. 9. Scaled distribution of avalanches for the d = 3
sandpile automaton model at fixed field (total height).
Avalanches are in response to individual "thermal kicks"
which increase the phase at one location (by redistributing
the curvature variable). The scaling collapse is within errors
for K = 0.99 6 0.03 and v = 0.50 + 0.02.

vugh —0.50 in two dimensions. As shown in Fig. 9, the
same result is true for d = 3 as well. A proper under-
standing of this phenomenon is still lacking; however, it
is possible that considerations about the equilibrium be-
havior (at finite temperature) in the absence of a driving
force may be applicable here. At low temperatures, one
might expect the presence of a driving force to produce
an overall forward drift of the CDW, while still preserv-
ing the equilibrium properties locally. In equilibrium,
the dynamics can be expressed in terms of correlations
in the pinning potential. This is in contrast to our zero
temperature analysis, where the physically relevant cor-
relation function t is related to force-force correlations.
The potential-potential correlation function is related to
the function t integrated twice; as shown in Ref. 31,
in equilibrium it is necessary for this to be periodic in
its argument. Changing C by a constant C, is there-
fore no longer allowed in equilibrium. Setting C, to zero
implies that the static correlations no longer scale dif-
ferently from the dynamic correlations, and vugh = 1/2.
Further work on this, especially on crossovers &om equi-
librium to nonequilibrium properties, is clearly required.

V. DISCUSSION

Most of the work on sandpile models has been on the
properties at the critical point. However, Tang and Bak
have considered sandpile models away from the critical
point; through a combination of scaling arguments and
numerical simulations, they have obtained results sim-
ilar to some of ours. For instance, by considering the
diffusive nature by which sand grains propagate through
the system, they obtain the exponent identity p/v = 2,
which is the same as from Eqs. (12) and (11). With the
assumption that the distribution of avalanches is inde-

pendent of system size for suKciently large systems, and
the implicit assumption that the moment of an avalanche
is proportional to its size, they obtain an equation for r,
which is a special case of the general result derived in Eq.
(21). The first of these two assumptions is equivalent to
n(0) not being singular; we have seen in the previous sec-
tion that this is correct, both by comparing our scaling
law to that of Majumdar and Dhar and by direct nu-

merical verification. The second assumption, that I' = 1,
is not correct, even though it is approximately valid for
d = 2 which is the case Tang and Bak focus on (and ac-
tually much better for d = 3). A few other results that
they obtain are for the behavior of transients, and can-
not be compared with our work. The authors have also
noted that if the critical behavior in these nonequilibrium
models were to be like that of equilibrium statistical me-

chanical systems, various exponent identities relating P
to other quantities would result. One of these exponent
identities, P = rv (expressed in our notation), can be
compared with our results, and is found not to be valid.

Surprisingly, the value obtained by them for v through
numerical simulations is v(d = 2) = 0.7, which dis-

agrees completely with our analytical and numerical re-
sult v(d = 2) = 1. It is not clear what this difFerence
is due to, although a similar value of v (v = 0.76) has

apparently been observed in other simulations as well in
which the sandpile is perturbed in a manner different
from ours. As discussed in the previous section, with
different types of kicks on the sandpile (that may or may
not have physically meaningful analogs in the continu-
ous variable models) v can be very diferent; this might
be the source of the discrepancy. Our simulations on
sandpile models, detailed in the previous section, yield
v(d=2) =1.

Myers and Sethna have studied the static and dynamic
behavior of CD&'s using an automaton model with time
delays; these delays are intended to reflect the slow ac-
celeration of a degree of &eedom in a smooth poten-
tial. As discussed above, due to the apparent universality
of CDW dynamics and the lack of dependence of static
states on detailed dynamics, the exponents such as those
for the polarization, correlation length, and dynamics of
avalanches {p, v, and z) should not depend on such a
delay. As noted in the previous section, our results for

v~h in d = 2, 3 are in agreement with those found by
Myers and Sethna (where they use the notation v') for

the same type of random phase kicks. Our results for p
in d = 2, 3 are not in close agreement with the results of
Myers and Sethna; the disagreement is not large, though,
and more extensive simulations might bring closer agree-
ment. In particular, it is important to check for Gnite
size effects, and, as shown by Figs. 1—3, the polarizabil-
ity gives a larger scaling range for the data. (Their re-

sult for d = 1, p = 2.8 + 0.1, disagrees with our ana-

lytical prediction of p = 4, possibly due to similar ef-

fects. ) In Ref. 7 values are determined for the exponent
(', which gives the cutoff in time for an avalanche as a
function of distance below threshold; assuming the rela-

tion (' = v'z gives z = 1.2 6 0.2, 1.0+ 0.4, and 1.5 + 0.8
in d = 1, 2, 3, respectively, in agreement with our ana-
lytical results, though with large error bars. Myers and
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Sethna also present results for the power law prefactor in
the distribution of avalanche sizes, for which they obtain
an exponent o.~ ——1.0 + 0.05 and 1.4 + 0.1 in two and
three dimensions, respectively. These are in reasonable
agreement with our exponent 1+ r/d using Eqs. (22)
and (23), and in agreement with sandpile models. How-
ever, when the distribution of avalanches is plotted as a
function of the avalanche duration, they obtain an expo-
nent for the power law tail a2(d = 2) = 0.8 + 0.1 and
n2(d = 3) = 1.1 6 0.2; these are very different from our
prediction of 1+Kz. Since the distribution as a function
of duration is not power law like over any large regime,
their estimate of n2 must be viewed with caution; we
note that if their results for both o, q and a2 were correct,
they would imply z ( 1 for d = 2 and z & 3 for d = 3,
which we consider to be unlikely.

A related problem to CDW's, that of the depinning
of interfaces in random media, has been analyzed in
the moving phase by methods similar to those used for
CDW's. ss so Unlike the case for CDW's, the statics and
dynamics do not behave differently; physically, this is be-
cause as the interface moves forward it experiences differ-
ent regions of impurities and is thus unable to build up
anomalous static correlations. Formally, this is seen by
the absence of an unstable direction at the fixed point of
C when the appropriate boundary conditions are taken.
Since this separate scaling of static and dynamic correla-
tions is the source of the difference between v(F & FT)
and v(F ( FT ) for CDW's, two-sided scaling will be valid
for interfaces. The relation p/v = 2 can be verified to be
still true by the procedure in this paper.

Parisi and Pietronero have considered a model for
CD%'s of the form

8,$ = 8[7'P+ h(z) + F](V'P+ h(z) + F), (27)

which they have argued is a coarse-grained version of Eq.
(5). Through a series of scaling arguments, they obtain
the exponents p = 4/d, v = 2/d, and P = 1. Defining
a dynamical exponent z through the decay of transient
currents, they obtain z = 2. Various other predictions are
made for the decay of transient currents; these cannot
be compared to our work, which is limited to steady-
state quantities. Numerical simulations in one and two
dimensions appear consistent with these predictions. We
can understand these results in the following manner. For
monotonically increasing F, it can be shown that once
the phase P(z) at x moves forward from its value at t = 0,
the local force V P+ h(z) + E is never negative, so that
the 8 function in Eq. (27) is no longer seen. Choosing
P(z;t = 0) = P(z) for definiteness, for monotonically
increasing F, Eq. (27) is equivalent to

B,P = V'P+ F —8&V($;z),

with

V(P; x) = —h(z) P + 2~h(z) ) 8($ —P(z) —2mn). (29)

This is because as long as P(z) = P(z), the phase
prevented &om moving back by the n = 0 8 function
in Eq. (29). (It is always possible to change F by a

constant and shift the entire distribution of h to h ( 0,
so that the 8 functions in Eq. (29) are downward steps. )
Once P(z) moves forward from P(z), it only feels a force
V' P+ h(z) + F Both these are also true for Eq. (27).
The 8 functions for n ) 0 do not affect the dynamics, but
are required to make V(P; x) periodic in P. For F & FT,
the phases move smoothly forward, with the equation

cog = V' P + F + h(z). This equation is linear in P,
and thus trivially yields P = 1 [and z(F & FT ) = 2P =
2s]. For F ( FT, by averaging over randomness through
the Martin-Siggia-Rose formalism, one obtains the same
generating functional as we have in Eq. (8), but with
the dynamic part of the correlation function, C(P), set
to zero (with C, g 0). It is easy to see that C(P) = 0 is

indeed a fixed point, with z = 2. The exponents p and v,
which are not affected by loop corrections, have the same
values as at the nontrivial fixed point we have analyzed.
These results agree with those of Parisi and Pietronero.
In the light of our analysis in this paper, however, the
model that they have considered must be viewed as a
nongeneric one: For any C(P) g 0, the system is driven
under renormalization to the nontrivial fixed point, with
z given by Eq. (13). Indeed, it is possible to identify
a physical parameter that has been implicitly tuned to
a special value to obtain Eq. (28): if we replace the
vertical drop in V(P) at P = P + 2nx with a very steep
section of nonzero width, the critical behavior is found
numerically to be the same as for the other models that
we have considered here. The sensitivity of the model
to the correlation function C(P) indicates that a simple
stick-slip friction law for the pinning, as in Eq. (27), is
an inadequate replacement for the periodic pinning seen

by a real CDW.
As mentioned in Sec. III, due to the restriction that the

driving force must be monotonically increasing in time,
it is not possible to obtain the ac response g(ur, F) from
our analysis. It is not clear at present if some variation of
our approach may prove adequate for this purpose. It is
important to remember that the universality that exists
for various different models with regard to the monotonic
approach to threshold is considerably limited for y(u, F)
even in low dimensions.

In this paper, we have analyzed the critical behavior
of charge-density waves as the depinning threshold is ap-
proached monotonically &om below. Our success in this
was due to the fact that, for this special path to thresh-
old, the existence of many metastable states does not
seem to invalidate the perturbation expansion we carry
out. Although for any particular problem one must con-
sider afresh whether such a perturbation expansion can
be justified, it may be possible to use similar techniques
for other systems.
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