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Theory of anisotropy of two-photon absorption in zinc-blende semiconductors
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The influence of the higher I » conduction-band set on the strength of the two-photon-absorption
coefficient, the two-photon linear/circular dichroism, and the two-photon-absorption anisotropy is cal-
culated across the spectral region below the fundamental absorption edge, for the cubic materials GaAs
and InSb. The anisotropy is entirely due to the higher band and is predicted to produce up to a 70%
variation in the two-photon-absorption coefficient of GaAs as the relative orientation of the optical po-
larization to the crystal axes is altered. This is in good agreement with recent experiments.

I. INTRODUCTION

The role of two-photon absorption (TPA) in semicon-
ductors is of increasing importance as semiconductor
components become employed as nonlinear elements in
optical communication and information processing sys-
tems. For example, two-photon absorption provides a
fundamental limitation for all-optical switching in the
transparent spectral region of semiconductors. ' It has
also been recently recognized that ultrafast nonlinear re-
fraction can be related to two-photon absorption through
a nonlinear Kramers-Kronig relation. ' Two-photon ab-
sorption also has potential applications as a nonlinear
spectroscopic technique, providing complementary ma-
terial information to one-photon-absorption measure-
ments.

For cubic materials (such as zinc-blende semiconduc-
tors) the only nonzero components of the first-order opti-
ca1 susceptibility tensor are the equal, diagonal com-
ponents. Hence, the one-photon-absorption spectrum
shows no polarization dependence (and, equally, there is
no birefringence). However, the third-order susceptibili-
ty tensor contains off-diagonal elements, as a consequence
of which the TPA exhibits optical polarization depen-
dence. In the isotropic limit the dependence is manifest-
ed by a difference between the TPA coefficients for linear
and circular polarized light in single-beam experiments.
For two-beam experiments the relative polarization
orientation of the beams influences the TPA; this is seen
in nondegenerate TPA, for example. Cubic materials
have three equivalent orthogonal axes but are not isotro-
pic. Hence, even in single-beam linearly polarized cases,
the TPA coefficient should depend on the orientation of
the polarization to the crystal axes. It is this orientation
dependence that is of major interest in this paper.

Most studies of two-photon absorption in zinc-blende
semiconductors have been for a single, plane-polarized
beam. The more successfu1 of the theoretical predictions
for this case (compared to reliable experimental data) are
based on a second-order perturbative method, using the
isotropic band-structure model of Kane consisting of the

uppermost valence-band set (heavy-hole, light-hole, and
sometimes the spin-orbit split-off states) and a single con-
duction band. ' ' However, as this band-structure
model is isotropic (i.e., the band energies depend only on
the modulus of the electronic wave vector and not on its
direction), it does not provide any orientational depen-
dence. One method of introducing the effects of anisotro-

py into the band-structure model is to use the band-
decoupling scheme of Luttinger and Kohn" which pro-
vides an anisotropic mixing of the valence bands to order
k . Dykman and Rubo' have used the valence state
mixing so obtained to calculate a two-photon anisotropy
for GaAs and InSb. However, the conduction-band an-
isotropy and the effective-mass anisotropies were not in-
cluded in the above calculation. An alternative approach
is to include higher conduction bands in the calculation;
the resulting state mixing (e.g. , due to the k.p perturba-
tion) provides the anisotropic band structure. This ap-
proach was considered briefly, for the parabolic-band
limit, by Arifzhanov and Ivchenko, ' who estimated the
two-photon anisotropy for Ge. It is we11 known that the
effect of higher bands is also necessary in order to predict
correctly the effective-mass values in direct-gap semicon-
ductors. ' ' In this paper higher conduction bands are
considered explicitly and the resulting anisotropies, both
of the nonparabolic energy surfaces (the efFective masses)
and of the state wave functions, are accounted for.

An early experimental investigation of TPA anisotropy
was that of Bepko, ' who measured the crystal orienta-
tion dependence of the nonlinear absorption. However,
the measurements were obtained with nanosecond pulses
and, like many of the earlier measurements of TPA, were
dominated by free-carrier absorption of two-photon pho-
togenerated carriers. Van der Ziel' obtained an accurate
estimate of TPA anisotropy by measuring the band-edge
luminescence associated with TPA excitation; the
luminescence is insensitive to free-carrier absorption.
However, to obtain accurate magnitudes for the TPA
coefficients, shorter laser pulsewidths (in picoseconds)
must be employed. The TPA anisotropy of GaAs and
CdTe has been investigated in such a manner using a
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pump-probe technique' (which determines all the
nonzero ImX' ' tensor elements). Picosecond z scans of a
suitably cut crystal of GaAs have also been used. '

n. THKORV

For the zinc-blende structure (cubic symmetry class
43m), out of the 81 third-order susceptibility tensor ele-

ments, 21 are nonzero and only 4 of these are indepen-

stricting the discussion to the degenerate regime (where

only one optical frequency is present), intrinsic permuta-
tion symmetry reduces the number of independent ele-
ments to 3 because

The two-photon-absorption coeficient is directly related
to the imaginary part of the third-order susceptibility.
For the symmetry appropriate to zinc-blende semicon-
ductors, this relation can be expressed as'

, , l.X."...&+2X.'y.y(1 —»
Epn pc

+X"„(le.el —X)],
with X=&„le„l.

Here c is the speed of light in vacuum, cp the permit-
tivity of free space, and no the linear refractive index.
The radiation polarization is described by the unit vector
e, having direction cosines e„with respect to the three
crystalline axes (x,y, z}. X„"y,y

is used as a shorthand nota-
tion to represent ImX(y)y(-N, ~,N), etc. There is a
factor-of-3 difference in Eq. (2) with respect to the formu-
la quoted in Ref. 18; this factor is accommodated in the
definition of X;~kl used below.

The calculation of the three, independent tensor ele-
ments in the P expression is presented below and in Sec.
III. the resulting anisotropy of P, expressed through the
X factors, and the linear-circular dichroism, expressed
through le el and the X factors, is discussed in Sec. IV.

From a density-matrix treatment, the third-order sus-

ceptibility can, in general, be calculated from

8 1 (e,' ps )(e,'p &)(ek ply}(e, prg)
XIJ~kl(l ~2 ~3) 3 4 (CO~+C02+C03}NiC03C03 i3 (Q~s co~ eli ~3)(Qg& 3 3)(Qyg

where mp is the free-electron mass, e; is the unit vector in the direction of the ith polarization, and p &
and AQ

&
are the

momentum matrix element and energy difference, respectively, taken between the states a and P. Here, ST denotes that
the expression which follows it is to be summed over all permutations which, in the case of the third-order susceptibili-

ty, are the 24 permutations of the pairs (i, —e3, —co3
—co3}, (j,co, ), (k, co3), and (l, co3). A useful method for generating

these is the diagrammatic technique of Ward 'Ideally. the sum should be performed over all electron states a, P, y and
over all occupied electron states g. In practice, these summations are taken over a limited number of states which are
deemed to be dominant.

Two-photon absorption is a resonant effect that occurs in semiconductors when the sum of the two photon energies is
equal to the energy difference between a valence band (occupied) and a conduction band (unoccupied). Thus the permu-
tations of Eq. (3) that correspond to two-photon absorption are those four in which the state P is a conduction-band
state and (in the degenerate case) coz=ce3=co, ro&

= —co. A damping term I' should be included in the resonant denomi-

nator; I can be taken to be vanishingly small, allowing the substitution

1

0 2co
+ im.5(Q„—2'} .1 1

(4)

Two-photon absorption is manifested by the imaginary 5-function term in Eq. (4), while the real part gives rise to an as-

sociated nonlinear refraction. On evaluating Eq. (3) for the three independent two-photon-absorption terms, some
simplification is possible by factorizing the terms to give
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Here, the summations are to be performed over
conduction-band states c (empty), valence-band states v
(filled), and all states i (empty or filled). These will, in
general, involve a summation over bands and an integra-
tion over k space. However, as the photon momentum is
negligible compared to the electronic momentum, only
electron states with the same wave vector are coupled
and only one integration over k space is required. The
erst two imaginary susceptibilities y,"~» and pzyzy can
also be derived by a transition-rate approach. The sus-
ceptibility term y"„cannot be obtained directly from a
transition-rate approach although the form in which it
has been expressed in Eq. (5) is somewhat similar to that
of the other tensor elements. It should be noted that the

yy
tensor element does not correspond to an observ-

able two-photon-absorption process, always occurring in
combination with at least one of y"„,or g,"„in ap-
propriate TPA coefficients.

The band structure used in the calculations in this pa-
per is that employed by Pfeffer and Zawadzki, '4 consist-
ing of a triplet valence-band set, a single conduction-band
set, and the next-higher conduction-band set (triplet}, as
shown schematically in Fig. 1. At zone center (k =0),
the basis wave functions for the singlet states S have the
symmetry of s-like atomic wave functions and the basis
wave functions for the valence (conduction) triplet states
X, Y,Z(X', Y', Z') have the symmetry of p-like atomic
wave functions. The perturbation Hamiltonian which re-
sults in a mixing of these states due to k p and spin-orbit
interactions is given by

H'= k.p+ 2 2 [VVXp] o'~,
0 4Pyg OC

where V is the periodic crystal potential and o is here
the Pauli spin matrix. The band-structure calculations
are simpli6ed by using the basis functions of Table I rath-
er than I, Y, etc. The k=0 Hamiltooian is almost diago-
nalized for these functions; the only off-diagonal elements

TABLE I. Basis Bloch electronic wave functions. Here the

shorthand notation R ~ = (X+i Y)/v 2 is used.

u2

uq

Q-,'R' t —Q-', Z'1
—R'

Q-', R', 1++-,'Z't
iS$

g-,'R, i —g-', Z 1
—R

Q —', R+i+Q —,'Zt

u9

Qip

uli

ulcc

Q)4

g-,'R' 1++-',Z't
R'+ f

iS)
1++-,'zi

R+ 't

Q —', R 1/Q —,
'Z i

a, =(X~H, (Y&,

~, = —&X'lH, IY &,

Z= —(X[H, [Y'&,

with

(7b)

H)=
—imp 3iA' BV BVH2=

p 2 g Py g
Px

4moc x y
(7c)

If b were zero, then the diagonal terms of the Hamiltoni-
an matrix would be the zero-k energy levels.

The 14X 14 matrix diagonalization was performed nu-
merically and so automatically included the higher-order
terms in k that give rise to such effects as nonparabolici-
ty, which are important in two-photon-absorption calcu-
lations. ' ' In the determination of the optical suscepti-
bilities, the matrix elements (e/moc) A p are required.
These may be obtained, within a constant factor, by tak-
ing the k p elements of Table II and replacing k by the
polarization unit vector e.

involve the relatively small parameter Z, which is due to
the spin-orbit interaction between the valence and
higher-conduction bands. The resulting Hamiltonian at
finite k is given in Table II, in which the spin-orbit and
momentum matrix element parameters are de6ned by

Po = {S IH ) IX &, P )
= (S I H ( I

X' &, Q =
~ Z

I
H ) I

Y' &,

III. NUMERICAL RESULTS

Ep

FIG. 1. Schematic of the model used for the semiconductor
band structure in the vicinity of the I point of the Brillouin

zone, consisting of the highest valence-band set I » and the two
lowest conduction-band sets, I; and I ». The degeneracy of the
I » triplet states at k =0 is lifted by the spin-orbit interaction.

The band-structure parameters used in the present cal-
culations are given in Table III. These are the values ob-
tained by fitting data for low-temperature GaAs (Ref. 14)
and InSb (Ref. 15}. Figure 2 demonstrates the resulting
anisotropy of the GaAs energy levels. The valence and
conduction levels are plotted for k values in the [001]and
[011] directions. It can be seen that the dependence on
~k~ is slightly different for the two directions (most obvi-
ously for the heavy-hole band) and it is noticeable that
the anisotropy gives rise to a spin splitting in the band en-
ergies for k parallel to the [011]direction.

Figure 3 shows the result of the calculation for the
two-photon-absorption susceptibilities for GaAs using
Eq. (5); Fig. 3(a) corresponds to the 14-band model dis-
cussed above, while, for comparison, Fig. 3(b) corre-
sponds to the simpler isotropic band-structure model
with the same band parameters but where the upper I i5
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TABLE II. Hamiltonian matrix including k p and spin-orbit interactions using the basis set given in Table I is given by H'+(C+1)(A k /2m 0)I
where the second term describes the isotropic free-mass and distant band contributions and H is given in the following table (from Ref. 14). As this
matrix is Hermitian, only the upper triangle is shown. The shorthand notation k~ =(k„haik„)/~2is employed. Due to the appearance of the off-

diagonal spin-orbit term LL, the diagonal terms are not the observable energies at k =0, but are modi5ed,

G„)=(E)+a)+Ee)/2—[(E)+at+Ee) /4 —a /9] ~, G„~=(E(+ED—60)/2 —[(E(+Eo+60) /4 —4a /9], G,3=(E)+a)+Ee)/2
+[(E&+a&+Eo)2/4 a—2/9]'~, G,2=(E&+Eo—as)/2+[(E&+Eo +as)2/4 —4h /9]'~, and G„=ED.
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+ 3Qk,

1g

~~ Qk,

Pok

2gk-,

2
3

't/ 3Pok+
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conduction-band set is neglected. In each case the
three individual tensor elements g„", , y„"„,and y"

yy
are shawn. It can be seen that the eFect of the upper
conduction-band set is to reduce g" „slightly (by around
15%%uo at its peak) but to enhance signiScantly the two off-
diagonal tensor elements g„"„„»and y" . In particular,
g~y„has increased by more than a factor of 2 for fre-
quencies close to the one-photon-absorption edge. It has
previously been noted that this tensor element is particu-
larly sensitive to the details of the band-structure model
with respect to the inclusion of the valence split-off
band, sa it is not too surprising that the same is true for
the inclusion of the upper conduction-band set.

Figure 4 shaws the individual contributions to the
Imp( ' tensor elements from each of the valence-band to
conduction-band transitions. Qualitatively, these results
are similar to those obtained without the inclusion of the
upper canduction-band set. Note the relative contribu-

[011] [001]
~ 0 \ I ) l ~ ~ ~ t ~ ~ ~ ~

$
~ ~ ~ t F ~ ~ I t ~ ~

I
f

UJ

tions from the heavy-hole and light-hole valence bands
for each of the tensor elements just above the two-photon
band edge. For y„"„,„,the light-hole term is larger than
the heavy-hole term; for pzyzy the heavy-hole term is
larger than the light-hole term; and for y'zyy the heavy-
hole term is negative. It should be noted that y„'

yy
does

TABLE III. Data for the two semiconductors studied in this
paper obtained by low-temperature magneto-optical measure-
ments (Refs. 14 and 15). The momentum parameters are defined

Epp=2mpPp/A etc. All values are in electron volts.

Eo

6p

&pp

Epl

GaAs

1.519
2.969
0.341
0.171

—0.061
27.86
2.36

15.56

InSb

0.2352
3.11
0.803
0.39

—0.163
23.43
4.923

13.99

-3
-0.3

I ~ ~ ~ ~ I k ~ I I ~ ~ . ~ I

-0.2 -O. f 0.0 O. f 0.2
Electronic Wave vector (eV )

0.3

FIG. 2. Calculated band structure near the I point of the
Brillouin zone for two different directions in k space, kii[001]
and kii [011]. The electronic wave vector k has been scaled by
fi/+2mo to give a value in (eV)'~ . It can be seen that the band
structure is anisotropic and for the [011]direction the spin de-
generacy is lifted.
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not correspond to a real transition, i.e., the negative value
does not correspond to two-photon gain without inver-
sion. This negative value results in a partial cancellation
with the light-hole term, although not to the same degree
as in the calculation without the upper band set. The
threshold of the split-off terms occurs at (Eo+b,o)/2 and
results in obvious gradient changes in the total Imp' '

tensor elements. It is interesting to note that the split-off
term is large for y„"„butinsignificant for y,", .

Figure 5 shows the same three tensor elements as a
function of frequency, for the narrow-gap semiconductor
InSb. For comparison the dashed lines show the same
quantities calculated without the influence of the upper
conduction-band set. In this case the upper conduction
bands provide a very much smaller perturbation in com-
parison to GaAs. This is to be expected as the upper con-
duction bands (and split-off valence band) are relatively
far away in energy terms.

The effect of the upper conduction-band levels is three-
fold. First, the mixing of the upper conduction states
with the lower conduction and valence bands perturbs
the energies leading to anisotropic bands and spin split-

ting. Second, the upper conduction-band wave functions
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FIG. 4. Individual contributions to the Imp"' tensor ele-

ments for GaAs resulting from contributions between the vari-

ous valence bands, as indicated, and the conduction band, plot-

ted as a function of photon energy. The total contribution to
each tensor element is simply the sum of the individual band

contributions shown.
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FIG. 3. The three independent, degenerate Imp"' tensor ele-

ments calculated as a function of photon energy in the range

0.5(%co/Eo &1 for GaAs based on low-temperature band-

structure data. (a) shows the anisotropic result obtained by in-

cluding the upper conduction-band set I » and (b) shows the

isotropic result obtained without the inclusion of the upper

conduction-band set.

FIG. 5. The three independent, degenerate Imp"' tensor ele-

ments calculated as a function of photon energy in the range

0.5 & Ace/Eo & l for InSb, based on low-temperature band-

structure data. The solid lines show the anisotropic result ob-

tained by including the upper conduction-band set I » and the

dashed lines show the isotropic result obtained when this band

set is neglected.
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X', Y', Z' mix with the lower states and so modify the op-
tical coupling between the lower states. Third, the upper
conduction-band states appear as additional intermediate
levels in two-photon absorption.

For higher-band intermediate levels the TPA transi-
tions are known as allowed-allowed and a TPA coefficient
proportional to the valence-conduction joint density of
states, (fico Eo—/2)'~, is expected. At finite k, however,
the mixed parity of the states produces self-transitions
and the valence- or conduction-band levels themselves
can act as intermediate states. The resulting allowed-
forbidden TPA coefficient is proportional to
(fico Eo/—2) ~ The. allowed-allowed scheme must dom-
inate at frequencies sufficiently close to the two-photon
band edge, although further complications due to
Coulombic-excitation efFects are also important in this re-
gion. The allowed-forbidden terms are known to dom-
inate away from the edge. This is brought out clearly in
Fig. 6, which shows the susceptibility tensor elements for
GaAs in Fig. 3(a), but now plotted as a function of
(fur —Eo/2) on a log-log plot in a manner similar to that
of Ref. 17. The gradients of the curves in Fig. 6 are equal
to —,

' only for a regime extremely close to the edge (within

10 eV for the case of g„„).The gradient is —', for in-

termediate photon energies, and deviates from this at the
highest energies. Allowed-forbidden transitions still
dominate in the latter regime but the co factor [in Eq.
(5)] reduces the dispersion. It can also be seen from Fig.
6 that the allowed-allowed contribution for g'y

y
is very

much larger than the other two tensor elements (about a
factor of 60 greater than g„"„„„).This is because the opti-
cal matrix element Q connects two electron p-like states
which are mutually orthogonal both to each other and to
the optical polarization, but the optical matrix element
P, (and Po) connects a p-like state parallel to the optical
polarization to an s-like state [Eq. (7a)]. Therefore, the
result is much greater when the two optical polarization

10

10

10

+ 1022

E
1 0

-23

10

10

10 p--

vectors in the p' ' calculation are mutually orthogonal.
The implication is that for circularly polarized light the
allowed-allowed mechanism remains dominant for higher
energies, although still only to 1 meV above the edge; it is
still very doubtful whether the square-root frequency
dependence could be observed experimentally.

IV. THE TWO-PHOTON-ABSORPTION
ANISOTROPY

From a practical viewpoint it is useful to define three
independent parameters that describe the strength, an-

isotropy, and dichroism of the two-photon absorption.
First, the obvious choice for the strength is the suscepti-
bility tensor component y," . Second, the anisotropy
parameter is conventionally defined for TPA as

II II II
+XXXX +xxyy +xyxyAT-

+XXXX

and is zero, from symmetry considerations, in the isotro-
pic limit. Similar ratios can be employed with other
third-order nonlinear processes to obtain a measure of
the anisotropy —for example, third-harmonic genera-
tion. ' Third, for reasons apparent below, we define an
increinental TPA dichroism parameter 5 as

II II II

5= &XXXX +&xxyy 2&xyxy

+XXXX

With these definitions, Eq. (2) can be reexpressed for
linearly polarized light as

P ( 8,P ) =P [001] [ 1 —0 [sin ( 28) + sin ( 8)sin (2P ) ] /2 ],
(10)

where 8 and P are the spherical polar coordinates of e,
defined with respect to a crystal axis, and p [001] is the
TPA coefficient for radiation linearly polarized along the
[001],or equivalent, crystal axis.

For circularly polarized light the corresponding angles
8„and P„,which define the radiation propagation direc-
tion x, uniquely determine the orientation dependence of
the TPA.

P'(8„,P, ) =P [001][1—5—0 [sin (28„)

+sin (8„)sin(2P„)]/8] .

The practical parameters may be measured, for example,
for light propagating along one of the crystal axes, by the
choice of two linear polarization configurations and one
circular polarization:

-27
10 ~ A A ~ A A ~

10 10 10 10 10 10 10 10 10 10
hm-E j2 (eV)

FIG. 6. Calculated behavior of the Imp' ' tensor elements
close to the two-photon band edge plotted on a log-log plot as a
function of the difference between the photon energy and half
the fundamental band gap.

p'[0011=—,,x."...
2 C,0n0C

p [001]—p [011] 0

P [001]
P [001]—P (8„=0)=5.

p'[ool]

(12)

(13)

(14)
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FIG. 7. The two-photon anisotropy parameter cr and the in-

cremental parameter 5 [as defined in Eqs. (8) and (9)] plotted as
a function of AM/Fo for the materials GaAs and InSb. The ar-

rows in (a) indicate o. values obtained from the formula
0 2EO(EO +E 1 ) '. (b) The solid lines are the present calcu-
lation and the dashed lines are the results of the isotropic model

(ignoring the I » states). The dot-dashed line corresponds to
the incremental dichroism for the anisotropic model for radia-
tion propagation in the [111]crystallographic direction.

This latter result explains our choice of definition for the
incremental dichroism parameter 6. The dichroism is not
uniquely defined in the anisotropic case, depending on 0
and P of the linearly polarized radiation and 8 and P, of
the circularly polarized. For propagation in the [111]
direction, p shows no angular variation; indeed, the
higher bands have almost no influence on the dichroism
for this configuration, as shown in Fig. 7.

The influence of the higher I
&&

band set on the practi-
cal TPA parameters can now be determined by compar-
ison with Ref. 4 in which y„"„„„and5 were evaluated for
the valence and conduction-band model, ignoring the
higher levels. This latter model is completely isotropic
and o is zero at all frequencies. The e6ect of the higher
bands on the TPA strengths for GaAs and InSb were in-
dicated in Figs. 3 and 5 and discussed in Sec. III. Figure
7(a) shows the calculated frequency dependences of o. ,
and Figs. 7(b) shows 5 calculations for the two models.
Note that e is negative for both GaAs and InSb at all fre-
quencies. Both examples show a sizable dispersion in o. ,
which increases by approximately a factor of 2 from its
value just above the two-photon band edge to that at the
one-photon-absorption edge. o. also becomes large and
negative close to the two-photon band edge; this can be

explained by the presence of allowed-allowed transitions
(particularly for the y" tensor element), as discussed
above. The anisotropy is quite small in the case of InSb,
reAecting the fact that the electronic band structure is
fairly close to being isotropic. ' However, in the case of
GaAs, the predicted two-photon-absorption anisotropy is
substantial.

van der Ziel used measurements of the band-edge
luminescence as a consequence of TPA excitation to
determine the TAP anisotropy coefficient in GaAs. ' A
value of o = —0.45+0.06 was obtained at a photon ener-

gy of 0.8 eV and for low temperature. From Fig. 7(a) the
predicted result at this frequency is o. = —0.48. Dvorak
et al. ' have recently measured the value of the two-
photon anisotropy parameter in GaAs at room tempera-
ture at a wavelength of 950 nm and obtained a value of
o. = —0.76, and DeSalvo et al. ' have obtained a similar
value at 1064 nm, o= —0.74+0. 18. The predicted re-
sults at the equivalent values of Ace/Eo are o. -= —1.0 for
X=950 nm and o. -= —0.9 at A, =1 pm, although it should
be noted that this calculation is based on band-structure
data obtained at low temperatures, whereas the experi-
mental values correspond to room temperature. The
equivalent value for o at 1 pm from the calculations of
Dykman and Rubo' (low-temperature band-structure
data), which include only the effects of valence-band mix-

ing, is o = —0.4. Arifzhanov and Ivchenko' estimate
the anisotropy parameter to be proportional to
Eg EOEpp E

~
this provides a simple explanation of the

di8'erence in magnitude between GaAs and InSb but the
positive sign is in contradiction with the results above.
The first-estimate expression o = 2Eo(Eo—+E, )

given in Ref. 17, does, however, prove to be a very sensi-
ble measure of the anisotropy, as indicated by the arrows
in Fig. 7.

To illustrate more clearly the e6'ects of anisotropy on
the TPA coefficient, the angular variations of p and p
are shown in Figs. 8(a) and 8(b) for the GaAs (950 nm)

case for which 0 = —1.0, 5=0. 18. the maximum varia-

tion in the linear-polarization coefficient is

Pi[111]/P [001]=(1—2o /3) =—1.7 .

The spectral dependence of specific coefficients is demon-

strated in Fig. 9, for both linear and circular cases. Thus,
comparing the coefficients for light propagating along
one crystal axis and either circularly polarized, or linear-

ly polarized along another axis, then in the range

0.75 eV & Wu & 1.0 eV,

the dichroism is close to unity. In fact, around the
threshold for the split-o8'-band to conduction-band two-
photon transitions, circularly polarized light experiences
a larger two-photon-absorption coefficient than linear po-
larized light. This contrasts with the isotropic model
where the linearly polarized light experiences a
significantly larger two-photon-absorption coefficient
compared to circularly polarized light, at all frequencies
below the one-photon-absorption band edge. For propa-
gation in the [011]direction, however the dichroism with
respect to light polarized along [111]can be as large as
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determining the approximate values of 0. for both GaAs
and InSb suggests that for the wide-gap materials (e.g. ,
ZnSe and cubic ZnS), the anisotropy will be larger than
that of GaAs, leading to 100% variations in the two-
photon coefficients.

The present calculation indicates that there should be a
substantial dispersion in the two-photon anisotropy,
which increases by around a factor of 2 from just above
the two-photon band edge to close to the one-photon
band edge. The influence of the higher bands on the
strength of the isotropic contribution /3 [001] to the
(allowed-forbidden) two-photon absorption is shown to be
a change of less than 20% for GaAs and 3% for InSb.

The two-photon absorption for circularly polarized
light is predicted to be less anisotropic than that for
linearly polarized light. An incremental dichroism pa-

rameter is defined in terms of the nonlinear susceptibili-
ties, in a manner similar to the anisotropy parameter; the
relative TPA coefficients are conveniently expressed in
terms of these two parameters. The linear-circular di-
chroism is predicted to less than 1.3 for GaAs at all
relevant frequencies.
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