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We present a study of the effect of strong electron-phonon coupling on the levels of the *D term of
Fe?" in II-VI zinc-blende semiconductors. The nonperturbative approach leads to a dramatic decrease
of the level spacings of the °I's manifold of Fe?* in a tetrahedral environment. The results allow us to
propose a mechanism for those absorption lines in the excitation spectrum of Fe** in CdTe which are
not attributed to zero-phonon lines deduced from crystal-field theory. It is also shown that transitions
between the crystal-field split states of Fe** can be explained on the basis of mixing of 3d° states with

odd-parity states of higher configurations.

I. INTRODUCTION

The optical properties of transition-metal ions in II-VI
compounds have been the object of many studies' since
the 1960s. In the past decade, this subject has received
renewed attention as part of a program of investigations
on the optical and magnetic properties of alloys of II-VI
semiconductors, denoted here by 4B, with compounds of
the form MB; here A and B are elements of the second
and sixth columns of the Periodic Chart of the elements,
respectively, and M is a transition metal of the iron
group. The resulting alloys are described by the formula
A,_ M B and are called diluted magnetic semiconduc-
tors? (DMS’s).

Even though the results of this paper are concerned
with the interpretation of the near-infrared absorption
spectrum of a specific DMS, namely Cd,_, Fe,Te, for
x << 1, the methods used are applicable to other DMS’s.
Studies of this material have been carried out by Slack,
Roberts, and Vallin,' by Slack, Ham, and Chrenko® and,
more recently, by Udo et al.* The present work contains
two parts. The first gives an estimate of the oscillator
strengths of near infrared transitions between states origi-
nating from the lowest term of Fe?™ modified by the
effect of the crystal potential. The second deals with an
alternative interpretation of some of the near-infrared
lines observed in Cd,;_,Fe, Te which were ascribed to
Fe’" complexes in Ref. 4.

The lowest-energy term, 5D, of Fe2* substituting a Cd
atom in CdTe is subjected to an electrostatic field (crystal
potential) of tetrahedral symmetry® (point symmetry T).
Since the crystal field is much stronger than the spin-
orbit interaction, neglecting the latter leads to a splitting
of the °D term into a T'; orbital doublet and a °T's orbital
triplet, the former having lower energy than the latter.
The spin-orbit interaction splits these manifolds further
as follows. The tenfold °T'; separates into five approxi-
mately equidistant levels of symmetries '}, 'y, T35, Ty,
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and I, listed here in order of increasing energy. Similar-
ly, the fifteenfold manifold °I's splits into T's, Ty, T3, T's,
Iy, and I'| levels also listed in order of increasing energy.
The calculations of the energy spectrum just described
have been carried out! within the framework of the
crystal-field theory, the energies of the different levels be-
ing characterized by two parameters®: the crystal field
splitting, A, and the strength of the spin-orbit interaction
A. Here A=E.—E, is the energy separation of the
T's(€) and °T'5(y) multiplets prior to the introduction of
the spin-orbit interaction.

The crystal-field splitting can be described by a single
parameter because the T, symmetry of the magnetic ion
site requires that the crystal potential around the Fe?*
ion be of the form

V(r)=a'3xyz+a;(x4+y4+z“—%r4)+ (1)

where the terms omitted are polynomials in powers of
x,y,z higher than four. The coordinates x,y,z are the
projections of the position vector on the cubic axes of the
CdTe zinc-blende structure. A constant term, giving rise
to uniform shifts of the energy levels, has been disregard-
ed. The perturbation on the Fe?' ion is, of course,
>.V(r,) where the sum extends over all the electrons in
the ion. The matrix elements of the cubic term ¥ ,x,y,z,
vanish between any two states in the 3d® configuration
because of their even parity. Thus, aj contributes to the
crystal-field splitting only in second order arising from
mixing into the 3d° states those from configurations hav-
ing odd parity. In Sec. II we investigate the significance
of this mixing in the explanation of the mechanism of op-
tical absorption between the perturbed 3d° states. The
fourth-order potential has nonvanishing matrix elements
between 3d° states but terms of sixth and higher powers
in the coordinates yield zero matrix elements by virtue of
the Wigner-Eckart theorem.

The parameter A is directly proportional to aj and is
given by
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A=—(4a,/21)(r*) , )

where (r*) is the average of the fourth power of the ra-
dius vector over the 3d radial wave function of the ion.
Within the framework of the point ion hypothesis, taking
only the four nearest-neighbor anions into account,

a,=—(35z¢2/9R?) , 3)

where z is the effective charge on the anions and R the
anion-cation distance (R =2.8 A in CdTe). Taking z =2
and (r*)=4.496 atomic units’® we find A=352 cm .
Experiments"* show that A=~2470 cm ™' indicating that
CdTe is only partly ionic and possesses a significant co-
valent electron density between anions and cations. This
matter will receive additional attention in Sec. II.

Section II is devoted to an analysis of the optical tran-
sitions between levels in the °T'; and °T's manifolds and,
in particular, to the comparison of the experimentally es-
timated oscillator strengths with those predicted by
theory. We conclude that the transitions observed in the
near infrared are electric-dipole-induced by mixing of the
3d and higher, odd-parity, configurations. This result is
in agreement with the relative intensities deduced from
symmetry considerations alone discussed in Ref. 4.

In Sec. III we investigate the interaction of the 3d elec-
tronic states of the Fe’* ion and the vibrations of the
crystal. The lattice vibrations will be classified according
to the irreducible representations of the symmetry group
of orthogonal transformations around the magnetic ion
rather than according to the space group of the crystal.
In this manner, each mode is a superposition of phonons
belonging to different points of the fundamental Brillouin
zone (BZ) of the crystal. These points are obtained from
one another by application of the operations of the point
group of the cation site. Thus, each mode considered
here belongs to a star of values of the wave vector within
the BZ. The decomposition of the phonon modes accord-
ing to the point group T, for a few high symmetry points
of the zinc-blende BZ is given in Table I where we also
list the corresponding phonon frequencies for CdTe.

The main purpose of Sec. III is to discuss the interpre-
tation of those near-infrared absorption lines in
Cd,_,Fe, Te which cannot be accounted for purely
within the framework of crystal-field theory. They are
reported in Refs. 1 and 4 and are labeled X and Y in the
latter (see Fig. 3 of Ref. 4); their origin was tentatively at-
tributed to the formation of Fe?* complexes such as pairs
of Fe’* ions coupled antiferromagnetically. In Fig. 4 of
Ref. 4 spectra are shown in which additional lines labeled
I1, 111, and IV appear. These originate from transitions
between thermally populated excited states of the T
multiplet and the lowest I's level of the °I's multiplet.
Again, associated with line II there is a line, X, which
bears the same relation to II as X; does to I. Thus, we
conclude that X; and X|; share the same final state.

In this work we attribute the X and Y absorption lines
to transitions from states in the °T'y multiplet to vibronic
states associated with the °I's multiplet. The Fe?™" states
in the upper multiplet can interact with I's and 'y pho-
nons while the states in °T"; can only couple with " 3 pho-
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TABLE 1. Phonon modes at high symmetry points in the
Brillouin zone, their decomposition according to the point
group of the site and their energies for CdTe.

Phonon T, Energy

modes decomposition (em™)) Source
TA(X) ol 35.0 a
LA(X) | QA 125.0 a
TO(X) rers 148.7 a
LO(X) el 133.3 b
TA(L) I'elols 29.3 a
LA(L) rerl; 108.3 a
TO(L) elrels 144.3 a
LO(L) I'erls 144.3 a
TA](K) Fz@ F3@2F4® F5 36.7 a
TAz(K) rl® F;@ F4@2F5 52.7 a
LA(K) rer;ele2ls 105.4 b

2J. M. Rowe, R. M. Nicklow, D. L. Prince, and K. Zanio, Phys.
Rev. B 10, 671 (1974).

®Numerical Data and Functional Relationships in Science and
Technology, edited by O. Madelung, M. Schulz, and H. Weiss
Landolt-Bornstein, New Series, Group III, Vol. 17, Pt. b
(Springer, Berlin, 1982), pp. 227, 319, and 459.

nons. In principle, all phonons of these symmetries
should be considered regardless of their origin in the BZ
when described as traveling waves. However, according
to Ham, Schwarz, and O’Brien,’ it is often a good ap-
proximation to replace the spectrum with a single pho-
non of each kind whose frequencies are suitable averages
over the whole phonon bands.

We note that, in the spectrum in Fig. 2 of Ref. 4, the
structure to the left of the Y line can be interpreted as
electronic transitions of type I accompanied by emission
of phonons identified with modes at several high symme-
try points in the BZ. However, the transverse acoustic
phonons (TA) appear to be absent from these features.
The presence of TA phonons at the X, L, and K points of
the BZ possessing I's symmetry in their decompositions
suggests the consideration of vibronic states resulting
from the interaction of electronic levels of the °T's multi-
plet with TA (T'5) phonons and their overtones.

Ham'® has shown that a Jahn-Teller coupling stronger
than the spin-orbit interaction can lead to a drastic
reduction of the separation of the levels deduced from
crystal-field theory. In a study of the ‘I’ 4 orbital multi-
plet of Co®t in ZnSe, Uba and Baranowski!! have
worked out the vibronic states formed by the electron
levels interacting with a phonon mode of symmetry Ty
and its overtones. They considered a TA (I";) phonon of
energy #iw=72 cm~ ' at X in the BZ where the density of
phonon states exhibits a peak. Coupling this phonon and
its overtones up to order 20 with the ‘I, Co®™ orbital
levels, they obtained vibronic states separated by consid-
erable less energy than fiw. In fact, for a sufficiently
strong Jahn-Teller energy this difference in energy can
even approach zero.

In Sec. III we consider vibronic states resulting from
the coupling of the °T's levels with a single-phonon mode
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of symmetry I's. We use for the Jahn-Teller energy the
value Eyr =255 cm ™! deduced for Cd, _, Fe, Te by Slack,
Ham, and Chrenko.> However, in our study both Ejp
and the phonon energy fio were adjusted to obtain the
best fit to the positions of the X; and Y lines. This was
achieved with the value of Ej; just quoted and #iw~40
cm~!. The number of phonons in the overtones was
varied up to N =12, a value for which satisfactory con-
vergence was achieved for the lower eigenvalues in the
°T's manifold.

We also investigated the possible formation of vibronic
states by I'; phonons interacting with the *I'y multiplet of
Fe?™ in an attempt to account for a feature observed in
transmission in line II of Cd,_,Fe,Te for a thin sample
having a Fe?' concentration of 1.0X 10" cm™3. This
feature appears in Fig. 6(b) of Ref. 4 where line II shows
a clear splitting of about two wave numbers. In order to
account for this separation in terms of the Jahn-Teller
effect it was necessary to take fiw=29.3 cm !, corre-
sponding to a TA(L) mode and E;; =26.4 cm™ !, a value
much larger than that considered by previous au-
thors.!>!? This hypothesis becomes untenable, particu-
larly in the light of the additional changes in the spec-
trum that would be required and would alter the agree-
ment between crystal-field theory and the observations of
Ref. 4. Furthermore, since such an hypothesis would al-
ter the ordering of the levels in the T’y manifold, the
agreement between theory and experiment!* !¢ with re-
gard to the anisotropy of the nonlinear magnetization of
Cd,_,Fe,Te in strong magnetic fields would have to be
abandoned. Other choices of the phonon energy and of
E 1 proved equally unsuccessful. Thus, we conclude that
the splitting of line II mentioned above cannot be attri-
buted to a Jahn-Teller effect.

<1"*‘(Llsl)1';L'S',Mng
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II. ELECTRIC-DIPOLE TRANSITIONS
BETWEEN STATES IN THE 3D
CONFIGURATION OF Fe?*

Electric-dipole transitions between 3d° levels in the
free Fe’™ ion are forbidden by parity considerations.
However, in a zinc-blende crystal the parity nonconserv-
ing part of the T, potential, namely a3 ,x,y,2,, mixes
the 3d® states with configurations of odd parity and,
thereby, renders 3d®—3d® transitions electric-dipole al-
lowed. In order to estimate the oscillator strengths of the
observed absorption lines we consider here mixing of the
orbital °T'; and T’ states of 3d® with states in the 3d°4p
and 3d°4f configurations only. We shall disregard the
splittings of the terms in the latter two configurations un-
der the influence of the crystal potential because the re-
sulting energy separations are small compared to their
energies measured from the ground state. We shall even
neglect the energy separations between the different
terms in those configurations because terms in the 3d°4p
configuration lie above 3d® by about 1.2X 10° cm ™! and
the energy of a typical 3d°4f term is ~1.9X10° cm ™!
above the ground state of the ion, these energies being
large compared with the term splittings.

Denoting by A the vector potential of the incident ra-
diation, and by —e, m, and ¢ the charge and mass of the
electron and the speed of light, respectively, the photon-
ion interaction is

e

e A § P. » (4)
where p, is the momentum operator of the ath electron.
The matrix element of p=3,p, between the states
|1 LS,M; M) and |I" "Y(L,S|)I';L'S’,M; M) is given
by17

l";LS,MLMS>=n V2(m=\Y(L,S);LS|}I"LS)

X" THLSOISL'S", My Mg |py 1" "NL S ILS, M M) . (5)

Here || LS, M M S) is a state in the LS term of the n-electron /" configuration (for 3d $1=2,n=6,M 1 and My are
the eigenvalues of the projections of the operators L and S on an arbitrary direction (usually denoted by Z, in this paper
we shall take £ along one of the cubic axes of the crystal) and |I" ~}(L,S)I’;L'S’,M; M) is a state in the L'S’ term of
a configuration obtained adding a !’ electron to the L,S; term of the /" ~! configuration. The symbol
(I""YL,S)I;LS|}I% LS ) stands for a coefficient of fractional parentage (cfp). The cfp’s are the prefactors in the ex-
pansion of a wave function belonging to the LS term in a [" configuration as a linear combination of those resulting
from the addition of a [ electron to the LS, term of the /" ! configuration. Tabulations of the coefficients of fractional
parentage for d” configurations have been given by Racah'” and are also quoted by Slater!® for n <5. For n >5 we use
the relation'’

1/2
4l +1—niprgryg. 4l +2—n. (1 LH+L+S+5'—1—(1/2) (n+1)2L"+1)28"+1)
<l (LSLLSI)! LS)=(=1) (41 +2—n)2L+1)(2S+1)
X (IMLS);L'S' |} 1" 5L'S") . (6

Equation (5) reduces the calculation of the matrix elements of 3,p, to that of a single-electron operator, in this case,
say, p;- We note that, even though Eq. (5) is written for the total electron momentum, it is valid for any symmetric
operator of one-electron observables. This result can now be applied to the crystal potential which may be expanded in
terms of irreducible tensor components as
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o

k
V=3 3 APvPm). )

k=0k=—k

Since we are considering mixing of 3D(3d®) with 3d°4p and 3d°4f we keep only the odd xyz term in V(r).
But xyz=—i(2m/105)"2r3Y}(6,4)— Y3 2(6,4)] so that we set A3 =—ia}(2m/105)12=A4C% and V)(r)
=r3Y5$2(6,¢4). We note that V(r) does not depend on spin so that we need only consider terms with S=2. Further-
more, as indicated in Eq. (5), the matrix elements of ¥ p, as well as those of 3,V (r,) are diagonal in the quantum
numbers M and independent of their values. Since V''?) behave as F functions, it appears, at first sight, that we are re-
quired to mix the 3D states with terms having L'=1, 2, 3, 4, and 5. However, since we only require the matrix elements
of p between perturbed states it is enough to restrict L’ to 1, 2, and 3.

The matrix elements of 3,V (r,) are obtained with the aid of the Racah formalism and the Wigner-Eckart
theorem. Omitting Mg and Mg, which, for nonvanishing elements must be equal, we have

(1";2”‘LML pRSUCH l""(zs'HLl)l’;ZS“L’M,’_>
a
== T g LS (17 YL, S LS Y[n(2L + 1)(2L +1)] 12
XV RN YWILI'L ;L k) L'k ®)
1 _ML Mi K

In Eq. (8) the terms are designated by 25+171 and the last three factors are, respectively, the reduced matrix element of
V¥ =pky%(6,¢) which appears in its usual form in the Wigner-Eckart theorem, the Racah coefficient W(ILI'L';L k)
and a 3;j symbol. The quantity {I||V*¥||I’} is equal to the product of {/|r*|I’) and (I|Y'¥|I") where (I|r*|I") is the
matrix element of r* between radial wave functions'® corresponding to angular momenta / and /' and (l!l Y1) is the
reduced matrix element?®® of a spherical harmonic of order k. The pertinent terms in the 3d°4p and 3d°4f
configurations, the appropriate cfp’s and the Racah coefficients necessary to calculate the matrix elements of V') and p
between these terms and the ground term, 3d®(°D), are listed in Tables II and III. The orbital °T'; states of the D term
are y;=|0) and y,=2"'/%(]2) +|—2)) which behave as 2z2—x?—y? and V'3(x2—y?), respectively. Similarly, the °T's
orbitals are e, = —2" V(1) +|—1)), ,=i27 12| —=1) —|1)), and €;=27"/*(|2) —|—2)) which behave as yz, zx, and
xy, respectively. Here |M; ) designates the eigenvectors of L, for L =2 (M =2,1,0,—1,—2). To calculate the oscilla-
tor strength for a transition *I';—°T's we consider the z component of p. The cubic symmetry ensures that that is all
that is required. Since p,|y,) belongs to the third row of I's it is enough to calculate {¢€;|p,|y,). However, we need to
obtain the mixed states 7, and €, from standard perturbation theory.?! We find

(e3|p,|i)<i S V(r,) 7/,> <e3 3 vir,) i>(i|p2|yl)
(#lp.17)=3 : +— ©)
I < E,—E, E.—E;
We now use
Hy, 3z, |=—(ifi/m)p, ,
a

TABLE II. Terms in the 3d°4p configuration needed for the analysis of the oscillator strength of
SI';—°T's transitions of Fe?" in a tetrahedral field. The appropriate coefficients of fractional parentage
(cfp) and Racah coefficients are displayed.

Term cgp Racah coefficients
sp® L)) (a%:p{1a% > "'L))d;’D) W(221L%L,1) W(221L%;L,3)
SP(6S) 5—1/2 15“1/2 15—[/2
SP(4P) __lovl/Z _20—1/2 45—1/2
SP(dp) 6‘1/2 1041(_‘3/_)!/2 5—1(21)—1/2
SD(4P) _10—[/2 ]0—1 5—1(%)1/2
SD(4D) 6—1/2 _10—1(%)1/2 5*1(%)1/2
SD(4F) _(37_0)1/2 5—2(%)1/2 35»1
SF(4D) 6~1/Z 5-1(21)—1/2 (%)6_1/2
SF(*F) —(L)2 —(105)7!7 77HFN?

SF(4G) (%)1/2 (35)—1/2 (21)—1(10)—1/2
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TABLE III. Terms in the 3d°4f configuration needed for the calculation of the oscillator strength of

ST';—°Ts transitions of Fe?*
(cfp) and Racah coefficients are displayed.

in a tetrahedral field. The appropriate coefficients of fractional parentage

Term cfp Racah coefficients

spo STl 6.5 525+ 5 ) ,

L'( L)) (d%*D{ld*( L,)d;’D) W(223L";L 1) W(223L";L,3)
*P(*D) 672 57212 (£)6'7?
P(*F) —(L)'"? —(105)"12 7N
P(G) ()72 (35)7172 (21)"'107172
SD(*P) —107'2 —157! =571(3)1”72
SD(4D) 6‘1/2 5 (7)l/2 (70) 161/2
D(*F) —()"? (;)”’ 107!
SD(4G) (Tfio_)l/z 3~ 1( /) (14)<13—1/2
SF(5S) 57172 (35)° <35)‘"“2
F(*P) —10717 %)(%) “(70)717
F(*D) 67172 (£)6'? (7—‘)6 12
F(*F) — ()" —(7 (2 (2)15717
SF(4G) (%)I/Z (21)'*1(_5_1)1/2 (21)‘1(%)1/2

where H, is the Hamiltonian whose eigenvectors are |i ), v and €; (see Ref. 21), and the completeness of the intermedi-

ate states |/ ) to obtain

2mmAaj
€ 7 [ — E. —E. -1 (D)
(@&lp.l7)=— s ;( ,—E) 2|z}
In Eq. (10)
Uy =3 rYi(6,,6,)=3 Vy(r,) (1
and
=3r, Y(6,,6,)=(3/4m)'"*3 z, . (12)

These results are obtained after replacing €; by its value
in terms of |M; ) and collecting the terms involving U}
and U'3) using the properties of the matrix elements.?
For intermediate levels in the 3d°4p and 3d°4f
configurations, the energy difference between E; —E,, and
E,—E_, namely A, is small compared to the quantities
themselves and, furthermore, a small error is made if we
disregard the energy differences between the terms in
each of the above configurations. Thus, in the summa-
tion over intermediate states in Eq. (10) we can replace
the energy denominators by AE,, and AEdsf the average

energies above the ground state of the233d 4p and 3d°4f

configurations. These quantmes are, approx1mately,
1.2X10° cm ™! and 1.9X 10° cm ™!, respectively for Fe? "
With these approximations we can write
(el 17) 2mAa)
? oY ~ =
3Pz 1Y 35ﬁ\/3
< |— (3d|rlap){4plr’|3d)

<3d| l4f)<4f|r’3d)

13
AL, (13)

UL 10) +HE, —E) QUi GIZP10) +e.c. | . (10)

The contributions to the transition matrix elements from
virtual excitations of states in higher configurations such
as 3d°5p and 3d°5f can be neglected because their
effective radii exceed the anion-cation distance (thereby
becoming inappropriate energy levels of the ion in the
crystal host) and their energies above the ground state are
larger than those considered above. The oscillator
strength of the y,— €; transition is

2
2mA
f}"**G ﬁ <63 22 >
z8mAa'32 (3d|rlap){4p|r3|3d)
3675%# AEy,

Gdlrlas)arirzd) |
AE,

An estimate of the matrix elements of 7 and r* between
the radial wave functions |3d ) and |4p ) on the one hand
and |3d ) and |4f ) on the other can be given as follows.
Using the experimentally measured ionization energies of
Fe’' and equating them to Ry(z*/n)* where Ry is the
Rydberg and » the principal quantum number of a partic-
ular state we find an effective charge z* for each level.
This charge can be viewed as the combined effect of the
nuclear charge and of the screening of the remaining elec-
trons in the ion and equals 4.502, 4.305 and 2.886 for the
3d, 4p, and 4f electrons, respectively. Using hydrogen-
like radial wave functions (modified by the effective
charge z *e) we obtain



49 NEAR-INFRARED TRANSITIONS IN IRON-BASED DILUTED . ..

(3d|r3|4p ) (4p|r|3d)=2.581
and
(3d|r3laf)(4f\r|3d ) =34.793

in atomic units.

In the point ion model a}=(20/V"3)(ze?/R*) where,
as before, z is the ionic charge and R the anion-cation
nearest-neighbor distance. The oscillator strength is

(64z2A /441R *)[(AE,,) "' (3d |r|4p ) (4p|r®|3d )
—(AE,) " (3d|rlaf ) (4f1r313d) T,

where it is understood that all quantities are expressed in
atomic units (A=0.01125, R =5.2912, AEd =0.5468,
AE,;;=0.8657). We obtain f, ,=1.3X107". If we as-
sume that the charge density, being partly covalent in ori-
gin, possesses a center of charge at R =2 A obtained
from the ratio of a; deduced from experiment instead of
from the point ion hypothesis, f,_, . becomes of the order
of 2X10™* The experimentally estimated value of the
oscillator strength! is 2.9X107°. It must however be
borne in mind that our calculated value represents the to-
tal oscillator strength of the transitions from °T'; to °T's
so that the agreement between measured and calculated
values of the oscillator strength is rather satisfactory.

III. VIBRONIC STATES

As mentioned in the Introduction, the second objective
of this work is to provide a possible mechanism to ac-
count for the X and Y lines in the near infrared spectrum*
of Cd,_,Fe Te. We investigate the consequences of the
assumption that there exists a strong coupling between
the Fe?*°T'5 manifold and a I's phonon.

In first order of the atomic displacements, the
electron-phonon interaction can be expressed in the gen-
eral form

H,=3 3 ViP5 . (15)

a avi

Here, the normal coordinates Q¢ of the vibrational
modes and the electronic operators are classified accord-
ing to the irreducible representations of the group of the
lattice site occupied by the magnetic ion. In Eq. (15) T,
denotes one of the irreducible representations of the
group (to fix the ideas, in our case this group is T;), A is
one of the rows of the representation I, (A=1,2,...,1,)
and a is an index corresponding to the enumeration of
the possible modes having symmetry I',. The expecta-
tion value of H,, vanishes in a non-degenerate electronic
state since the complete Born-Oppenheimer vibrational
energy is of second order in the atomic displacements.
However, the matrix associated with H,, for a degenerate
level possesses, in general, nonvanishing, off-diagonal ele-
ments which may lead to a splitting of the energy levels.
Consider, e.g., a level belonging to I', with degeneracy
[, > 1 and denote the orthonormal electronic states by ;,
(i labels the irreducible representation I'; of the level and
k=1,2,...,1;, the particular row to which ;, belongs).
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The potential energy as a  function of
Q¥ (A=1,2,...,1,) has a minimum when all Q’s vanish.
We denote this energy by U,(Q). The matrix elements of
H,, between ¢, and ¢, are

<¢iK'|Hep’¢iK):2 Vi(a)Q‘a)<FiKI'rvri;)‘K> . (16)

avA

Here V™ is a reduced matrix element depending on T;
and I', only and not on the row indices A, «, and «’. All
dependences on these indices is contained in the
Clebsch-Gordan coefficients (called coupling coefficients
by Koster et al.’) of the group written here in the form
(T;k'|T,T;;Ax). These are determined unambiguously

if the group is simply reducible which is, in fact, the case

for the single-valued representations of T,;. The matrix
Hamiltonian for the whole system is
<¢ik’1Hl¢in‘> = UO(
+3 V“’” (T |T, T Ak ) (1n
avi

The new eigenstates are obtained diagonalizing the ma-
trix (17). To each eigenstate there is associated a poten-
tial energy surface in Q space which, because H,, is linear
in the coordinates Q, possesses, in general, several mini-
ma at positions other than Q=0. The arrangement of
atoms is then distorted with respect to that in the high
symmetry configuration giving rise to the Jahn-Teller dis-
tortion.

For example, consider a single (degenerate) phonon
level of symmetry I' ;. The matrix (17) takes the form

2
HO=S, | ot ho0} |+V S 0.M,
T2 2
-zﬁw(a;\a;\ +K2 a;\+ak)M . (18)

Here P, is the momentum variable canonically conjugat-
ed with Q;,u an appropriate reduced mass and a l(a; ), a
destruction (creation) operator of a phonon belonging to
the A row of I',. V is the coupling constant which, by
convention, is selected positive, M, is the matrix formed
by the Clebsch-Gordan coefficients (T';«'|T,T;;Ax) for
each A. The parameter K equals V(#/2uw)/?.

For an electronic level belonging to the I's irreducible
representation of T, interacting with a I'5 phonon,

000
M=2""210 0 1|,
010
001
M,=2""210 0 0], (19)
100
010
M;=2""2|1 0 0
000

Here the M, (AL=1,2,3) are referred to a basis transform-
ing as x,y,z where these are the coordinates of a vector
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TABLE 1V. Reduction of the completely symmetric repre-
sentations [T'Y] for a ['s(T;) phonon N < 12. The coefficients in
the reduction [TY]=37_,a/V'T; are listed.

i=1

N al™ ah al™ a® al™
1 0 0 0 0 1
2 1 0 1 0 1
3 1 0 0 1 2
4 2 0 2 1 2
5 1 0 1 2 4
6 3 1 3 2 4
7 2 0 2 4 6
8 4 1 5 4 6
9 3 1 3 6 9

10 5 2 7 6 9

11 4 1 5 9 12

12 7 3 9 9 12

referred to the cubic axis. The minima of the potential-
energy surfaces equal — V?/3uw and occur at
(VV2/3uw?) along [111], [111], [111], and [TT1]in Q
space. The quantity (V2?/3uw®)=(2K?*/3#fiw)=E; is
called the Jahn-Teller energy.

The coupling between the electronic and phonon states
is carried out as follows. We consider a phonon mode of
symmetry ', and degeneracy [,. The overtones are

characterized by the non-negative integers {n;}
(A=1,2,...,1,) and expressed in the form
1 —1/2 I
lnyng, . om Y= | T ny! I (al)™10) (20)
A=1 A=1

where |0) is the zero-phonon state. For an overtone of
order N=3,n,, these states generate a representation of
the point group obtained by forming the completely sym-
metric direct product of T, taken N times. For [, =3 this
representation is of dimension (N +1)(N+2)/2, and is,
in general, reducible. Table IV shows the reduction of
[TY] (of T,) for N=1,2,...,12. Using the method of
projection operators we also find the symmetrized over-
tones. The first few are displayed in Table V.

The vibronic states are constructed forming the direct
product of the electronic states in the *T's multiplet and
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symmetrized overtones of the I's phonon for N =12.
This results in a classification of the vibronic states ac-
cording to T,;. There are 295, 271, 566, 840, and 864 vib-
ronic states of symmetries I'y, I',, I'5, 'y, and T's, respec-
tively. To study transitions originating from the T,
ground state it is enough to consider (N =12) the 864
vibronic states of symmetry I'5 and the two zero-phonon
states of the same symmetry in the °T's electronic mani-
fold. The classification and the wave functions of the 866
I'5 states was obtained by symbolic calculation on a com-
puter using the Clebsch-Gordan coefficients® for the point
group T,;. The energy eigenvalues and eigenvectors of all
the 5 levels were obtained by numerically diagonalizing
the 866X 866 matrix associated with these states. For the
numerical calculation the crystal-field parameters given
by Udo et al.*?** were used and E,; and #iw were varied
in such a manner as to attain agreement with the spac-
ings of the I, X;, and Y lines in Ref. 4. The value of
Eyr=255 cm ™!, deduced by Slack, Ham, and Chrenko,’
turned out to provide the best fit, was fixed, and #iw was
varied. The best agreement with the spacing of the I, X,
and Y lines was obtained with %w~40 cm ™! which may
be regarded as an average TA phonon energy at high
symmetry points in the BZ. Table VI shows the values of
the energies obtained and their comparison with the ex-
perimental data of Udo et al.* We note that the diago-
nalization yields an additional line close to the position of
the third transition observed. In analyzing the relative
oscillator strengths we shall see that this line reproduces
a further feature of the absorption spectrum. In Fig. 1
we show how the first few energy levels obtained depend
on the choice of N,,. The figure shows that for
Noax =12 the energies approach well defined values
thereby justifying this selection.

Figure 2 shows the behavior of the first few levels as
functions of E;r for #iw=39.7 cm™'. E| is the energy of
the zero-phonon line corresponding to the lowest I'5 level
in the °T's manifold and E; represents the energy of the
vibronic states associated with that level. As can be ob-
served in this diagram the energy levels exhibit a linear
behavior as a function of Ey; for small values of this en-
ergy but become strongly nonlinear for values of

Ey;>200 cm™!. This means that for E;;~255cm™ ' a

TABLE V. Symmetrized overtones of a ['s(T,;) phonon of order N (0N =3).

N Irreducible representation State

0 T, |0,0,0)

1 s [1,0,0),l0,1,0),/0,0,1)

2 r, (1/v3)(]2,0,0) +10,2,0) +10,0,2))

2 T, (1/v'6)(12,0,0)+10,2,0) —2[0,0,2)),

(1/v2)(10,2,0) —12,0,0))

2 s l0,1,1),11,0,1),]1,1,0)

3 T, 1,1,1)

3 T, (1/v2)(11,2,0)—[1,0,2)),(1/v'2)(|0,1,2) —[2,1,0)),
_ (1/v2)(12,0,1)—10,2,1))

3 s (1/v2)(11,2,0) +11,0,2)),(1/v2)(12,1,0) +10,1,2}),

(1/v2)(10,2,1) +(2,0,1))
13,0,0),10,3,0),10,0,3)
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TABLE VI. Experimental positions of line I and three addi-
tional lines (X;, Y, unlabeled) in the absorption spectrum of
Cd,_,Fe,Te compared with the result obtained for transitions
from the ground state to the lowest zero-phonon I's line in the
T's manifold (line I) and the vibronic levels resulting from
strong coupling with a ['s5(T,;) phonon. The phonon energy is
#»=40 cm ™! and the Jahn-Teller energy, E;z =255 cm ™.

Observed transitions? Calculated transitions

(ecm™Y) (cm™)
2282.8 2282.8
2293.8 2295.3
2309.0 2308.2
23119
2317.8 23214
2See Ref. 4.

perturbative approach to obtain the energy levels is not
appropriate and one must turn to a diagonalization over
a relative large number of vibronic states to obtain
significant results. Figure 3 shows a detail of Fig. 2 show-
ing the lowest-energy vibronic states and their symmetry
classifications.

The relative oscillator strengths for transitions from
the ', ground state in the lower °I'; multiplet to the cal-
culated vibronic states were obtained next. Since we do
not consider vibronic coupling for the lower manifold,
the ground state has complete zero-phonon character
and, thus, it has nonzero electric-dipole matrix elements
with only the zero-phonon part of each of the I's vibronic
states obtained above. It is then a straightforward matter
to obtain the relative oscillator strengths by applying the
Wigner-Eckart theorem and factoring out the reduced
matrix element. Figure 4 shows an histogram of the rela-
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FIG. 1. Energy of the first few vibronic levels as functions of
N ,.ax, the largest order of the phonon overtones. The phonon
energy and E;r were selected equal to 40 and 255 cm ™!, respec-
tively. Parameters appropriate for Fe’* in CdTe as given in
Ref. 4.

2415

120 §

100 |

0~"50 100 150 200 250 300 350
Ejr(cm™)

FIG. 2. Variation of the energy difference of the first few vib-
ronic levels belonging to any irreducible representation of T, of
Fe?* in Cd,_,Fe,Te as functions of the Jahn-Teller stabiliza-
tion energy Ejr. Interaction with a single I's phonon of energy
#iw=40 cm ™! is assumed.

tive oscillator strength for the whole spectral region con-
sidered in this work. In order to relate these values to the
observed spectrum we consider only the first few lines
and assign to them a Lorentzian line shape with widths
estimated from the experimental results. The intensities
are those obtained in the calculations presented in this
work. The transmission spectrum obtained, adjusted at
the single point for energy 2250 cm ™!, is shown in Fig. 5
where it is compared to the experimental result of Udo
et al* As can be seen the agreement is rather satisfacto-
ry, particularly since the shoulder on the third line ob-
served, which was not taken into account in the fitting, is
also reproduced in the calculated spectrum.

40

35

T

30

LN A

25

20 F

E; — Ei(cm™?)

15 F
5 ANNZ
10

5

0

;

b

i Ms

0 50 100 150 200 250 300 350
Ejr(cm™)

FIG. 3. Detail of the lowest-energy vibronic modes of Fig. 2
including their symmetry classification.



2416 VINCENZO SAVONA, FRANCO BASSANI, AND SERGIO RODRIGUEZ 49
o007}
5 0.06 | 25 T "
> I Vs X
o
2 0.05 | 5 R
e i 2 20 | b -
N 7 Hoh 7
p 0041 = AV
g 0 é I
n r 15 I '
L < 1 [

Z 003 | o b
; : & b
= 002 5 ok {oL

0.01 l ]

5 |
o Lk Llul .L ol Ll Lll N
2300 2400 2500 2600 2700
ENERGY (cm™1) 1 ! !
9750 2275 2300 2325 2350

FIG. 4. Histogram of the relative intensities of transitions
from the zero-phonon ground state of Fe?* in CdTe to vibronic
states associated with the °T's electronic manifold. N, =12.

IV. CONCLUDING REMARKS

This paper shows that the experimental estimates of
the oscillator strengths of Fe?* in CdTe can be explained
by taking into account the mixing by the T, crystal field
of states in the 3d® °D term of Fe’' with odd parity
states in configurations such as 3d°4p and 3d°4f. Fur-
thermore, we have shown that it is possible to interpret
the lines labeled X and Y in the work of Udo et al.* as re-
sulting from a strong coupling of states in the °T's states
with TA phonons of I'5 symmetry. The vibronic states of
total symmetry I's yield energy levels lying closer to the
lowest electronic, zero-phonon I' state than would be ex-
pected in a simple perturbative approach. This effect can
be expected when there is a strong Jahn-Teller stabiliza-
tion energy.

In Ref. 4 lines X; and Y were attributed to transitions
between states of pairs of Fe’' ions coupled antifer-
romagnetically on the basis of the dependence of the in-
tensity of the observed lines on Fe?* concentration. The
quantum states of pairs of Fe?' are expected to occur in
manifolds centered at the approximate energies 0, A, and
2A where the lowest levels are, arbitrarily, set at zero en-
ergy. This result is consistent with a preliminary calcula-
tion of the energy levels of Fe’* levels in CdTe assuming
an exchange coupling of 30 cm ~!. The determination of
the transition probabilities is in progress and will allow a
quantitative comparison of the two proposed mechanisms
for these transitions.

Ham and Slack® considered the coupling of the Ty
electronic levels of Fe?™ in cubic ZnS with I'; phonons.
A study by Martinelli, Passaro, and Pastori-Parravicini?®
also makes use of coupling with phonons of I'; symmetry.
In the present work we focused on the coupling of the °T's

ENERGY (cm™)

FIG. 5. Comparison of the experimental percent transmis-
sion for a sample of Cd,_,Fe,Te at T=2 K (Ref. 4) with the re-
sult of the calculations described in the present work. We con-
sider vibronic states originating from the °T's electronic mani-
fold of Fe’* in Cd,. Fe,Te and I's(T,) phonons of energy
fio=40 cm™'. E;1=255 cm~'. The theoretical result is given
by the solid curve. The experimental curve, taken from Ref. 4,
is dashed and has been displaced upwards for clarity. The
theoretical curve was obtained using the calculated relative ab-
sorption coefficient and assuming Lorentzian shapes whose
widths equal those of the experimentally observed lines. The re-
lation between the absorption coefficient and the transmission
coefficient is 7=1Iy(1—R )*[exp(at)—R2exp(—at)]”"' where R
is the reflectivity, and ¢ the thickness of the sample. The experi-
mental curve displayed here and the parameters involved are
those in Fig. 3(a) of Ref. 4.

levels of Fe?™ with phonons of ['s partly basing our hy-
pothesis on the fact that the coupling of I'; phonons with
the T, states of Fe?* appears to be weak.2’
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