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A fermion-spin transformation is used to implement the charge-spin separation, and is developed
to study the low-dimensional t-J model. In this approach, the charge and spin degrees of freedom
of the physical electron are separated, and the charge degree of freedom is represented by a spinless
fermion while the spin degree of freedom is represented by a hard-core boson. The on-site local
constraint for single occupancy is satisfied even in the mean-field approximation and the sum rule
for the physical electron is obeyed. This approach can be applied to both one and two-dimensional
systems. In the one-dimensional case, the spinon as well as the physical electron behave like Luttinger
liquids. We have obtained a gapless charge and spin excitation spectrum, a good ground state
energy, and a reasonable electron-momentum distribution within the mean-field approximation. The
correct exponents of the correlation functions and momentum distribution are also obtained if the
squeezing effect and rearrangement of the spin configurations are taken into account. In the two-
dimensional case, within the mean-field approximation the magnetized Hux state with a gap in the
spinon spectrum has the lowest energy at half-filling. The antiferromagnetic long-range order is
destroyed by hole doping of the order 10 —15% for t/J = 3 —5 and a disordered Sux state with

gapless spinon spectrum becomes stable. The calculated specific heat is roughly consistent with
observed results on copper oxide superconductors. The possible phase separation is also discussed
at the mean-field level.

I. INTRODUCTION

The large-U Hubbard model and its equivalent, the
t-J model, are prototypes to study strong correlation ef-
fects in solids, especially in connection with the high-T,
superconductivity. The central issue under debate is
whether the non-Fermi-liquid behavior, showing up as
charge-spin separation and vanishing of the quasiparticle
residue, inherent to the one-dimensional (1D) Hubbard
model, is also true for two-dimensional (2D) models, as
conjectured by Anderson.

In 1D, the exact Bethe-ansatz solutions are avail-
able for the t Jmodel in th-e limit J/t ~ 0 and J/t = 2.
The Hubbard model and the t-J model in the small-J
limit scale to the Luttinger model. ' Using Lieb-Wu's
exact wave function, Ogata and Shiba have shown the
existence of an electron Fermi surface as well as a sin-
gular behavior at k k~ and k 3k~ in the electron-
momentum distribution function. Moreover, Yokoyama
and Ogata and Assaad and Wurtz have studied the 1D
t-J model using the exact diagonalization of small sys-
tems and quantum Monte Carlo methods, respectively,
and their results show that the t-J model behaves like
a Luttinger liquid for low values of J/t, and undergoes
phase separation at large values of J/t. Hellberg and

Mele came to the same conclusion by using the Jastrow
variational wave function. Thus the typical behavior of
the Luttinger liquid in 1D, i.e., the absence of quasipar-
ticle propagation and charge-spin separation, has been
demonstrated explicitly for the t-J model in the small- J
limit.

There are no exact solutions available in 2D. The varia-
tional calculations seem to support Anderson's conjec-
ture. The quantum Monte Carlo simulations gave some
hint at the vanishing of the quasiparticle residue in the
thermodynamic limit. ~4 However, this result is not con-
clusive because of the "fermion minus sign" problem in
the Monte Carlo technique and contrary results in ex-
act diagonalization of clusters as well as analytic treat-
ments of the single-hole problem.

The crucial requirement r for the t Jmodel (and the-
large-U Hubbard model) is to impose the single oc-

cupancy constraint g C, C; ( 1. An intuitively
appealing approach to implement this constraint and
the charge-spin separation scheme is the slave particle
formalism, ' where the electron operator is decomposed
as C; =a, f; with a, as the slave boson and f, as the

fermion and the local constraint P f, f, + a,.a; = .1,
or vice versa, i.e., at as fermion and f; as boson. Due
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to the constraint, these particles are also coupled by a
strong gauge field, allowed by this slave-particle rep-
resentation. In the mean-field approximation (MFA) the
spin (spinons) and charge (holons) degrees of freedom are
fully separated. However, there are a number of difficul-
ties in this approach. First of all, in the slave-boson ver-
sion, the antiferromagnetic correlation is absent for zero
doping, so the ground state energy in the 2D case is high
compared with the numerical estimate for small clusters,
and the Marshall sign rule is not obeyed. ' Alterna-
tively, in the slave-fermion approach, the ground state is
antiferromagnetic for the undoped case and persists until
very high doping ( 60 %).2s The large Fermi surface of
spinons, present in the slave-boson approach, is absent
there. Moreover, if, following the common practice, we
let f, keep track of the spin, while letting a, keep track
of the charge, satisfying the sum rules: 8 = (a;a;) and
1—8 = P (ft f; ), where his the hole doping concentra-
tion, we find~4 that the sum rule for the physical electron

(Ct C; ) = 1 —8 is not satisfied for both versions.
This expectation value is (1 —b) in the slave-fermion
representation, and 1 —62 in the slave-boson version.
Since the total number of particles does not depend on
the interactions, this difficulty will persist even beyond
the MFA, so long as the spinon and holon expectation
value decoupling is assumed. Furthermore, we have also
shown24 that the overall electron distribution does not
have the appropriate Fermi surface within this scheme
even for the 1D case. These are intrinsic difficulties of
this decoupling scheme.

In this paper we develop another scheme, the fermion-
spin transformation, to implement the local constraint
and the charge-spin separation. In this scheme the charge
degree of &eedom is represented by a spinless fermion,
while the spin degree of &eedom is represented by a hard-
core boson in terms of Pauli operators (with a projection
operator to be specified later). Using this representation
the local constraint is satisfied in the decoupling scheme
in contrast with the existing slave particle approach,
where the local constraint is replaced by a global one.
As a consequence, the sum rule for the physical elec-
tron is obeyed. Moreover, the hard-core bosons can be
expressed in terms of spinless fermions via the Jordan-
Wigner transformation in 1D (Ref. 25) and its general-
ization in 2D. This is an efficient calculation scheme
which can provide very good results even at the mean-
field level.

Here we summarize our main results. In 1D we can in-
tegrate out the spinless charge field (holons) and obtain
an effective Hamiltonian for an interacting spinon field
which behaves like a Luttinger liquid. Hence the physi-
cal electron, as a convolution of spinon and holon, also
behaves like a Luttinger liquid in consistency with the ex-
act solution. Moreover, we obtain a gapless spectrum for
both holons and spinons at the mean-field level which is
not true in the slave-fermion approach. The ground state
energy at and away &om half-filling is in good agreement
with exact resu1ts. By going beyond the MFA to in-
clude the "squeezing" efFect and rearrangement of the
spin configurations due to the hole presence, we obtain

not only correct exponents of correlation functions and
momentum distribution at the Fermi surface but also a
reasonable global distribution function. In 2D we have
considered various phases at and away &om half-filling
in the MFA. The magnetized Bux state with a gap in
the spinon spectrum has the lowest energy at half-filling.
The antiferromagnetic long-range order (AFLRO) fades
away by hole doping of the order 10—15 % for t/ J = 3—5
in contrast to the Schwinger boson approach where the
AFLRO is destroyed at 62% doping. 2s Beyond the criti-
cal concentration, a disordered fiux phase with a gapless
spectrum becomes stable. We have also calculated the
specific heat and considered the phase separation issue.
The results are consistent with experiments and numeri-
cal simulations, respectively.

The rest of the paper is organized as follows: In Sec.
II, we explain in detail the fermion-spin transformation
which is exact in the single occupancy Hilbert space, if a
projection operator is introduced to remove the extra de-
grees of freedom. We also estimate the errors introduced
by the MFA. In Sec. III we apply the proposed scheme
to the 1D t-J model within the MFA. The main results
obtained have been mentioned above. In Sec. IV we
calculate the correlation functions and momentum dis-
tribution by introducing two "string" operators which
take care of the squeezing eff'ect and rearrangement of
the spin configurations. The exponents thus obtained
agree with the exact results. The applications to 2D at
the mean-field level are described in Sec. V. Finally, in
the concluding section we make some further remarks to
explain our current understanding why this simple trans-
formation works so well and outline some open problems.

II. FERMION-SPIN TRANSFORMATION TO
IMPLEMENT THE CHARGE-SPIN

SEPARATION

A. Model, constraints, and sum rules

We start &om the t-J model which can be written as

II= t ) (C~~ C—, +H c ) —p, ). .Ct C; +J) S; Si,
(ij)cr 4CT (~2)

where Ct (C; ) are the electron creation (annihilation)
operators, S; = C, OC;/2 spin operators with cr as Paulit

matrices, and p is the chemical potential. The summa-
tion (ij) is carried over nearest neighbor nonrepeated
bonds.

The Hamiltonian (1) is defined in a restricted Hilbert
space without double electron occupancy. There are two
ways to implement this requirement: either to solve (1)
combined with a nonholonomic constraint g C, C;
1 or to introduce constrained fermion operators, replac-
ingC; byC; =C; (1 —n, ), wheren; =C,- C-; . We
will use both representations in this paper.

The constrained operators C; satisfy the following re-
lations:
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) C,tC; =) C,tC; (1 —n; )-,

C,'..C,. = 1 —b,

(2)

where the latter equation is a sum rule for the electron
at the hole doping concentration h, and (. ) means the
thermodynamical average. The on-site anticommutation
relation of the constrained electron operator C; is

) (C, , C,t j=2 —) C,t C;,

which gives rise to a sum rule for the spectral function
A. (k, u)),

f A, (k, w) =1+5'. (4)

Of course, this value is less than 2 since 1 —b states are
pushed to infinity as U m oo in deriving the t-J model.
Hence the electron spectral function A, (k, u)) describes
only the lower Hubbard band. Equations (2) and (4)
are exact sum rules for the t-J model, and they must be
preserved in adequate treatments.

B. CP hard-core boson

The decoupling of the charge and spin degrees of &ee-
dom for the physical electron is undoubtedly correct in
the 1D t-J model, but the situation is still not clear
in 2D. In this paper, we presume that the decoupling of
charge and spin degrees of &eedom for the physical elec-
tron is also valid for the 2D t-J model, and we propose
another scheme to decouple the charge and spin degrees
of keedom.

To motivate this transformation, we start &om the no-

double occupancy local constraint P Ct C; & 1. Sup-

posing C; = h, b; with the spinless fermion operator h;
keeping track of the charge (holon) while the operator b;

keeping track of the spin (spinon), then this on-site local
constraint can be rewritten as P h;htb; b; & 1. Since
the electron obeys the Fermi statistics, the operator b;

must be a boson when the operator h; has been assigned
a fermion character in this electron decoupling scheme.
If bosons are subject to the condition g b, b, = 1, the.t

on-site electron local constraint

n =) Ct C; =h;ht =1 —hth; &1 (5)

is exactly satisfied, where ng ——h,. h; is the spinless holon
number at site i, equal to 1 or 0. This way the non-
holonomic on-site electron constraint is converted into a
holonomic boson constraint.

We should note that so long as h,.h; = 1, P C,. C;
0, no matter what the value of ns = P b; b, is. How-.

ever, the choice nb ——1 is convenient, because it also
guarantees the condition n = 1, when nI, ——0. This de-
coupling scheme, the so-called CP representation, was
proposed by Wiegmann and was used in Ref. 29. The
constraint n, = 1 means the presence of one boson (spin-
up or -down) on each site, i.e., we assign a "spin" even
to an empty site. This will not afFect the physical expec-
tation values, because the hole n))mber expectation (n), )
will remove the spurious efFects. Nevertheless, the extra
degrees of freedom will afFect the partition function and
thermodynamical quantities. In the next subsection we
will define a projection operator to cure this defect. As a
result, the commutation relations and sum rules (2)—(4)
will be satisfied exactly.

Now we explore further the properties of the CP
bosons. First note that if we restrict the boson occu-
pation number to 0 or 1, the infinite-dimensional Fock
space for bosons becomes two-dimensional, where we can
choose the following representation:

fo O'I

&' 0) ' bt (fo 1&)
q0 0) '

C,t ——htS, , C;g ——h; S,+ (7)

in terms of which the t JHamiltonian (1-) can be rewrit-
ten as

II = t) h, h,'(s+-s;+ s;s+) + H.
(ij)o.

—p) h;ht+ J) (1 —hth;)S;. S,. (1 —hth, .),
(ij

where S; is the pseudospin operator at site i which can be
expressed as CP hard-core bosons and is difFerent from
the electron spin operator in Eq. (1). We would empha-

which are nothing but spin-lowering S and spin-raising
S+ operators for S = 1/2 and satisfy the hard core con--
straints bb = btbt = 0.

Moreover, if we request that g and $ hard core boson-s

satisfy the CP condition np ——1, the 2 x 2 representa-
tion space becomes two-dimensional. Assume (oi)~, (oi)t
are singly occupied and empty spin-up, while (i)~, (z)~
are singly occupied and empty spin-down states, respec-
tively. Due to the constraint b,.&b;~ + b,.&b;~

——1, out of
four possible states as direct products, only two, namely
(oi)t (si)g and (oi)t (oi)g, are allowed. Thus we can ignore
the spin label in the state and represent b~ as (oi oo), and
b~ as (oo z~) in the reduced two-dimensional representa-
tion space. Of course, all the hard-core boson conditions,

summation over 0), are satisfied. As a result, bt and b~

are identified with the spin lowering S and raising S+
operators, respectively, while the boson occupation space
is identified with the spin-

&
representation space.

To sum up, as solutions of the single occupancy
constraint g Ct C, & 1 under CPi convention

bt b; = 1, we find the following fermion-spin trans-
formation:
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size that the present CP hard. -core boson representation
of spin operators is diferent &om the CP boson repre-
sentation of the spin operator used before. ' In their
approach, the spin degree of freedom is represented by
ordinary boson operators, while, in the present scheme,
the hard-core boson operator 6; behaves as a fermion on
the same site, and as a boson on diferent sites.

C. Projection operator

In the local representation the restricted Hilbert space
of no-double occupancy consists of three states, lo), l g),
l $), while in the fermion-spin transformation presented
in the previous subsection there are four states lhole)
lspin), namely ll, g), ll, g), lo, t), and lo, g), where 1 or
0 means hole occupation. We can introduce a projection
operator P to remove the extra degrees of &eedom. The
matrix elements of this operator can be defined as

C;, =P;I,S,. P,.',
C,'t = P;h, S+P,t,

C,, = P,~tS+P,t,

C,'., = P;I,S,. P,.', (1o)

where P, is the projection operator for the site i, and P,. is
the Hermitian conjugate of P;. Making use of the matrix
representation of the holon operator h; = (p p), h; =
(Pi Pp), we can write down explicitly all these operators
in matrix form (see the Appendix). In particular, the
constrained electron operators in the basis of the physical
states lo), l t), l $) can be written as

$0
C;t ——

l 0

(0
C;g —— 0

&0

1 0)
0 0
o 0)
0 1~
0 0
o 0)

(0 0 0)
C,'., = 10 0

(0 0 0)
(0 0 0)

C,~ —— 0 0 0
o 0)'

which are nothing but the Hubbard X operators Xpt,
Xqg, etc. It is then straightforward to check that

) CtC; =1 —ns, ,

) fC, , Ct }= 1+ng, (13)

where

(1 0 0)
nh —— 0 0 0

&0 o 0)
is the hole number operator. Taking expectation values

P- =—IK)(~l

where le) is one of the bases of the physical states, while
ln) is one of the bases in the space lhole) lspin). Since
the space dimensions of lK) and lo.) are difFerent, the
usual relations for the projection operator P = P = P
are not satisfied. Using this operator, one can define the
electron operators in the constrained space as

of Eqs. (12) and (13), one sees immediately that the
siim rules (2) and (4) are exactly satisfied. Thus we have
shown that the fermion-spin transformation defined with
an additional projection operator P satisfies exactly the
no-double-occupancy constraint and all sum rules, i.e.,
they are an exact mapping.

However, the projection operator P is cumbersome to
handle and in many cases, for example in the mean-Geld
treatment of Secs. III—V, we will drop it. Now let us
see which of these properties are still preserved and what
kind of errors we are committing in such approximate
treatments. First of all, the local constraints are ex-
actly obeyed even in the MFA. Second, those expectation
values of electron operators, including spin-spin correla-
tion functions, which should vanish, actually do not ap-
pear due to the presence of the holon number operator
ng = h;h;. Furthermore, as we will see later, the sum
rules for the physical electron are also satisfied in the
MFA. By adding an extra spin degree of freedom to an
empty site we are making errors of the order b in count-
ing the number of states, which is negligible if b ~ 0.
For comparison we should note that in the usual slave-
particle approach, is the local constraint is explicitly re-
placed by a global constraint in the MFA, and therefore
the representation space is much larger than the repre-
sentation space for the physical electron, which leads to
some unphysical results. i~ 24 From this point of view, our
treatment of constraints for the physical electron is much
better than the slave-particle approach, and therefore we
believe the mean-field result based on the fermion-spin
approach even without the projection operator should
be better than those obtained by using the slave-particle
mean-field theory. This is indeed confirmed by the mean-
field calculations presented in the following sections.

We note that a similar transformation has been dis-
cussed in Ref. 31, but these authors did not stick to the
single-occupancy constraints in their actual calculations.

III. THE MEAN-FIELD THEORY IN 1D
WITHIN THE FERMION-SPIN APPROACH

Since an exact solution for the Hubbard model
(hence for the J/t ~ 0 limit of the t Jmodel) -is avail-
able in 1D, it is important to conf'ront any approximate
treatment with this solution. In this section we consider
the 1D t Jmodel, using t-he fermion-spin transformation
described in the previous section at the mean-field level,
neglecting the eHects of the projection operator P. As
mentioned in the Introduction, the 1D t-J model exhibits
a Luttinger liquid behavior, including charge-spin sepa-
ration, vanishing of the quasiparticle residue, etc. We
should also mention that both spin and charge excita-
tions are gapless in 1D. In the standard slave-particle
approach, many of these properties are not preserved.
For example, in the slave-boson case there is a Bose
condensation at the mean-field level which leads to a
Fermi-liquid behavior. On the other hand, there is a gap
in the spin excitation spectrum in 1D within the slave-
fermion &amework, even at half-filling. Now consider
the mean-fieM results in the fermion-spin approach.
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A. Luttinger liquid behavior

In the fermion-spin representation, the 1D t-J model
may be written as

H = —t) ata;+i(S,+S,.+i+ S,. S,.+i) +. H.c.

—p) ata; + J) (ata;)(S; . Sz)(a.az),
t (~2)

(14)

—f,e *«E—«', 4 &~ (17)

where, for the convenience of the following discussion, we

have introduced the particle operators a; and a,. defined
as

(15)

In the 1D case, the hard-core bosons S,+ and S,. can be
mapped exactly onto spinless fermions using the Jordan-
Wigner25 transformation

S+ ft i«Q((,. f, f( (16)

type field. The MFA to the t J-model (19) is just the
saddle point solution of the Lagrangian (20), i.e. , the
auxiliary fields y, ;+„and P, ;+„are replaced by their
mean-field values y, ;+„——y and r/i;;+& ——P, respectively,
and the Hamiltonian (19) can be diagonalized as

H = ) s(k)a&aq + ) iv(k) f& fi, + 4Ntyg

+ 2N J[(1—b)' —P']y',
where N is the number of sites, and

(24)

s(k) = —4ty cos(k) —p, (25)

~(k) = [(1 —b) —Q ](1 —2y) ——Q (2J)cos(k),J
(26)

while the self-consistent equations for the order param-
eters y and P can be obtained by minimizing the free
energy. We can now proceed to a brief discussion of the
results in the MFA.

—p) ata;+ J) ata, [z(ftfz+ ftf )

+(f,'f. —', )(f,'f, —-—.')].,", (»)
We can now employ the path-integral representation in
which the Lagrangian I and the partition function Z of
the t-J model in the imaginary time w can be expressed
as

L=) a, 8 a;+) fthm f;+H, (20)

Z = D.o.ta D t,— ~-~~-~. (21)

Integrating out the spinless charge field a; of the t-J
model, we obtain an interacting spinon system, which,
like any interacting fermion systems in 1D, is described
by a Luttinger liquid theory. ' Moreover, the physi-
cal electron as a convolution of spinon and holon also
behaves like a Luttinger liquid, which means that the
electron wave function renormalization constant Z = Q

in the 1D t-J model.
In the path-integral representation, one can introduce

a SU(2)-invariant Hubbard-Stratonovich transformation
to decouple the Lagrangian (20) by using the following
auxiliary fields

S, =f;f' —
2

(»)
where f; is the spinless fermion operator. Substituting
Eqs. (16)—(18) into Eq. (14), the t JHami-ltonian (14)
can be expressed as

H = —t) (a, a;+i+a,+ia;)(f, f+i+ f.+if;)t. t . t. t

B. Ground-state properties at half-Slling

At half-filling, there are no charge degrees of freedom,
and the t Jmodel -(24) reduces to the antiferromagnetic
Heisenberg model in the fermion representation,

Hg = Q ~p(k) fq~ fl, + 2N Jy . (27)

In this case the order parameter y can be evaluated to
be y = —1/m, and we obtain a gapless spinon spectrum,

uo(k) =
I
1+ —

~
(2J)cos(k),

( 2
(28)

C. Ground-state energy away from half-filling

which is rather close to the exact result of the Heisen-

berg chain obtained by using the Bethe-ansatz method,
~e(k) = (vr/2)(2J)cos(k). Correspondingly, the spinon
spectrum near the spinon Fermi surface (k = +7r/2) is
linear with velocity v, = (1 + 2/vr)(2J) = 1.6366(2J),
which is also very close to the exact result of the Heisen-

berg chain obtained by Haldane, v, = (7r/2)(2J)
1.5708(2J). The ground state energy of the Heisenberg
model at temperature T = 0 is Ep ———0.4196(2J) which
is only 5.3/0 higher than the exact Bethe-ansatz value
of Eo ———(1/4 —ln2)(2J) = —0.4431(2J).

Thus in the half-filled case, the spinon has a gapless
spectrum, and the spinon ground state energy can be de-
scribed adequately by the Jordan-Wigner transformation
within the MFA. This case has already been considered
earlier.

+y;;+„——S,- S,-+„, (22) Away from half-filling, a gapless holon spectrum is ob-
tained

P;;+„——a,.a;+„,
where g = +1. Note the auxiliary field y;;+„ is a boson

2
s(k) = -2t —cos(k), (29)
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&om which the holon Fermi velocity is given by

2 ~ 2.
vg = 2t —sin[(1 —b)m] = 2t —sin(&r), (3o)

and the holon ground state energy at temperature T = 0
is obtained as

sin(b~).(~) k~)
{31)

2

2t 1+——sin(b7r) (2J)cos(k),Jx (32)

All these quantities differ &om the corresponding exact
values of the 1D large-U limit Hubbard model s(k) =
—2tcos(k), vh = 2t sin(bx), and E» = —(—')sin(bx), only
by a factor 2/7r.

At the same time, the gapless spinon spectrum at finite
dopings becomes

spin approach within the MFA can be expressed as

E =Eh+E
(2t& (2)= —

/

—
/ /

—
/

sin(&r)
(, s ) E'Ir)

—(1 —b) 1 — 0.4196(2J).~2(1 —b)2
(34)

D. Momentum distribution

Now we turn to discuss the global features of the
electron-momentuxn distribution within the MFA. This
distribution for the physical electron is defined as

n(k) = ) {Ct Cg ) = —) e*"(" '-l(C~t C ).
CT lmcr

The ground state energy and thermodynamical quanti-
ties for the 1D Hubbard model in the atomic limit were
calculated a long time ago. Our result for the ground
state energy is rather close to theirs.

with the spinon ground state energy

sin x
7r2(1 b)2

(33)

In the present fermion-spin approach, neglecting the ef-
fects due to the projection operator defined in Sec. II C,
this distribution function can be rewritten as

which is again very close to the exact result of the spinon
ground state energy5 of the 1D large-U limit Hubbard
model over the entire doping range. Here Eo is the
ground state energy at half-filling. Therefore the total
ground state energy of the 1D t-J model in the fermion-

n(k) = —) e'" ' - {a a (S,+S + S S+))
1

lm

(36)

Using the Jordan-Wigner transformation (16)—(18), n(k)
can be further expressed as

n(k) ) ei&(« —~-){ata (fte*~(E,&i
t' f Ei& f,'f'') f + f&e '~(Xi&i &if& Ej&~ &j&i)ft ))

le
(37)

Since e+' ~ ~' = 1 —2f;t f;, in the MFA, we obtain

~, f 2 ) ™+1
sin(mba)

n(k) = 1 —b+ ) (—1)™+1
~

—
~

cos(mk),
m

which is plotted (solid line) in Fig. 1 for doping b = 0.5.
For comparison, the corresponding curves for the slave-
boson (dashed line) and the slave-fermion (dot-dashed
line) cases are also given. It is obvious that ny ) 1 —b in
the slave-boson case and & 1—8 in the slave-fermion case,
which is very far kom a should-be electron-momentuxn
distribution. The integrated area under the curve is equal
to (1 —b2) in the slave-boson case and is (1 —b) in
the slave-fermion case, while the correct value should be
1—b.24 The solid curve corresponding to our transforma-
tion is closer to the exact result. The integrated area is

correct and the shape looks like a reasonable momentum
distribution, i.e., in some part the distribution is greater,
while in the other part it is less than 1 —b. To get a
more accurate result (including the correct location of
the Fermi surface and a correct slope at it) one should go
beyond the MFA to include the spinon-holon interactions
as discussed in the next section.

Thus away &om half-filling, the spinons and holons
are decoupled completely, with the holon behaving like
a spinless fermion, while the spinon has the Jordan-
Wigner forxn in 1D. The gapless spectra for both holons
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FIG. 1. The momentum distribution of physical electrons
in the mean-field approximation. obtained by the fermion-spin
transformation proposed in this paper (solid line) in compari-
son with corresponding curves in the slave-boson (dashed line)
and the slave-fermion (dot-dashed line) approaches. The dop-
ing concentration b = 0.5.

and spinons, as well as the ground state energy, can be
described adequately within the fermion-spin approach
even in the MFA.

IV. THE ASYMPTOTIC BEHAVIOR
OF CORRELATION FUNCTIONS

IN THE 1D CASE

A. Motivation

Interacting 1D electron systems generally behave like

Luttinger liquids where the electron correlation func-
tions show a power-law decay with unusual exponents.
These systems exhibit an electron Fermi surface with a
correct Luttinger volume but the momentum distribu-
tion function is singular at the Fermi surface, also with
unusual exponents. . These exponents depend on the in-

teraction strength. Haldane has shown that the char-
acteristics of Luttinger liquids can be calculated using
the bosonization techniques. To get more insight into
the problem let us consider the Bethe ansatz wave func-
tion for the Hubbard model in the large-U limit (hence
for the t Jmodel in the sma-ll- J limit), derived by Ogata
and Shiba,

@(xq, ..., ~N ) = det[exp(ik;xg, )]4 (yq, ..., yM), (39)

where the determinant depends only on the coordi-
nates xg, of particles, but not on their spins, while

4(yj, ..., yM) is the Bethe ansatz wave function for an AF
Heisenberg chain with yq, . . . , yM as coordinates of down
spins. This asymptotic form can be interpreted as a

complete separation of charge and spin degrees of &ee-
dom in some sense. In fact, the determinant describes
spinless fermions (holons), whereas O is the "spinon"
wave function. Our fermion-spin transformation is, to
some extent, an approximate second quantized version
of this solution, with the holon being represented by a
spinless fermion and the spin represented by a hard-core
boson.

However, there is an important "detail" in the wave
function (39), namely, the spin wave function 4 is for
a "squeezed" Heisenberg chain, i.e., all holes should be
removed. This will lead to rearrangement of spin con-
figurations and far-reaching nonlocal efFects. Therefore,
spinons and holons are not completely independent, but
interacting with each other rather strongly. As shown
in Ref. 5, the correct exponents of correlation functions
and an adequate description of the momentum distribu-
tion function (Fermi surface at k~, rather than 2k~ with
appropriate singular behavior) can be obtained only if
these interaction eKects are properly taken into account.
Weng et al. have shown that the effects due to squeez-

ing and rearrangement of spin configurations can be in-
cluded by introducing a nonlocal "string" field. After
doing that correct results for the correlation function ex-
ponents, etc. , can be obtained for a 1D t-J chain. In this
section we calculate these exponents within our fermion-
spin approach, following their technique with some mod-
ifications. The nonlocal eKects due to spinon-holon and
spinon-spinon interactions will be included by introduc-
ing two string fields. After squeezing, there are no holes
in the chain, so the additional degrees of freedom due to
assigning "spin" to a hole site disappear, hence the pro-
jection operator introduced in Sec. II C is not needed for
our purpose.

B. String operators

Let us consider the t-term in the t-J Hamiltonian
within the fermion-spin representation. Following Ref. -

29, the largest holon kinetic energy may be obtained if
the spin configurations are squeezed as

P;(a, S,+P,. P+xo +x~ +x + ~ P'; P+'xoi+x~'+'z) +y'
= a, a,+g (40)

for all sites i where a holon is present. However, after
such squeezing, the spin configurations are not optimal
to favor the spinon energy. Thus at the same time spin
configurations must be rearranged into optimum config-
urations to provide the lowest spinon energy. These op-
timum spin configurations can be obtained by reversing
the original spin polarization for all sites on the left-hand
side of site i. These processes of first squeezing the t-J
chain and then rearranging the spin configurations, are
shown schematically in Fig. 2. These nonlocal processes
cannot be described by any formal perturbation theory,
but can be taken into account approximately by introduc-
ing the string fields. ' In our case, we introduce two
string fields to describe the above physical processes, so
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the constrained electron operator |; can be expressed
within the fermion-spin approach as

ata
by the string Geld e'~~ +~&&' ~f '~ for the holon. One can
check easily that the anticommutation relations for the
physical electron are preserved exactly in our case.

(
&1K(N —El)i +I ()g ~ e ~ Zt(f ( ~1 ge & a; e i (41)

( ~m(N+~l&, . al a&) q( i~ +1& fj,l~l S+qa, /he i /~ (42)
C. Energy spectrum for a squeezed chain

which means that the spinless fermion 12,i and the hard-
core boson S,+. are replaced by corresponding string op-
erators as

After squeezing and rearranging the spin conGgura-
tions, the t-J model can be written as

i~(N+g), . afar) (43)

(44)

where e+' ~«& ' is the string field for the spinon due
to the presence of holons, describing the effects of re-

arrangements of spin configurations from —oo to site i
when an electron is removed or added at site i. For the
t-J chain, holons on the right-hand side of site i can feel
some indirect efFects of holons on the left-hand side of
site i due to the rearrangements of spin configurations
from —oo to site i when one electron was removed or
added at site i. These indirect effects can be described

(a)

II = t) —(a,.a;+i + H.c.) —p, ) a, a,

+J~(1 —S)' —y'j) S, . S, ,

(ij)
(45)

where we have approximated the probability of the spin
exchange process of the Heisenberg term as a,. a;a a~ =
(ata;) (a~taz) —(ata~) (a~ta;) = (1—h) 2 —P2, and the lattice
constant of the squeezed spin chain has become a/(1 —8),
where a is the original lattice constant. Therefore the
Fermi points of spinons are shifted from k~ = her/2 of
the half-filled case to k~ = +z(1 —8)/2 for the doped
case.

For the squeezed chain, the gapless holon spectrum, the
holon Fermi velocity, and the holon ground state energy
are

c(k) = 2t cos(k), — (46)

vt, = 2t sin(bm), (47)

(c) 2t .
Et ————sin(6'7r),

7r
(48)

FIG. 2. The spin background is assumed to be an anti-
ferromagnetic state for the J ) 0 case of the 1D t-J model.
The t-J chain is squeezed and the spin configuration is rear-
ranged due to the spin-up electron hopping: (a) Before hop-

ping, when the holon is at site L (b) After hopping, when the
holon has hopped to site i + 1 from site i, while the spinon
has hopped to site i from site i + 1. The spin polarization
directions to the left of the hole are already optimized by the
fermion-spin transformation, but there is still a hole in the
chain. (c) Squeezing out the hole from the t Jchain. After-
this squeezing, the spin con6guration is not optimal to favor
the lowest spinon energy. (d) Rearranging the spin configu-
ration from —oo to site i to favor the lowest spinon energy.
The situation for the spin-down electron hopping is similar.

~(k) = (1 —&) — (2J)cos(k),
sin (bz.)

(49)

[(1 —8) —sin (bar)/~ 1(2J)cos(b7r/2), (50)

sin (bn.

7r2

respectively, which are in full agreement with the corre-
sponding exact values of the 1D large-U Hubbard model.
At the same time, the gapless spinon spectrum, spinon
Fermi velocity, and the spinon ground state energy are
given by
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respectively, which are very close to the corresponding ex-
act values of the 1D large-U limit Hubbard model. Here
Eo is the ground state energy at half-filling. Therefore,
the total energy of the t-J model Eg = Eq + EJ agrees
quantitatively with the exact value of the 1D large-U
limit Hubbard model in the entire doping range. It fully
agrees with the 1D results for the Hubbard model ob-
tained earlier in the atomic limit. The gapless spinon
and holon spectra and the ground state energy are all
better than the mean-field results obtained in Sec. III,
which indicates that the string fields take into account
the spinon-holon interactions in the t-J model, and renor-
malize considerably the results obtained in the MFA
without string fields.

D. Correlation functions

The spin-spin correlation function is defined as

S(;—*,, t) =(S, (t)S, (O)) = (S, (t)S, (O))

=(S, (t)S, (o))

= -(S,+(t)S, (O) + S, (t)S,'(O)). (52)

In the doped case, we need to replace the operator S,+-

in Eq. (52) by Eq. (44) to account for the presence
of holons. Thus substituting Eq. (44) into Eq. (52), we
obtain the spin-spin correlation function of the t-J model
as

(53)

Following Haldane, ' we apply the bosoniz ation
method to the free holon field, and obtain the following
asymptotic form:

where v, is the spinon Fermi velocity. Combining Eq.
(54) with Eq. (55), we obtain the asymptotic form of the
spin-spin correlation function of the 1D t-J model as

( kiwis, at(t)a((t) pin g, (,. at(0)a&(0))

1
, „ (54)

[(*'— )' —( t)']'

S(z; —z, , t)- 1

[(*' —* )' —( t) ]'
cos[2kF (z; —z~ )]

[(z, —zi) —(v, t)'] ~
(56)

where vh is the holon Fermi velocity. Luther and
Peschel have mapped the 1D Heisenberg model into an
interacting spinless fermion system by using the Jordan-
Wigner2 transformation. Their work involves general-
ization of the Jordan-Wigner transformation to provide a
representation for continuum spin operators. The asymp-
totic form of the spin-spin correlation function of the
Heisenberg model can then be obtained by considering
the spinon-spinon interactions. Following their calcula-
tion, we get

which shows a power-law decay with exponent 3/2, in full

agreememt with the numerical result of the 1D large-U
limit Hubbard model obtained by Ogata and Shiba. 5

E. Momentum distribution function

(S,'. (t) S;. (O) + S;. (t)S,+. (O))
[(z —* )' —(v t)']

(55)

The electron-momentum distribution function n(k) is
defined in Eq. (36) within the fermion-spin approach. To
consider the squeezing eKect and rearrangements of the
spin configurations, we need to substitute Eqs. (43) and
(44) into Eq. (36). Then n(k) can be rewritten as

where the factor G; = e' & ~ ~& &' & ' ~. In what
follows, we will drop this factor as in the previous
calculations, ' since it will only contribute a next-to-
leading additional power-law decay in the asymptotic
single-electron Green's function, so one may neglect it
if only interested in the leading contribution.

The calculation for the global features of n(k) is similar

to the case without string fields within the MFA and the
result is

n(k) = 1 —h + A, (k) + A, (k) + gs(k) +

+&(k) =
I

—
I

sin(67r)cos(k),
k~)
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t'2&' 1. , b .
A2(k) =

l

— —sin (bx) ——sin(2bx) cos(2k),(xj 7r 2

(2) 1 .
As(k) =

l

—
l

—sin(b'vr)sin(2bvr)
(m) 7I

+-
l

1 ——l»n(»~) cos(»).1( 2b) .

1.5
I I I } I I I } I I I } I I I } I I I

The curve n(k) is plotted in Fig. 3 (solid line) for b = 0.25
in comparison with the result without string fields (dot-
dashed line). We find some substantial improvement by
including the string fields. In particular, the location of
the Fermi points was wrong in the MFA without string
fields, while it is correct [k~ =

2 (1 —b)] if they are in-
cluded. In the same figure we have also plotted the n{k)
curve obtained in the early treatment (dashed line) 24 for
the CPi electron representation (without accounting for
the hard core nat-ure of the bosons). Obviously, the global
features of this curve are not correct [n(k) goes up again
as k further increases]. Nevertheless, the asymptotic form
of the momentum distribution near k~, obtained in both
approaches, is correct, namely,

1
n(k) const —Clk —k~l I sgn(k —ky),

again in agreement with the exact numerical result. s This
singularity is washed out in the numerical calculations
and does not show up in Fig. 3.

To sum up we have confirmed that by introducing the
string fields the spinon-holon interactions can be included
to some extent, which allows us to obtain correct expo-

nents for the correlation functions and momentum distri-
bution, as proposed earlier. 2s Moreover, the global fea-
tures of the energy spectrum and the momentum distri-
bution, found in our fermion-spin approach, are correct
in contrast with the previous approach, which could
not provide such an adequate description.

V. THE MEAN-FIELD THEORY IN 2D
WITHIN THE FERMION-SPIN APPROACH

In this section, we consider the 2D t-J model.
Very soon after the discovery of oxide superconductors
Anderson revived his idea of the resonating valence bond
(RVB) to describe the short-range AF fluctuations in the
2D Hubbard model. Baskaran, Zou, and Anderson de-
veloped a mean-Geld theory of the RVB state. Later a
number of other more elaborate mean-field solutions were
discussed both at half-filing and away &om it, such as
the flux phase, 4o the spiral phase, ' and the commen-
surate flux phase, which breaks the time-reversal sym-
metry and parity. The latter is related to the proposed
fractional statistics and anyon superconductivity. For
the early suggested flux phase, the lowest energy so-
lution is a state with z fiux quantum (or phase x) per
plaquette, which does not break the time-reversal sym-
metry and parity. Sheng, Su, and Yu found that the
x-flux phase can coexist with the 8+id wave RVB state
for small dopings. Lee and Feng, and later Chen, Su,
and Yu45 found that the magnetized RVB state with co-
existing AF order. and a d.-wave RVB order parameter
has a gain in energy. Furthermore, Hsu has shown
that the magnetized flux state which is the coexistence
of AF order with a flux state has a similar gain in en-

ergy. Recently, Wang and Ubbens and Lee obtained
the same result in a diferent &amework. In this section,
we discuss the 2D t Jmodel alon-g this line.

A. Generalized Jordan-Wigner transformation

0.5

e

t
I

I
t

In the fermion-spin approach, the success of the theory
depends strongly on whether one can map the hard-core
boson onto an appropriate fermion or boson represen-
tation. In the 2D case, the Jordan-Wigner transforma-
tion of the spin operators has been generalized by several
authors. In particular, Wang discussed the Heisen-
berg model in the MFA using this generalized Jordan-
Wigner transformation. Using our fermion-spin trans-
formation (7), this mean-field calculation can be easily
generalized to the t-J model. The generalized Jordan-
Wigner transformation may be written as

0 I I I } I I I } I ~ I } I I I } I I I

0 0.2 0.4 0.6 0.8
g+ ft ts~ (60)

(61)

FIG. 3. The momentum distribution of physical electrons
in the mean-field approximation obtained by the fermion-spin
transformation with the string fields (solid line), and without
string fields (dot-dashed line), in comparison with the cor-
responding curve in the conventional CP approach (dashed
line) (see Ref. 24). The doping concentration b = 0.25.

~; = f. f' —
2, (62)

where f; is a spinless fermion, 8; = P&&,. f& fiB;~ In.t

order to preserve the hard-core properties of the spin op-
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erators, Bi~ should be such that e' " = —e' ". One
possible way of materializing this equality is to set Bi~ ——

Im In(Zi —Z;), with a complex representation of the lat-
tice sites Z~ ——X~ + i'. If the efFects connected with
the projection operator P are neglected, then the 2D t-J
model can be mapped onto the fermion representation as

H = —t) h ht(ftf~;(; , l—+H,) &)-6 ht

(ij) 2

+ J) h;hth, ht[ '(f-tf, e*~' ' '+H.c.)
(ii)

+ (f,'f* —2) (f,'A —z)]. (63)

It has been shown ' that the phase factor in the Hamil-
tonian (63) creates a gauge field, with the vector potential
given by

z x (r~ —r)
(ri —r;)' (64)

where ni ——
f& fi On ave. rage, there is a z'-flux attached to

each spinless fermion f;, which is nothing but the Chern-
Simons gauge field converting a hard-core boson into a

spinless fermion. As mentioned earlier, the m-Aux does
not break the time-reversal symmetry and parity.

The Hamiltonian (63) is obviously very complicated,
so a more complete discussion about it beyond the MFA
will be given elsewhere. In this section, we only dis-
cuss some mean-field properties of the 2D t-J model
within the fermion-spin approach. In the MFA, follow-

ing the similar discussion of Laughlin et al. , Mele,
and Wang, the phase factor is absorbed by redefin-
ing a bond-dependent exchange parameter J;~. At half-

filling, there are many possible phases and the state
with the lowest energy3~ turned out to be the magne-
tized Aux state with a coexisting Neel order parameter
(Sz) = (—1)'M and an orbital current order param-
eter (S+S,+„) = y, where v = kx, ky. The ground
state energy per bond is Eo ———0.33J, while the stag-
gered magnetization is M = 0.389, which are rather close
to the best numerical estimates Eo ———0.3346J and
M = 0.31, respectively. This state is completely equiva-
lent to what was first discussed by Hsu, 46 who obtained
the ground state energy Eo ———0.331J and staggered
magnetization M = 0.3 within a different theoretical
framework. All these results show the accuracy of the
mean-field result within the generalized Jordan-Wigner
transformation.

B. Mean-field theory away from half-filling

Away from half-filling we need to introduce an additional holon particle-hole order parameter P = (h,. h;+„), and
the t-J model can be decoupled in the MFA as

H = 2ty) hthi —p) h~ht + (J,s + 2tg —2J,iry) ) e' ' ' f fi
(jl) 2 (~~)

—2J,8M ) ( 1)'f f, +—4N J,rry —8Ntyg+ 4N J,sM,
(i&)

(65)

where J,@ = J[(1—b)z —Pz], and N is the number of lattice sites. In the magnetized flux phase, the t Jmodel can-
be diagonalized by using the Bogoliubov transformation to give

) (&i, ~i,~i, + xi+, pi, pi, ) + ) (Ei,Ai, Ai, —Ei,B~~Bi,) + 4N J,iry —8Ntyp+ 4N J,sM2,
k(red} A:(red}

(66)

where (red) means the suinmation is carried only over the reduced Brillouin zone. The new operators o.i„Pi„AA, , and

Bi, are related to h&, hf, f&, and fi, by

(~i. + pi),
1

2
(o'i —p~),

1

2
(67)

and

cosk„—i sink
uaAa —vt, Bi, ,

cos2k„+ sin k
fI, =uiBi +vtAi,H (68)

where

1 (' 8JMI
ui, ——— 1+

2 ( EIC j
and the spin excitation spectrum is

1 f8JM)'
2 I Eg j (69)

EI, —— 8JegM + 4 Jeg + 2t —2Jegy cos k& + sin k~, (70)
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while the charge excitation spectrum is

s&
——+2typs —p, pi, = 2(cosk + cosk„).

In obtaining the above results, we have considered two
sublattices A and B with i e A and i + v q B. The &ee
energy of the 2D t-J model can be obtained as

) ln[(1 + e ~'7' )(1 + e ~'4
)]p k(red)

) ln[(1y e ~ ')(1+e~ ")]
i4(red)

+ 4N J,&q2 —8Ntqg+ 4J,&M2,

f'rom which we find the self-consistent equations for the
order parameters y, M, P by minimizing the free energy
with respect to these parameters.

no AFLRO, but short-range AF correlations persist and
the spinous are in a disordered Hux phase with a gapless
spectrum,

Es = 2(2 s+ 24c4 —22,s2)))cossks+ sin 2, (74)

as conjectured by Anderson. This spinon spectrum is
similar to that of the Qux state discussed also at the
mean-6eld level by Aleck and Marston and Kotliar.

The mean-field phase boundary between the magne-
tized Hux and disordered Hux states is, of course, at some-
what higher doping 8 than the value given by experiments
and numerical simulations. In fact, the &ustrations of
spins can shift the mean-6eld phase boundary towards
smaller doping b.si Thus we believe that the result will
be even closer to experiments and numerical simulations
by going beyond the MFA.

C. Doping dependence of the staggered
magnetisation

At half-6lling, the 2D t-J model reduces to a 2D AF
Heisenberg Hamiltonian, and the result is the same as
discussed by Hsu4s and Wang. sr The spinon spectrum in
the magnetized Hux phase with AF long-range order is
expressed as

El, —— 8JM +4J ]. —2y cos A; +sin Ic

(73)

where a gap appears due to the presence of AF stag-
gered magnetization. We note that a gap in the spinon
spectrum of the Hux phase at half-filling was suggested
by Laughlin earlier. However, this gap coming &om
the staggered magnetization M decreases very rapidly
upon doping. In the MFA, M vanishes around doping
(|' 0.1 —0.15 for t/J = 3 —5, which is plotted in
Fig. 4(a). This result is in reasonably good agreement
with experiments ' and Monte-Carlo simulations.
For comparison we note that the magnetization van-
ishes only at b' —0.62 in the MFA for the slave-fermion
approach. s At finite dopings, but still within the mag-
netized Hux phase, we find a competition between the
Neel order parameter M and the orbital current order
parameter y, with M decreasing very rapidly [see Fig.
4(a)], and —y increasing very fast [see Fig. 4(b)] upon
doping. In the small doping range, the holon particle-
hole order parameter P increases roughly linearly upon
doping, and is almost independent of t/ J, which is shown
in Fig. 4(c). The t Jmodel is charac-terized by a com-
petition between the kinetic energy (t) and the magnetic
energy (J). The magnetic energy J favors an AFLRO for
the spins, whereas the kinetic energy t favors delocaliza-
tion of the holes and tends to destroy the spin AFLRO.
Thus the rapid suppression of the AFLRO upon doping
means that the present mean-6eld kinetic energy is better
than those obtained in the slave-fermion approach and is
closer to the optimal kinetic energy of the system. Be-
yond doping b 0.1 —0.15, corresponding to the range
of the actual high-temperature superconductors, there is

D. Specific heat

U(T) = 4NJ, yi(r1 —y ) —8Ntyg,

from which the specific heat can be obtained as

(75)

(76)

The numerical result is shown in Fig. 5 at doping
b = 0.2 for t/ J=3 (solid line), t/J=5 (dashed line), and
the shape is similar to the experimental results. ' For
T & 0.0005J, the speci6c heat is found to increase with
temperature T, which is also consistent with the experi-
ments. Therefore our simple mean-field calculation pro-
vides a correct qualitative description of the speci6c heat
for oxide compounds.

E. Phase separation

The possible phase separation in the t-J model was
proposed by Emery, Kivelson, and Lin. They argued
that the dilute holes in an antiferromagnet are unsta-

The specific heat measurements on oxide superconduc-
tors have been made for many compounds by difFerent
researchers. The descrepancies are mostly due to the
difficulty in preparing and characterizing samples of the
oxide compounds. Although the speci6c heat data for
the superconducting compounds show considerable vari-
ations for samples measured by different groups, some
qualitative features seem common to all the measure-
ments. Hence a quantitative comparison between theory
and experiment is still early, but the qualitative tendency
of the specific heat in an adequate theoretical description
should be consistent with experiments.

In the half-filled case, there are no charge degrees of
&eedom and the spinon speci6c heat has been considered
by Wang. 3 Away &om half-6lling, we are interested in
the doping range 8 = 0.1 —0.2 where the superconductiv-
ity appears. In this doping range, we have shown that the
magnetization M vanishes and the system is in a disor-
dered Hux state, where the internal energy of the system
in the MFA is given by
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ble against phase separation into hole-rich and no-hole
phases, and the transition &om an ordered state to a
doped state is of first order. Later investigation us-
ing high-temperature expansions shows that a line of the
phase separation extends from J/t = 3.8 at zero filling
to J/t = 1.2 near half-filling, but for the range of pa-
rameter interesting to the copper oxide planes there is
no evidence for phase separation. Within the mean-field
theory of our fermion-spin approach, we find that the
phase separation is robust for the t Jm-odel, and the

phase separation manifests itself at the mean-Geld level
by a negative compressibility (slope of the chemical po-
tential). The total energy Et I ~ and the chemical poten-
tial Ij: as a function of the doping b for t/ J = 5 is plotted
in Fig. 6, which shows that the phase separation occurs
roughly at dopings b & b = 0.08. In this doping range
(b ( 8,), the compressibility of the t Jm-odel is negative,
and therefore the magnetized Aux state with long-range
order is unstable. The range of the phase separation will
be reduced by considering the frustrations of spins.
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FIG. 4. (a) The staggered magnetization, (b) the orbital current order parameter y, and (c) the order parameter P as a
function of the hole concentration 6, for t/ 1=5(solid line) and —t/ 1=3 (dashed line). MF denotes magnetized flux phase with
long-range order, while DF is the disordered Aux phase.
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FIG. 5. Speci6c heat data as a function of temperature T
(in units of J) at the hole concentration b = 0.2 for t/J = 3
(solid line) and t/J = 5 (dashed line).

VI. SUMMARY AND DISCUSSIONS

In this paper, we have developed a theoretical
framework, fermion-spin approach, to study the low-

dimensional t Jmodel. I-n this approach, the physical
electron is decoupled as a product of a spinless fermion
(holon) and hard core boson (s-pinon). The main advan-

-1 s s s s I s s s s I I I s s

-1.5

-2.5 s s s s I s s s s I s s s I

D.2 D.3

FIG. 6. The total energy Et & & (dashed line) and the
chemical potential p/3 (solid line) as a function of doping
8 for t/J = 5. The range of the phase instability is roughly
0 & 8 ( 0.08.

tage of this approach is that the on-site local constraints
of the t-J model or the large-U limit Hubbard model
can be treated exactly in analytical calculations. In this
framework, we have shown that the holon behaves like a
spinless fermion, while the spinon is neither boson nor
fermion, but a hard-core boson, and the sum rule for
the physical electron is obeyed. This is not true for the
conventional slave-particle theories, where the spinon be-
haves like a boson (slave-boson approach) or a fermion
(slave-fermion approach), and the sum rule for the physi-
cal electron is not obeyed within the decoupling scheme

We have applied this approach to study the low-

dimensional t-J model.
In the 1D case, we have obtained gapless spinon and

holon spectra, a good ground state energy, and a reason-
able electron-momentum distribution within the MFA.
Thus the ground-state in the fermion-spin formalism is
in some sense closer to the Bethe-ansatz Lieb-Wu exact
wave function of the 1D large-U limit Hubbard model
than the slave-particle approach. It is shown that the
spinon and consequently also the physical electron be-
have like Luttinger liquids. We have also obtained the
correct asymptotic form of the spin-spin correlation func-
tions as well as the electron-momentum distribution func-
tion of the 1D t-J model within the fermion-spin ap-
proach by considering the string effects, with results in
agreement with the exact numerical simulations of the
1D large-U limit Hubbard model obtained by Ogata and
Shiba. 5

The 1D problem is a good testing ground where the
charge and spin are truly separated (not in the literal
sense of product of spinon and holon, but rather as inde-
pendent collective excitations) and the Fermi liquid the-
ory fails to describe its physical properties. To our knowl-

edge, neither the standard perturbation theory nor the
conventional slave-particle approach is capable of han-
dling this aspect. Our results of the MFA seem to hint
that the fermion-spin approach has some potential to ex-
plore further.

The results for 2D are also very encouraging. The
magnetized flux phase with a gap proportional to the
staggered magnetization, in the spinon excitation spec-
trum, has the lowest energy at half-filling in the MFA.
However, this AFI RO fades away at 10 —15% hole dop-
ing for t/J = 3 —5, beyond which a gapless flux state
becomes stable. This result agrees with experiments
and numerical simulations. '5 '2 It is essential that this
mean-field result was obtained without any adjustable
parameters. This means that the formalism itself is pow-
erful enough to handle the frustration (delocalization)
effect of the t-term in destroying the AFLRO favored by
the J-term. However, we should mention that the spin
excitation spectrum at half-filling is not gapless in this
approach within the MFA as it should be (spin waves).
Both Laughlin's approach and Hus's treatment suffer
&om the same weakness. Probably, it can be cured by
including vertex corrections.

As mentioned in Sec. II, this formalism counts dou-
bly the empty site by assigning a "spin" to it. As shown
there, this defect can be cured by introducing a projec-
tion operator to remove the extra degrees of &eedom.
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However, in our mean-Geld treatments we have not taken
this projection operator explicitly into account. The fact
that we still obtain very good results, as summarized
above, indicates that we are not making substantial er-
rors by allowing this extra degree of freedom, at least in
problems considered so far.

A natural question is what is the reason why this
simple-minded transformation is so useful? To our
present understanding, there are at least three reasons:
(1) The local constraint is exactly satisfied even at the
mean-field level. (2) The hard core-nature is kept in the
calculation via the Jordan-Wigner transformation in 1D
(Ref. 25) or its generalization in 2D.2s (3) The repre-
sentation of the hard-core boson in terms of spin raising
and lowering operators is essential, because whenever a
hole hops it gives rise immediately to a change of the
spin background as a result of careful treatment of the
constraint given in Sec. EI B. This is why the t-term is
so eKcient in destroying the AFLRO. Of course, there
are many open questions in this approach, e.g. , how to
go beyond the MFA, what is the gauge field in this ap-
proach, what are its major effects, and so on. These and
other related issues are under investigation now.

Recently, we found Ref. 56, where a similar approach
was used to study the normal state properties of oxide
superconductors. Apart from the difference in issues ad-
dressed in our paper and theirs, a careful reader could
easily discover the substantial distinction in the interpre-
tation of transformations used in these two papers.
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APPENDIX A: MATRIX REPRESENTATION
OF THE PROJECTION OPERATOR

The holon operators ht and h in the basis (o)g, (i) h, of
holon states are given by

e

(,')
)

&0)

i')
(0)

0
1

(0)

1

(A3)

(0=I 0

(0
0
0

(0
&0=

I 0

(0
0
0

(0
(I
(0

0
0

(0
|'0
(1
(0

0
0

11 (0 01

0 0 0)
0 1 0
0 0 0
o o 0)

i i0) Ep 0)
0 0 1
0 0 0
0 0 0
o o 0)
0& f'0

8
0 0 0)

1 0 0
o o 0)
oui i 0 0)

0 0 0)
0 0 0
0 0 0
o o 0)

(A4)

which form a complete set ~

The fermion-spin transformation defined by Eq. (7)
gives the following matrix representation for the fermion
operators:

(0 0)
(1 op„' (A1)

On the other hand, there are only three physical states
in the constrained Hilbert space, namely

while the spin raising and lowering operators S+, S in
the spin- —space (o)„(i),are given by

~1~ ~0~
Io) = o , I t) =

tt'0 )
o i. (A5)

&I)

(0
(0 0)

i(o
(0 0) (A2)

In the product space ihole) ispin) the basis vectors are

To remove the extra degrees of freedoin in the ihole) I3

ispin) space, we introduce a projection operator P. By
requiring Pi1, $) = Pi1, $) = ip), Pio, t) =

i g), and
Pip, $) =

i $), one can easily find its matrix representa-
tion
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t
I 1 0 0)

P=(P„)= 0 0 1 0
(0 0 0 1f

and its Hermitian conjugation

(I 0 0)
0 0010

(0 0 ll

(A6)

(A7)

(0
C,-, = Ph,ts+Pt = O

(0
C., = S I S-~t =

0 ly
0 0
o of
0 0)
0 0
o of

(AS)

as quoted in Eq. (11). It is then straightforward to verify
the operator relations quoted in the main text [Eqs. (12)
and (13)]. In particular, the hole number operator

Using this projection operator, the electron operators in

the restricted Hilbert space are given by

(0 1 0~
C;t ——PhtS Pt = 0 0 0

&0 o of

(0 0 0)
C~~ ——Ph,S+Pt =

i 1 0 0
&0 o of

(I 0 0)
nt„ = 0 0 0 = lo)(ol

&0 o of

= -P(l»)(I t I+ II S)(l g I)P' (A9)

The physical meaning of Eq. (A9) is transparent: The
empty state should be counted only once, not twice.
Since in the mean-6eld treatment the constraint on the
average doping concentration b' is imposed directly on
hth, the sum rule for the physical electron is satis6ed.
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