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First-principles study of the optical properties and the dielectric response of Al
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We investigate the optical properties and the dielectric response of Al through self-consistent ab
initio pseudopotential calculations. The frequency and wave-vector-dependent dielectric function of
Al is calculated for both the real and imaginary parts within the random-phase approximation. The
accuracy of the calculations is tested using Kramers-Kronig relations and sum rules. In the limit q
—+ 0, we 6nd major optical peaks at 0.5 and 1.5 eV, which originated from the electronic structure,
in good agreement with experimental data. For the wave vectors along the [100] direction, the
electron-energy-loss function is calculated to examine the plasmon mode. Considering the exchange-
correlation and core polarization efFects, we find good agreement of the calculated plasma frequencies
with experiments. The anisotropy of the plasmon dispersion is also investigated.

I. INTRODUCTION

The problem of the dielectric response function in met-
als is a long standing one. Knowledge about the dielectric
response helps us to understand many important phys-
ical properties of interacting electron systems, such as
the optical spectrum, the screening of the system to the
external longitudinal 6elds, the electron-phonon interac-
tions, and the lattice dynamics. ' The dielectric func-
tion can also describe the collective mode of the density-
fluctuation excitation spectrum, i.e. , the plasmon mode.

For Al, there have been numerous studies on the elec-
tronic structure and the optical properties. At erst, the
calculations of the dielectric function were mostly per-
formed in the long wavelength limit. These calcula-
tions showed that the 0.5 and 1.5 eV peaks observed
in the absorption spectrum are attributed to the in-
terband transitions between parallel bands in the Bril-
louin zone. More recently the optical properties of Al in
the long wavelength limit were examined by Szmulow-
icz and Segall using the augmented-plane-wave method
and by Maksimov and his co-workers using the linear-
muKn-tin-orbital method. Besides, many theoretical
and experimental works have been performed on the
momentum-dependent plasmon dispersion of Al for test-
ing the exchange-correlation effect. The plasmon disper-
sion and its anisotropy from the band structure effect
were investigated by Bross through the model pseudopo-

tential calculations and by Sturm through the nearly
free electron approximation. s Although those calcula-
tions explained successfully many features of the plasmon
dispersion and its anisotropy, their calculated dispersions
showed a noticeable deviation &om experimental data,
especially in the region of large wave vectors.

In this paper we perform first-principles pseudopoten-
tial calculations of the dielectric response function of
Al. The &equency and wave-vector-dependent dielec-
tric function in the random-phase approximation is cal-
culated for both the real and imaginary parts. In the
optical limit q -+ 0, the conductivity exhibits two promi-
nent peaks at 0.5 and 1.5 eV, which arise &om the elec-
tronic band structure, in good agreement with other the-
oretical and experimental results. The plasmon mode is
examined for the wave vectors q along the [100] direc-
tion by calculating the electron energy-loss function. In
the crystal potential, the calculated plasmon dispersion
including the exchange-correlation and core polarization
eHects agrees well with experiments. Comparing the plas-
mon dispersion along [100] and [ill] directions, we also
examine the anisotropy of the plasmon dispersion.

The paper is organized as follows. In Sec. II the the-
oretical background and the calculational details are de-
scribed. The accuracy of the calculations is also dis-
cussed. In Sec. III we present the results and compare
with other theoretical and experimental results. Con-
cluding remarks are given in Sec. IV.

II. CALCULATIONS

Using a perturbative technique for independent-particle polarizability, Adler and Wiser formulated the dielectric
matrix in the random-phase approximation (RPA):
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where E„i, and ~n, k) are the energy eigenvalue and the corresponding wave function, respectively, for the nth band at
a wave vector k and f„i, is the Fermi-Dirac distribution function. We shall use the Hartree unit throughout this work.
The local field effects reHected by the off-diagonal elements of the dielectric matrix arise &om the inhomogeneous
distribution of electron density on the atomic scale and provide a correct description of the dielectric response.
The macroscopic dielectric function sM(q, ur) for q within the first Brillouin zone (BZ) is related to its microscopic
quantities as follows:

~M(q ~)= 1 / [sQQ']Q, c'=o
= zoo(q~&) — ) . roc(q ur) Mcc (q ur)sc o,
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where Mcc, (q, ur) is the inverse of the submatrix Mcc~ (q, v) which comprises elements scc (q, ur) for G and G' g 0.
The first term in Eq. (2) contains contributions from band-to-band transitions, while the second term represents the
local-field corrections. Neglecting the second term, zoo(q, ur) is just the usual Cohen-Ehrenreich dielectric function,
which works well for quasihomogeneous systems such as simple metals. The local fields in covalent semiconductors
have an important effect on the macrosopic screening by about 10—20'%%uo. It was also demonstrated that the local
field effects induce a shift of optical peaks and a drastic decrease in the magnitude of the optical absorption peak.
However, in simple metals, the local field effects are less important ' and neglected in our calculations because of
its extensive computational demand.

The macroscopic dielectric function without the local field effects is expressed by the form
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As is evident &om the formula, only the transitions &om occupied states to unoccupied states are considered in the
summation. In semiconductors or insulators, since the valence and conduction bands are well separated by the energy
gap, only the interband transitions exist. In metals, however, the dielectric function contains contributions &om both
the intraband and interband transitions. Hence we can rewrite Eq. (3) in the following form:
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where M(n, l, k, q) is the matrix element defined by

(» k]e''i'"]l, k —q). The first term in Eq. (4) represents
the intraband contribution and is expressed as the well-
known Drude formula in the limit q —+ 0:
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The second term in Eq. (4) contains contributions from
interband transitions.

The scheme of calculations of the dielectric function
is divided into three major parts: the band structure
calculations, the evaluations of the matrix elements,
and the reciprocal space integration. The band struc-
ture of Al is calculated by the ab initio pseudopo-
tential method within the local-density approximation
(LDA). i~ is Norm-conserving semi-nonlocal pseudopo-
tentials are generated using the scheme proposed by
Hamann, Schluter, and Chiang. The Wigner interpo-
lation formula for the exchange-correlation potential is
used. The valence wave functions are expanded in a
plane-wave basis set with a kinetic energy cutoff of 10
Ry.

The linear tetrahedron method is employed to perform
the summation over the Brillouin zone. In metals, the
k-space summation requires a large number of k-points
because of the complexity of the Fermi surface. To de-
scribe properly the crossing of energy bands at the Fermi
level, a large number of tetrahedrons should be chosen.
The tetrahedrons are generated using the scheme pro-
posed by Rath and Freeman. We use 6281 k-points in
the irreducible Brillouin zone (IBZ). To check the numer-
ical convergence for the number of k-points, we also use
10562 k-points in the IBZ. The results from the latter
show the negligible difference in the dielectric function,
as compared to the former. For the wave vectors g along
the [100] direction, since not the full point symmetry of
the fcc structure is associated with q, the integration
zone is extended into the one which is six times as large
as the IBZ. In this case, approximately 35000 k-points
are required in the extended integration zone. Since the
computational demand is considerable if the band struc-
ture calculations are performed in the full BZ, we exe-
cute the calculations only in the IBZ. The eigenvalues
and eigenvectors at the k-points in the other part of the
extended integration zone are obtained from those calcu-
lated in the IBZ, using symmetry relations. If a k-point
in the IBZ is related to another k'-point through one of
the symmetry operators, the eigenvalues at the k'-point
are identical, and the eigenvectors only differ by phase
factors given by a basis rotation with the corresponding
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symmetry operator. 23

In the evaluation of the dielectric function, the number
of energy bands is also important. We check the conver-
gence by varying the number of bands. Normally, the
calculations of the dielectric matrix require an enormous
number of bands, approximately 150—200 bands, for large
reciprocal lattice vectors. For our case, however, about
20 bands even for q = (—,0, 0) are sufficient for obtain-
ing the converged dielectric function.

Finally, the matrix elements in Eq. (4) can be ex-
pressed in a simple form when the plane-wave basis set
is used. For the wave vector g ~ 0, special care must
be taken in evaluating the matrix elements due to the
nonlocal part of the pseudopotential, which was noted in
previous calculations. ' It was shown that the nonlocal
pseudopotential contributes about 5—10% to the matrix
element in semiconductors. For Al, similar contributions
of 5—10% from the nonlocal pseudopotential are found.

III. RESULTS AND DISCUSSION

The calculated energy band structure of Al is shown in
Fig. 1 along some symmetry directions. On the symmetry
directions, some k-points are related to optical peaks in
the dielectric function. Overall the calculated band struc-
ture agrees well with those of other, calculations. ' ' The
Fermi energy is estimated to be 11.1 eV from the low-
est band at the I point in the BZ, while the measured
value is 10.6 eV. It was suggested that the overesti-
mation of the valence bandwidth results from the LDA
calculation. In Fig. 2. the density of states calculated
by the linear tetrahedron method is presented and shows
a parabolic feature of bands, especially in the low energy
part, with some deviation from the free electron feature
in the high energy part. The shapes and positions of
several small peaks are quite similar to the results of
other calculations. ' We investigate the Fermi surfaces
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FIG. 2. The density of states calculated by the linear tetra-
hedron method is shown.

on the I'-K-R'-X plane and find the Fermi surface con-
tours for the second and third zones which are in good
agreement with other calculations. However, on the 8—
X axis, since the crossover point between the second and
third bands lies above the Fermi level (see Fig. 1), a
small piece of the Fermi surface for the third zone near
the W point is not seen.

Figure 3 shows the calculated joint density of states
J(~). We find two major peaks in J(~) at 0.5 and 1.5 eV,
which are in good agreement with previous calculations.
This result indicates that similar peaks may appear at
the same energies in the optical conductivity. We find
that these peaks are originated from the electronic band
structure. The peak at 0.5 eV results mainly from the
transitions between the parallel bands, marked by the
arrows in Fig. 1, at the k points which lie on the plane
made of the W, U, and 6 points in the fcc Brillouin
zone. These parallel bands which are degenerate in the
free electron case are split by 0.5 eV in the crystal po-
tential. The same analysis shows that the peak at 1.5
eV is attributed to another pair of parallel bands around
the Z-axis on the I'-K-O'-X plane. The electronic ori-
gin of the two main peaks is the same as that proposed
by Szmulowicz and Segall, however their calculated en-

ergy bands were empirically adjusted to yield the parallel
band structure. The peak at 1.5 eV is somewhat broader
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FIG. 1. The band structure of Al is drawn along some im-
portant symmetry directions.

FIC. 3. The joint density of states for Al is drawn in units
of states/(eV atom).
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than that obtained from the empirically adjusted LDA
band.

In the optical limit q ~ 0, as discussed before, the
imaginary part of the interband transition term (sz" ")
displayed in Fig. 4 shows two peaks at the same energies
as those found in the joint density of states. As com-
pared to the 0.5 eV peak, the 1.5 eV peak of cz"~" is
rather broad. We find 0.1 eV for the onset frequency of
the interband transitions. Brust and Szmulowicz and
Segall pointed out that there is no onset frequency as
~ ~ 0 due to the accidental degeneracy of the second
and third bands on the I'-K-TV-X plane near the Fermi
level. Szmulowicz and Segall estimated the value of sz"~"
to be about 18 for ~ = 0. As mentioned before, however,
since the crossover point between the second and third
bands on the O'-X axis is above the Fermi level in our
calculated bands, there is no interband transition in our
case as ~ ~ 0. The real part of the optical conductivity
o ~" ",which is given in Fig. 4, also shows the onset of the
interband transitions at 0.1 eV. Experimentally, Benbow
and Lynch showed that 0-z"" becomes negative for u
below 0.25 eV. Although it is not clear yet whether the
onset exists or not in the limit of vanishing frequency,
overall our calculated o'&"~" agrees well with other theo-
retical and experimental results. The dielectric function
including both the intraband and interband transitions
is plotted in Fig. 5. To calculate the intraband contribu-
tion to the dielectric function, we have to estimate two
parameters, uz, which is related to the optical mass, and
the relaxation frequency p. Here we directly calculate
~z with the use of the linear tetrahedron method and
obtain a value of 12.56 eV which is in good agreement
with other estimates in the range of 12.5—13.0 eV. '

For p indicating the contribution of phonons, we use a
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FIG. 4. The imaginary part of the interband term of the di-
electric function is plotted in the limit g -+ 0. The interband
conductivity is also given in the lower part of the Ggure.
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FIG. 5. The real and imaginary parts of the dielectric func-
tion in the limit g ~ 0 are plotted by considering both
the interband and intraband terms. The dashed lines de-
note the real part of the dielectric function calculated by the
Kramers-Kronig relation.

value of 0.13 eV, which was determined by experiments.
As indicated in Eq. (5), the intraband term is found to
follow the Drude formula for q ~ 0, which diverges as ru

goes to zero. The imaginary part of the Drude dielectric
function is usually small, and if the phonon eKects are
neglected, this term vanishes for finite ~.

For the wave vectors q = (4,0,0) 2, (2,0,0) —,and

(4,0,0)—,the calculated real and imaginary parts of the
dielectric function are presented in Fig. 6. As compared
to the g~0 case, we find no diverging behavior in the in-
traband terms for q g 0. As the norm of the wave vector
increases, the position of the peak is found to be shifted
to the region of higher energies, while the magnitudes
of the dielectric function are greatly reduced, indicating
that the dielectric function disperses with increasing wave
vector. This result is similar to the well-known behav-
ior of the Lindhard dielectric function of a free electron
gas. For each q vector, we test the accuracy of the calcu-
lations by evaluating the plasma frequency through the
following sum rules:

2d~~e'2(q, u) = ~, su—m rule I,
0

f
OO —1 vr

due) Im = —u„, sum rule II.
0 s q, (d 2

As shown in Table I, the calculated plasma frequencies
through the sum rules are close to a value of 15.3 eV
except for the one calculated from the sum rule I for
q ~ 0, while the experimentally measured value is 15.0
eV. ' We find that the real part of the dielectric
function sz(q, &u) obtained by the Kramers-Kronig rela-
tion as for the test of ealculational accuracy shows good
agreement with the directly calculated sq(q, ur) for all the
wave vectors.

We examine the dispersion of the plasmon mode
by calculating the electron energy-loss func-
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FIG. 7. The imaginary parts of the inverse dielectric func-
tion are plotted for several wave vectors along the [100] direc-
tion.
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experimental results. Since the RPA fails to give a pos-
itive pair distribution function at small distances, the
exchange-correlation effects are important for large wave
vectors. We use the results of Vashishta and Singwi de-
rived for the homogeneous electron gas in the following
fashion:
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where Q(q, ur) is the independent-particle polarizability

FIG. 6. The real and imaginary parts of the dielectric func-
tion are drawn for (a) q = (0.25,0,0)—,(b) (0.5,0,0) —,and

(c) (0.75,0,0) —' .

tion, —Im[e i(q, ur)]. The plasmon peak is found to be
very sharp at low wave vectors and strongly disperses as
the wave vector increases, as illustrated in Fig. 7. This
behavior is consistent with the general feature found in
simple metals, while broad and nondispersive peaks were
found in semiconductors. is s4 For q = (s4,0,0)—,which
is in the Landau damping region, a slightly unsymmet-
rical feature of the plasmon peak with some wiggles is
found. In Fig. 8, the calculated plasmon &equencies for
the wave vectors along the [100] direction are compared
with those of the Lindhard dielectric function and the
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TABLE I. The calculated plasma frequencies (in units of
eV), w~(l) by the sum rule I and w~(2) by the sum rule II
(see the text), are given.
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direction are compared with the Lindhard values and the ex-
perimental results. The long-dashed line denotes the Lind-
hard values, the solid line is for the present RPA results,
and the short-dashed line is for the results including the ex-
change-correlation eKects. Experimental results are given by
boxes (Ref. 31), filled triangles (Ref. 32), and asterisks (Ref.
33).
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multiplied by the Coulomb potential and G(g) is the
exchange-correlation correction factor. By comparing the
present RPA calculations with the Lindhard values, the
band structure effect induced by the crystal potential can
be estixnated. In previous theeretical calculations, Bross
and Sturm found weakly wave-vector-dependent down-
shifts of about 0.3—0.4 eV for the plasma &equencies un-
der the crystal potential. ' However, our calculations
show that the downshift due to the band structure ef-
fect is more significant and depends on the wave vector.
We find the energy shift to be about 0.5 eV for g -+ 0
and about 1.2 eV for ~tl~ 1.0 A ~. As expected, the
exchange-correlation correction reduces the plasma fre-
quencies for large wave vectors. Our calculated plasma
&equencies with the exchange-correlation corrections are
well fitted to a polynomial function, ur„(0) + cqq + c2q,
where the coefficients are 15.28 eV for u„(0), 2.13 eV A2

for cq, and 0.58 eV A.4 for c2. With the core polarization
effect, we find the further reduction of urz(0) by about
0.35 eV.ss Thus, the resulting plasmon dispersion is in
good agreement with the experimental results within the
experimental error. s~ ss Although our results are shown
for the [100] direction, the directional average over other
lattice directions does not change the dispersion curve
significantly. Our results indicate that the description
of the plasmon dispersion using two dispersion parame-
ters for c (Refs. 31 and 32) may be improper, consistent
with the picture of Sprosser et ol. , who measured recently
the plasmon dispersion of Al.ss The coefficient cq can
be regarded as the dimensionless parameter a in atomic
units. The Lindhard plasmon dispersion gives a value of
0.44 for a, while our RPA value is estimated to be 0.37.
Including the exchange-correlation correction suggested

by Vashishta and Singwi in our RPA results, n is esti-
mated to be 0.28, while the experimentally determined
value for o. is 0.30. Hence, it is clear that both the
crystal potential and exchange-correlation efFects reduce
signi6cantly the Lindhard value for a. We also investi-
gate the anisotropy of the plasmon dispersion between
the [100) and [ill] directions. At q = 0.8 A ~, we find a
maximum anisotropy of about 0.25 eV. It was shown pre-
viously that the [110] dispersion curve is slightly above
the [111]dispersion in the anisotropic region. In this re-
spect, we expect that the maximum anisotropy between
the [110]and [100] directions will be about 0.25—0.30 eV.

IV. CONCLUSION

We have calculated the frequency and wave-vector-
dependent dielectric function of Al using the ab initio
pseudopotential method. In the limit g ~ 0, the dielec-
tric function calculated in the random-phase approxima-
tion shows two prominent peaks at 0.5 and 1.5 eV, which
arise from the interband transitions between the paral-
lel bands. The plasmon mode is examined through the
sum rules and the electron energy-loss function. We have
found a larger downshift of the plasma frequencies by the
crystal potential, as compared to other previous works.
The plasmon dispersion with the exchange-correlation
and core polarization effects is in good agreement with
experiments even for large wave vectors.
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