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Within the framework of density-functional theory, first-principles pseudopotential methods have
been highly successful in modeling the valence-electron properties of solids in their ground states. In
this paper, we introduce “core-cancellation functions” which are designed to improve the accuracy of
the treatment of the exchange-correlation interaction. This formalism, expected to be especially effective
for transition metals, is tested for bulk tungsten and niobium, comparing results obtained using the
local-density approximation to those obtained using the generalized gradient approximation.

I. INTRODUCTION

Density-functional theory' is based on the variational
properties of the fotal electron density. However, for
pedagogical and computational reasons, it is often neces-
sary to divide the electron density into core and valence
contributions. Kinetic energy and electrostatic interac-
tions can easily be divided into core and valence terms.
But for the exchange and correlation interactions, which
are nonlinear functionals of the density, core and valence
contributions are much harder to separate. Recently,
Annett? has developed a density-functional theorem for
the valence electrons alone, providing a rigorous frame-
work for treating the core and valence electrons separate-
ly in the exchange and correlation interactions.** While
these new ideas are being explored, it useful to improve
techniques for accurately evaluating the well-established
total electron density functionals.

First-principles pseudopotential techniques, which
have been recently reviewed by Pickett’ and Payne
et al.,° enable a mathematically accurate method of
separating core and valence interactions. In principle, a
pseudopotential calculation can yield valence-electron en-
ergies and valence-electron densities in the bonding re-
gion arbitrarily close to that of an ideal full potential cal-
culation in the frozen core approximation. Although the
electrostatic contributions of the frozen core electrons are
accurately represented, there has been some discussion of
how to best include the effects of the frozen core electron
density in the exchange and correlation interactions.
Louie, Froyen, and Cohen’ showed that since the frozen
core density enters the exchange-correlation potential in
a nonlinear functional form, it does not cancel out of the
pseudopotential formulation. For transition metals, the
effects of the core density in the exchange-correlation en-
ergy are magnified by the fact that the peak of the
valence density occurs in a region of space where the core
density is an order of magnitude larger than the valence
density. This is demonstrated in Fig. 1, which contrasts
the forms of the core and atomic valence densities for a
covalent material S, with those of two transition metals,
Nb and W, from the fourth and fifth rows of the Periodic
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Table. In their original paper, Louie, Froyen, and
Cohen’ showed that for most materials, it is sufficient to
introduce a ‘“‘partial core function” which is the exact
core density in the region where there is large valence-
core overlap, smoothly extended into the region close to
the nucleus at a radius R, by an approximate core densi-
ty function. For Fe, Zhu, Wang, and Louie® report that
results are sensitive functions of the cutoff radius R,. We
found that for W and other transition metals we could
not reliably calculate the electronic structure using the
partial core functions, and therefore adopted a full core
density treatment of these effects with the help of “core-
cancellation functions.” This treatment is a modification
of an idea originally presented by Bylander and Klein-
man,’ and may be especially convenient for pseudopoten-
tial inversion calculations.!® It improves the numerical
accuracy of the evaluation of exchange and correlation
contributions to the cohesive energy of the system and we
are able to compare the results calculated with the local
density approximation'! (LDA) with those obtained using
the new generalized gradient approximation (GGA-II),
recently developed by Perdew et al.'?

The outline of this paper is as follows. In Sec. II, the
mathematical formalism and computational details are
presented, including an outline of the complete cohesive
energy calculation and a description of the core-
calculation formalism. In Sec. III, results for bulk W are
presented, comparing the results obtained with the LDA
and GGA-II forms of the density functional with those of
previous workers. Discussion and conclusions are given
in Sec. IV.

II. COMPUTATIONAL METHODS

A. Outline of cohesive energy calculation

The computation techniques used in this study are
based on density-functional theory, within the frozen
core approximation, implemented using norm-conserving
pseudopotentials and a mixed-basis representation of the
electronic wave functions, as outlined in the original
work of Louie, Ho, and Cohen.!3 The basic calculational
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scheme used in this work is very similar to that used by
many groups as reviewed by Pickett’ and by Payne
et al.® However, as calculations are pushed to greater ac-
curacy, details of the computational techniques become
important.

In the first step of the calculation, the norm-conserving
pseudopotentials are constructed from a self-consistent
solution of the Dirac equation for the atom by the
method of Kleinman!* and Bachelet, Hamann, and
Schliiter.® In our work, we use the functional form of
Kerker'® and some of the modifications suggested by
Troullier and Martins'’ in order to increase the smooth-
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FIG. 1. Core and valence-electron densities for S, Nb, and W
atoms evaluated with the GGA-II form of the exchange-
correlation interaction. For each atom, the core electron densi-
ty is indicated with a solid line, the full potential valence-
electron density is indicated with a dotted line, and the pseudo-
potential valence-electron density is indicated with a dashed
line.
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ness of the pseudopotential. From the spin averaged
pseudopotentials of the neutron atom V;*°"(r), the ionic
pseudopotentials ¥;°*(r) are determined by subtracting
the valence screening potential V*°T?(plom p2tom) which,
as defined below, is a function of the frozen core density

p2™ and the valence pseudodensity p***™:

V]ion( r)= Vlatom(r)__ Vscreen(ng?;n’p

atom) . (1)

In general, the complete ionic pseudopotential can be
conveniently divided into local and nonlocal terms>® 13;
yion(p)=yion (r)+8VINHP, , 2)

local
where 7, is the projection operator for angular momen-
tum about the ion center and where
SV MR =V (r) — Vi (r) .

local

It is mathematically accurate and computationally con-
venient to choose:

o (F)= }2:X(r) , (3)
where [,, is the largest angular momentum of the
valence electrons. In this way, errors in the matrix ele-
ments from high angular momentum partial waves can be
made as small as possible and also the nonlocal terms
8V°™(r)P; must be calculated for the fewest number of
terms; / </_,.. In the present work, spin-orbit interac-
tions'* ! were not included.

With a knowledge of the ionic pseudopotentials, for a
given geometry of the ionic coordinates {7}, and for an
initial guess of the valence-electron density pi", the
effective Hamiltonian of the density-functional equations’
can be constructed. The valence-electron density enters
the effective Hamiltonian in terms of the screening poten-
tial V*(p_ .,p'") which represents the Coulomb repul-
sion and exchange-correlation interaction of the valence
electrons and has the same functional form as in the
atomic calculation [Eq. (1)], but now p_. represents the
superposition of all of the (possibly overlapping) frozen
core densities of the ions in the solid and p™ represents
the valence pseudodensity of the solid.

For each wave vector K, it is assumed that the valence
eigenfunctions can be accurately represented with the fol-
lowing mixed-basis expansion'?:

V()= a§(k)e' 97+ 3 g (k)PH(Kk,r) . (4)
G u

In this expansion, G denotes a reciprocal lattice vector of
the plane wave function and ®#(k,r) denotes a linear-
combination-of-atomic-orbital (LCAO) function with u
representing the site and orbital-type index. The LCAO
basis functions are formed from the atomic pseudo wave
functions and are typically chosen to represent only the
highly localized contributions such as d-wave terms for
transition metals and s- and p-wave terms for materials in
the first few rows of the Periodic Table. The number of
plane-wave terms is controlled through the parameter
gpw by including all terms such that |k+G|=<gpw-
These represent delocalized wave-function contributions
as well as shape changes to the atomic LCAO basis func-
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tions caused by interactions in the solid. In evaluating
the matrix elements of the Kohn-Sham equations,l the
LCAO contributions are evaluated by using plane-wave
expansions including all |k+G| <g;cao- The number of
LCAO basis functions and the convergence parameters
gpw and gpcap are chosen so that the mixed-basis set is
well converged but not overcomplete. The matrix ele-
ments of the local potential contributions are evaluated
by using fast Fourier transform (FFT) techniques, !> with
a maximum reciprocal lattice vector Q.. (which must be
larger than gpyw and g;cap) chosen to accurately com-
pute the FFT of the valence density, the valence screen-
ing potential, and the local ionic pseudopotentials. The
matrix elements of the nonlocal potential contributions
are evaluated by a separable form approximation.'® The
wave-function coefficients a$ (k) for the plane-wave con-
tributions and Bk (k) for the LCAO contributions are
determined by solving a generalized eigenvalue problem
of the form

where H represents the Hamiltonian matrix and S
represents the overlap matrix. Here Ey; denotes the
one-electron eigenvalue corresponding to the eigenstate
W y- The dimension of the generalized eigenvalue prob-
lem (5) is generally 500—-2000 for materials we have stud-
ied. Eigenvalues for the occupied states and a few unoc-
cupied states were determined with standard diagonaliza-
tion'® methods.

From a knowledge of the eigenstates, the resulting
valence electron pseudodensity can be determined:

pOUt(r)=2 ka!‘l/Nk(r)|2 . (6)
Nk

Here, integration over the Brillouin zone is approximated
by a midpoint sampling on a uniform grid, using symme-
try considerations to determine the number irreducible k
points and their fractional degeneracies d,. This k-point
sampling is the same as that used for calculating the den-
sity of states as developed by Gilat and Kam?® and works
as well for metals as it does for semiconductors and insu-
lators. We investigated several methods of determining
the weighted occupancies wyy,, finding the method of Fu
and Ho?! to give the best results:
Ep—Epny

wye=d |1+ erf , )

where it is assumed that 3,d, =1 and that there is dou-
ble occupancy for each full band state. Here, o
represents a Gaussian width associated with each band
which should be chosen to approximate the dispersion
between adjacent grid points. The results are insensitive
to the choice of o.2! The Fermi level is determined by
solving the transcendental equation:

2 ka:Ntotal ’ (8)
Nk

where N, represents the total number of valence elec-
trons in the unit cell. This procedure effectively stabilizes
the density iterations.
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Once the output density has been calculated [Eq. (6)],
the convergence of the density is checked by testing
whether the following inequality is satisfied:

S [p™(G)—p™G) <4, , (9)
G

where A is the density convergence parameter set for the
calculation. If the valence density has not yet converged,
a new input density is generated using the Broyden?? al-
gorithm as implemented by Srivastava?® and the Kohn-
Sham calculation is repeated.

If the valence-electron pseudodensity has converged,
then p®t~p'"=p, and the cohesive energy E . ({7}) can
be calculated for the given ionic coordinates {7} from the
following six contributions:

Ecoh:Eatom _(EEwald+Eone+ECoul+Exc +Eck) . (10)

The last five terms represent the valence electron energy
of the solid which is subtracted from the valence-electron
energy of the free ground-state atoms, E, ., to deter-
mine the cohesive energy of the material. The term
Eg, .4 denotes the ion-ion interaction screened by a uni-
form distribution of compensating negative charge, eval-
uated using an Ewald summation.?* The term E_,.,

EonezszkENk ’ (11)
Nk

is the weighted sum of the one-electron eigenvalues Ey,
of the Hamiltonian (5). In this work, the “zero” for the
one-electron eigenvalues is fixed by choosing the G=0
Fozlslrier transform of each local ionic pseudopotentials to
be

i 2
on (r)_+_ Ze

=ion _ _477'
pio (G—O)—?frzdr ion ,  (12)

local

where Q) denotes the volume of the unit cell and where Z
denotes the valence charge of the ion. The term E,,,

: [p(r)=pollp(r')—po]

__ e r.3 .3,lP Pollp Po
ECoul_ 2 fd rd’r ,r_r,| s (13)
is the electron-electron repulsion correction to E ., from

which a uniform distribution of compensating charge
Po=Nip /Q is subtracted. The formulation of the
norm-conserving pseudopotentials ensures that these
three terms (Egy,q +E e T Econ) are determined accu-
rately, provided that the canceling divergences in the
G =0 contributions are treated properly.?> The term E,_
represents the exchange-correlation contributions and is
described in detail in Sec. IIB below. The term E_
represents a very small correction for core electron repul-
sion which is also described in Sec. IIB below. The
atomic valence energies in E,,, are calculated using the
same pseudopotentials as used in the solid calculations so
that there is significant error cancellation in determining
the cohesive energy. However, there is a systematic error
caused by the fact that in the atomic program, the atomic
valence energies are calculated for spherically averaged
valence densities, corresponding to the multiplet average
of the atomic ground-state configurations. However, the
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experimental cohesive energy is based on the true atomic
ground-state multiplets which can be lower than the mul-
tiplet averages by as much as a few electron volts for each
atom. A reasonable estimate of the multiplet average en-
ergy relative to the atomic ground state can be deter-
mined for each atom from the experimental spectroscopic
levels listed in the Moore tables.?® The sum of these mul-
tiplet averages can be used to calculate an atomic multi-
plet correction AE™! which can then be used to correct

aztom
the cohesive energy?’:
T — — mult
gg; =Econ AEatom . (14)

Since AE™!! is a positive energy, this correction reduces
the magnitude of the cohesive energy.

So far, we have used this method to study systems with
relatively few degrees of freedom so that it has been con-
venient to determine the highest cohesive energy E,, by
sampling E_,,({7}) on a grid of possible geometries, us-
ing interpolation to estimate the maximum. In evaluat-
ing E_,({7]) at adjacent geometries, it is often advanta-
geous to start the density iterations by using the initial
valence pseudodensity p™ obtained by evaluating Eq. (6),
using the occupancies wy, and the wave-function
coefficients a$(k) and B4 (k) from the results of a nearby
geometry, but adjusting the LCAO basis functions
®*#(k,r) to the correct geometry. This procedure usually
substantially reduces the number of iterations needed to
converge the density. The completed calculation yields
the maximum cohesive energy geometry in terms of the
ionic coordinates {7}, the corresponding self-consistent
valence-electron pseudodensity p®*' =p'" =p and cohesive
energy ES, and the corresponding one-electron eigen-
states Wy, (r) and eigenenergies E ;.

The methods described above are very similar to those
discussed in the literature.>® The new core-cancellation
functions for the exchange-correlation interaction de-
scribed in Sec. II B below affects the creation of the pseu-
dopotential functions, the evaluation of the valence
screening interaction V™", and the evaluation of the
exchange-correlation contribution to the cohesive energy
E

Xxc*

B. Core-cancellation functions
for evaluating exchange-correlation functionals

For a given valence pseudodensity function p(r) and
frozen core density function p.,.(r), we can define the
valence screening potential in terms of Coulomb repul-
sion and exchange-correlation contributions:

screen — ’ B(rl)
vV (pcore’p)—ezfd r |I'_I'"

F {Vielpeore(r) o0 ] = V(D]
(15)

For calculations in solids, p(r’) is replaced by [p(r')—pg]
in the Coulomb repulsion term. The corresponding
exchange-correlation energy used in Eq. (10) can be writ-
ten

Ey= [dr(6,:lpeore D)t = E20)) . (16)
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where the exchange energy density function is defined by
el Peore(T),P(T) = [Peore(T) +p(r) J€xc[Poore(T) +p(1)]

PO e[Peore(r) +p(r)] . a7

In Egs. (15) and (17), the standard notation' for the
exchange-correlation functionals €,.(n) and

S[ne(n)]
én

is used. In the present work, we have used both the
exchange-correlation functional forms of Ceperley and
Alder®® as parametrized by Perdew and Wang!! for the
LDA and of Perdew et al.'? for the GGA-II calculations.
We have restricted our calculations to zero spin polariza-
tion, but generalization to include the possibility of spin
polarization is straightforward. For the LDA calcula-
tions, relativistic corrections for the uniform electron gas,
as calculated by MacDonald and Vosko? and Rajago-
pal®® were added to the nonrelativistic contributions.

The core-cancellation functions V5™(r) and &50(r)
are added to Egs. (15) and (16) in order to increase the
efficiency and accuracy of the calculation. These func-
tions are chosen to serve two purposes: (a) to ensure that
the net exchange-correlation functions that are used in
the calculation [the terms in the curly brackets of Egs.
(15) and (16)] are smooth and (b) to have no residual
effects on the calculation. Criterion (a) is fulfilled by
choosing the cancellation functions so that they cancel
the rapid varying behavior of V, [p....(r)+p(r)] and of
6 (Peore(T),p(r)) near each ion site, as suggested in the
original paper of Bylander and Kleinman.® Criterion (b)
is fulfilled by constructing V™(r) and &50°(r) from
nonoverlapping atomic contributions. Vo'°(r) enters the
calculation in constructing the ionic pseudopotentials
[Eq. (1)] by subtracting V**" from the neutral atomic
pseudopotential. It also enters the calculation in con-
structing the Hamiltonian for the solid by adding V*"ee"
for the solid to the other Hamiltonian contributions.
Since V2(r) enters both of these contributions with
identical value and opposite sign, it cancels out of the net
calculation. &™(r) enters the calculation of the atomic
valence energy through the exchange-correlation energy
[Eq. (16)] evaluated for the valence density of the atom,
p*°™, and also enters the calculation of the valence-
electron energy of the solid through the exchange-
correlation energy [Eq. (16)] evaluated for the valence
density of the solid, p. &5 °(r) enters both of these con-
tributions identically and with opposite sign in the calcu-
lation of the cohesive energy [Eq. (10)] and thus cancels
out of the net calculation.

Within criteria (a) and (b), there is considerable flexibil-
ity in the choice of form for the radial functions V5o (r)
and &5"(r), centered at each ion site, that compose the
complete cancellation functions for the solid. We have
used the following two choices for the functional forms:

V& (n=V P (],

Vie(n)=

G =Pegre (Nexc[Peore (1]

where
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Prore (=Pt (N feu(r) (18a)
or

Ve (r) =V, [p200(r) +p™™(r) 1 f eu(r)

()= 6, (P20 (1), p* ™ (1)) f eue (1) - (18b)

In these equations, the notation p2e(r) is used to denote
the spherically symmetric frozen core density of a single
atom, while p...(r) used in Egs. (15)-(17) denotes the su-
perposition of all of the (possibly overlapping) frozen core
densities in the solid. Both forms (18a) and (18b) use a
cutoff function which vanishes outside a sphere of radius
r. about the atom. The cutoff radius r, is chosen so that
there is no overlap of the cancellation functions for any
of the solid geometries considered in the calculations.
Typically, the cutoff radius r, is chosen to be the largest
of the radii used to construct the corresponding ionic
pseudopotential. In this work, we have chosen the cutoff
function to have the form:

Sfeulr)=e

We found form (18a) to work well for the LDA calcula-
tions. However, for the generalized gradient approxima-
tion, which depends on the gradient of the density, the

- r/r 8
s/ (19)

|

ch(pcore+p)— Vigre(rfo)ch(pcore—'_p)( 1 _fcut )+ V;c(p

gxc(pcore_i_p)_ 6§gre( i éxc(pcore’p)( 1 _fCll( )+ { VXC(p

r—0)
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use of the cutoff function within the exchange-correlation
functionals caused unphysical structure in the cancella-
tion functions. We found the choice of functional form
indicated in Eq. (18b) to work well with the GGA-II
exchange-correlation functional and expect it to also
work well for the LDA.

While the presence of the cutoff function ensures that
the cancellation functions will be nonoverlapping, it is
important to check the behavior of the net exchange-
correlation functionals at each ion center, as r —0. Since
in this region, the core electron density dominates,
Peore >>p> When V. and €, are functionals of the density
only (LDA) it is possible to make a Taylor’s series
analysis yielding the following asymptotic form corre-
sponding to (18a):

ch(pcore+p)_ V’c(gre( zo)V;c(pi:)?':] )(p+8pcore) >
'* (20a)
gxc(pcorvp )— 6)c(gre( rzO) ch (f"’cig?-::n )apcore

’ )
- % Vi (pi:)(;ren (P2 - 8pcz:ore ),
where 8p,,,. denotes p ...~ Paee and Vi (n) denotes the

derivative dV,.(n)/dn. The asymptotic form corre-
sponding to (18b) is given by

23?:1 _+_patom )(pcore _Pzg;gl +p __patom )fcut s

atom

(20b)
atom )

+p ™) (Peore — Plore

+%V;&c (ngc;_;n+patom)[(pcore_p2:)(;n __patom)2_p2]]fcut .

atom

As r—0, it is apparent that f, ~1 and that p ... =~pZe.
For the LDA formulation, it can be shown that V' (n)
vanishes for large n so that all of these net exchange-
correlation functions go smoothly to zero as r —0. For
the GGA-II formulation, there are additional terms in
the Taylor’s series expansion due to the dependence of €,
on the gradient of the density. However, it can be shown
that these additional terms which should be added to Eq.
(20b) also smoothly vanish as » —0. Thus, it is apparent
that the net exchange-correlation potentials and energy
densities go smoothly to zero near each ion nucleus as
designed. Figures 2 and 3 show the net exchange-
correlation functionals for S, Nb, and W and their corre-
sponding ionic pseudopotentials. In each of these cases,
the net exchange-correlation functionals are clearly
shown to be smooth everywhere and to smoothly vanish
as r—0 as argued above. The net exchange-correlation
potential has a maximum magnitude of less than 10% of
the maximum magnitude of the corresponding ionic
pseudopotential and the net exchange-correlation energy
density is an order of magnitude smaller.

Since the smooth form of the net exchange-correlation
functionals relies on the largeness of the core density rela-
tive to that of the valence density and not on its shape, it
is clear why that a similar analysis would apply to the ap-

proximate core formulation of Louie, Froyen, and
Cohen,’ explaining why it generally works well. One ad-
vantage of the present formulation is that it takes better
numerical advantage of the cancellation of terms. From
Figs. 2 and 3, it is clear the net exchange-correlation den-
sity function is numerically much smaller than its indivi-
dual contributions. In most of the materials that we have
studied so far, we find that E, . has a magnitude of less
than 15% of E_,,; for Nb and W it is less than 5%,
several times smaller than its magnitude calculated using
the partial core correction.” In addition to the numerical
advantage of the present formulation, it also improves
the accuracy of the pseudopotential approximation rela-
tive to the full potential treatment, since it can be shown
that the full potential and pseudopotential values of the
net exchange-correlation energy density function are very
similar except for a small volume close to the nuclei.

The net exchange-correlation functionals which enter
the electronic structure calculations are thus demonstrat-
ed to be spatially smooth functions. In calculations for
periodic solids, these terms are most conveniently evalu-
ated on the real-space fast-Fourier-transform (FFT)
grid’® used to evaluate the valence-electron density.
Since the core density is spatially well localized, it can
easily be evaluated directly on the real-space grid without
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FIG. 2. Potentials for S and Nb evaluated using the GGA-II form of the exchange-correlation interaction with the core-
cancellation function given by Eq. (18b). Left panels show net exchange-correlation potentials (solid line) and net exchange-
correlation energy densities (dashed line). Right panels show corresponding pseudopotentials for / =0 (solid line), / =1 (dotted line),

and [/ =2 (dashed line).

having to evaluate its Fourier transforms. For the
GGA-II formulation, the first and second derivatives of
the core density must also be evaluated on the real-space
grid. Since the core density is fixed, its evaluation on the
FFT grid and that of its derivatives can be stored
throughout the self-consistency loop.

In the case of W, the core states are unusually extended
such that they overlap each other slightly in crystalline
W at the equilibrium lattice geometry.®! The core can-
cellation function treatment of the exchange correlation
interaction as described above, correctly treats the effects
of this core overlap in the frozen core approximation.
The Coulomb interactions are also well approximated
through the overlapping ionic pseudopotentials. Both of
these terms estimate the additional attractive forces in
the system due to overlapping core electrons. The repul-
sive effects of the overlapping core electrons have been
completely omitted in this formulation. In an attempt to
account for the repulsive effects, we have added an addi-
tional term to the total energy of the system, Eq. (10), in
the form of a Thomas-Fermi treatment of the overlap-
ping core kinetic energy:

3 #
Zﬁ;(hrz)z”fa”r

5/3
Eck

2 pcore(r—T)

—E[pcore<r—f>]5”] , @1

where the sums over 7 indicate summations over all lat-
tice sites. The first term approximates the total kinetic-
energy contribution of the overlapping frozen core elec-
trons in the solid, while the second term subtracts the
corresponding atomic frozen core kinetic-energy contri-
butions. This energy can be evaluated on the same FFT
grid as for the exchange-correlation contribution, al-
though care must be taken to properly evaluate the diver-
gences near each nucleus. This contribution is identically
zero for nonoverlapping cores and represents a very small
repulsive interaction between nuclei even for W (less than
1% of E_, at equilibrium). In retrospect, the core
kinetic-energy correction term E 4 can be safely omitted
from most calculations.

III. TEST RESULTS FOR BULK Nb AND W

The convergence and tolerance parameters Q .., 9pw>
drcao> and A, used to study the ground-state properties
of Nb W are summarized in Table I for both the LDA
and GGA-II calculations. The pseudopotential radii
used to construct the pseudopotentials shown in Figs. 2
and 3 are also listed in this table. These parameters were
chosen so that the GGA-II calculation for W was very
well converged. The LDA calculation for W and the cal-
culations for Nb converged at smaller values of the cutoff
parameters.

For W, calculations were performed assuming the bcc
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FIG. 3. Potentials for W evaluated using the LDA form of the exchange-correlation interaction with the core-cancellation func-
tion given by Eq. (18a) (top panels) and using the GGA-II form of the exchange-correlation interaction with the core-cancellation
function given by Eq. (18b) (bottom panels). Left panels show net exchange-correlation potentials (solid line) and net exchange-
correlation energy densities (dashed line). Right panels show corresponding pseudopotentials for / =0 (solid line), / =1 (dotted line),

and / =2 (dashed line).

geometry for lattice constants 3.12 A <a<3.17 A. For
Nb, calculations were performed assuming the bcc
geometry for lattice constants 3.23 A <a <3.31 A. For
both Nb and W, the maximum cohesive energy and the
bulk modulus were determined by fitting the calculated
energies to a quadratic function of a.

Table II lists the various contributions to the max-
imum cohesive energy for W for both the LDA form of

the exchange-correlation interaction [using form (18a) for
the core-cancellation function] and the GGA-II form of
the exchange-correlation interaction [using form (18b) for
the core-cancellation function]. From this table it is ap-
parent that the atomic and Ewald energies are numerical-
ly the largest contributions, while E_ is less than 5% of
total electronic pseudoenergy of the solid.

The present results are compared with those of previ-

TABLE I. Calculational parameters.

Nb w
Pseudopotential radii (I, =2):
ro 1.5 bohr 1.4 bohr
r 2.8 2.6
r, 2.8 2.6
Cutoff radius for cancellation functions:
r. 2.8 2.6
Cutoff and convergence parameters for self-consistent band structure:
Ornax 20 bohr™! 20 bohr™!
grw 4 bohr™! 4 bohr™!
qdiLcao 8 bohr_l 8 bohr—l
A, 1X10~% bohr—3 1X10~° bohr™3
o 0.1 eV 0.1 eV
Number of inequivalent k points for BZ sampling:
68 68
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TABLE II. Contributions to the cohesive energy of W.

LDA GGA-II
Equilibrium lattice constant a=3.13 A a=3.15 A
Cohesive energy constributions E,om —227.463 eV —227.516 eV
Eg,a —301.366 —299.452
E,. 73.996 73.996
E coul —1.732 —1.755
E,. —11.234 —11.467
E . 0.107 0.094
E on 12.765 11.068
AE M 1.714 1.714
con 11.05 eV 9.35 eV

ous workers in Table III. This comparison shows that
the calculated results are sensitive to the computational
details and to the form of the exchange-correlation func-
tional. Korling and Higlund® performed calculations
using both the LDA and GGA-II forms of the exchange-
correlation functionals, but since they used the muffin-tin
approximation, it is difficult to directly compare their re-
sults with the present work. Garcfa et al.>* used mixed-
basis pseudopotential techniques'* and partial core
corrections,’ comparing the LDA functional with an ear-

lier form of the generalized gradient approximation. The
other results cited in Table III used the LDA with the
Wigner"'o interpolation formula (Refs. 9, 31, 36, and 37),
or with the Hedin-Lundqvist* or similar interpolation
formula (Refs. 21, 38, and 39). Unlike the results of the
present work, the cohesive energies listed in Table III
were calculated relative to the spin polarized atomic cal-
culations without using the experimental estimate for the
multiplet splitting indicated in Eq. (14).

It seems to be well established® (although embarrass-

TABLE III. Comparison of ground-state cohesive properties for Nb and W.

Lattice constant

Cohesive energy Bulk modulus

(A) (eV/atom) (Mbar)
Nb
Experiment 3.30° 7.57* 1.70°
Present calculation (GGA-II) 3.28 8.15° 1.9
(LDA) 3.24 9.71¢ 1.9
Previous calculations:
Garcia et al. (GGA-I) (Ref. 34) 3.33 6.45 1.60
(LDA) (Ref. 34) 3.27 8.15 1.72
Korling and Haglund
(GGA-II) (Ref. 35) 3.38 1.66
(LDA) (Ref. 395) 3.32 1.76
Fu and Ho (Ref. 21) 3.26 7.55 1.82
Harmon et al. (Ref. 36) 3.34 6.63 1.62
w
Experiment 3.16* 8.90* 3.10°
Present calculation (GGA-II) 3.15 9.35¢ 2.9
(LDA) 3.13 11.05¢ 2.9
Previous calculations:
Korling and Héglund
(GGA-II) (Ref. 35) 3.25 2.72
(LDA) (Ref. 35) 3.21 3.03
Mattheiss and Hamann (Ref. 37) 3.162 9.83 3.40
Wei et al. (Ref. 31) 3.164 10.09 3.18
Jansen and Freeman (Ref. 38) 3.149 9.76 3.46
Bylander and Kleinman (Ref. 9) 3.162 8.93 2.97
Zunger and Cohen (Ref. 39) 3.173 7.90 3.45

2Reference 32.
"Reference 33.
°Including multiplet correction AE Bus =1.49 eV.
Including multiplet correction AET! =1.71 eV.
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ing) that the LDA in the Wigner® form gives results for
the equilibrium lattice constant in closest agreement with
experiment, which accounts for its wide use.%3"3637
However, using the ‘“first-principles” LDA form of
Ceperley and Alder?® as parametrized by Perdew and
Wang,!! we find the LDA equilibrium lattice constants
for Nb and W to be smaller than their experimental
values by a few percent. In addition, even with atomic
multiplet corrections, the LDA cohesive energies are
larger than the experimental values by more than 2 eV.
These systematic errors of the LDA have been noted by
other workers.**** These errors are partially corrected
by the GGA-II as noted in Table III. For both Nb and
W, the equilibrium lattice constants and the cohesive en-
ergies calculated with the GGA-II exchange-correlation
functional are considerably closer to the experimental
values than those calculated with the LDA form. The
GGA-II correction to the cohesive energy can be partial-
ly understood as a correction to the treatment of the
atomic ionization energies which are made possible by
the Becke functional** which is included in the GGA-II
formalism. However, the GGA-II must also correct
some of the solid-state effects as evidenced by the im-

W

FIG. 4. Contour plot of the self-consistent valence-electron
pseudodensity of Nb plotted in a (110) plane in units of
electrons/A ~ evaluated at lattice constant @ =3.27 A. Upper
panel shows valence electron density for the GGA-II calcula-
tion. Lower panel shows density difference Ap=pCCATI—pLDA
magnified 100 times. Positive contours are indicated with a full
line, negative contours are indicated with a dotted line. Atomic
positions are indicated with filled circles.
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proved agreement of the equilibrium lattice constants.
Evidently, the GGA-II functional is also an improvement
over earlier generalized gradient forms.>* We find that
the bulk modulus is very sensitive to the calculational de-
tails even with our highly converged calculations; both
the LDA and GGA-II forms give very similar results for
the bulk modulus.

Contour plots of the self-consistent valence pseudoden-
sities generated using the GGA-II exchange-correlation
form are shown in the top panels of Figs. 4 and 5 for Nb
and W, respectively. Similar plots for pseudodensities
generated using the LDA form are indistinguishable on
this scale. These valence charge density contours are
similar to results published by previous workers.3%
One would expect the difference between the GGA-II
and LDA results for the cohesive energy to be reflected in
the self-consistent valence densities. In the bottom panels
of Figs. 4 and 5, the difference pseudodensities
Ap=pUCGATl_pLDA magnified by a factor of X100, are
plotted for Nb and W. The density differences are less
than 1% of the valence pseudodensities themselves and
have several regions of each sign. Some of the structure

h«oL

<

FIG. 5. Contour plot of the self-consistent valence-electron
pseudoden§it_y of W plotted in a (110) plane in units of
electrons/A ~ evaluated at lattice constant @ =3.15 A. Upper
panel shows valence electron density for the GGA-II calcula-
tion. Lower panel shows density difference Ap=pCCATI—pLDA
magnified 100 times. Positive contours are indicated with a full
line, negative contours are indicated with a dotted line. Atomic
positions are indicated with filled circles.



2360

=)
—
4
-
S LJVLAJ___Lﬁ L_LJ [

w
-0.4F
-0.6
-0.8~
-1.0 1 I 1 L L |
0 1 2 3 4 5 6
r (bohr)
FIG. 6. Radial plot of the density difference

Ap=pCCBAT—plPA between the GGA-II and LDA pseudoden-
sities for Nb and W atoms, magnified 1000 times.

of the difference densities is an atomic effect as evidenced
in Fig. 6 which shows radial plots of the difference be-
tween the GGA-II and LDA atomic valence pseudoden-
sities magnified by a factor X 1000 for Nb (upper panel)
and W (lower panel). The structure in the core region
0=r =r, is an artifact of the pseudopotential approxima-
tion, but the structure in the valence region r >r, is ex-
pected to represent the physical density difference. The
bottom panels of Figs. 4 and 5 show that for both Nb and

N. A. W. HOLZWARTH AND Y. ZENG 49

W, relative to the LDA valence density, the GGA-II
valence density is slightly smaller in the nearest-neighbor
bond region and slightly larger in the interstitial regions.

IV. SUMMARY AND CONCLUSIONS

In this paper we have described and demonstrated
methods for improving the accuracy of first-principles
electronic  structure calculations within density-
functional theory. In particular, we have introduced the
core-cancellation functions, which provide an effective
tool for efficient and accurate calculation of the
exchange-correlation interactions, especially for materials
involving transition metals. We find that when pushed to
the limits of accuracy, the LDA form of the exchange-
correlation interaction overestimates the cohesive energy
of Nb and W by more than 2 eV and underestimates the
equilibrium lattice constant by a few percent. The
GGA-II form of the exchange-correlation interaction
reduces the error in both the cohesive energy and the
equilibrium lattice constant for both of these materials.
On the basis of this study, we conclude that the GGA-II
provides an improvement to the LDA description of the
electronic structure of Nb and W. Further improvements
in the exchange-correlation functional, as well as in-
clusion of other effects such as spin-orbit interaction and
spin polarization effects, warrant further study.

The calculation methods described in this paper can be
used for a wide variety of electronic structural studies.
We have used it to study multilayer relaxation in W (111)
thin films*® and to study the transition metal compound
materials FeS, and RuS,.*’
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