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We study an elastic composite described by the position-dependent mass density p(r), the longitudinal

speed of sound cI(r), and the transverse speed of sound c,(r). For a spatially periodic composite —a
"phononic crystal" —we derive the eigenvalue equation for the frequencies co„(K), where n is the serial
number of the band and K is the Bloch wave vector. This is applied to the special case of a binary com-

posite and, further, to the case of infinite cylinders that form a two-dimensional lattice. For this
configuration (and no wave-vector component parallel to the cylinders) there are two independent modes
of vibration. The elastic displacement u(r) is parallel to the cylinders for one of them —the transverse
polarization mode. The other one is a mixed (longitudinal-transverse) polarization mode with u(r) per-
pendicular to the cylinders. Specifically we consider circular cylinders that form a square lattice. We
compute the band structures for the transverse modes of nickel alloy cylinders in an aluminum alloy
host, and vice versa. In both situations we find band gaps which extend throughout the Brillouin zone.
Within these gaps the transverse vibrations, sound, and phonons are forbidden. We also investigate the
dependence of the band gap on the filling fraction and on the material parameters.

I. INTRODUCTION

The last decade has seen a tremendous research in-
terest in the physical properties of artificial structures
comprised of two or more materials which differ in cer-
tain properties. The 1980s began with enthusiasm for mi-
crostructures of reduced dimensionality, ' such as quan-
tum heterostructures, quantum wires, and quantum dots.
More recently there has been ever increasing interest in
macrostructures known as "photonic crystals. " Typical-
ly, these are periodic arrays of two transparent dielec-
trics. The periodicity plays a crucial role in understand-
ing the physical properties of both microstructures and
macrostructures.

In this paper we are concerned with periodic structures
that are composed of two or more elastic freely vibrating
materials. We shall present a detailed theory of acoustic
band structure for such composites. Of special interest is
the prospect of achieving a complete band gap; this is
defined to be a stop band in which vibrations, sound, and
phonons are prohibited for all values of the quasi-wave-
vector (or Bloch vector) and for both longitudinal and
transverse vibrations.

Our inspiration has been drawn from analogous inves-
tigations of photonic crystals. These have been studied
intensively for the past six years. Due to considerable
similarities between the properties of periodic elastic
composites and periodic dielectrics, first we shall give a
survey of the essential developments related to the
latter —photonic crystals.

The initial proposal ' that periodic structures of
dielectric materials can be designed to have photonic
gaps in which optical modes are forbidden has attracted
wide attention, both theoretically ' and experimenta1-

ly. ' There are many important motivations for pur-
suing such studies. The absence of electromagnetic (EM)
modes inside the photonic gap can lead to unusual physi-
cal phenomena. ' For instance, atoms or molecules em-
bedded in a periodic dielectric composite can be locked in
an excited state if the energy of this state (relative to the
ground state) falls within the forbidden photonic gap.
They are also expected to exhibit an anomalous Lamb
shift. It has been suggested that inhibition of spontane-
ous emission in such gaps can be utilized to enhance sub-
stantially the performance of semiconductor lasers and
other quantum electronic devices. Moreover, John has
raised the possibility that the experimental observation of
Anderson localization of light could be facilitated by
weak disordering of the perfect periodicity of a photonic
crystal.

At the outset, theoretical efforts devoted to calcu-
lating photonic band structures were based on the
scalar-wave approximation, much as is done for electron
waves in solving the Schrodinger equation. Apart from
the fact that scalar-wave theory did not agree well with
the experitnent, ' these papers were criticized on the ob-
vious ground of ignoring the vectorial nature of the EM
fields. Finally, by employing the full vector Maxwell's
equations, " ' theorists began to agree with each other
as well as with the experiment, ' except at the high-
symmetry points U and 8'- of an fec crystal. This
discrepancy owes to the finite size of the crystal in the ex-
periment.

The experimentally observed pseudogap —rather than
a full gap —in the fcc crystal thus triggered concern and
a search for a way to overcome the contradiction between
theory and experiment. This resulted in a note published
in Ref. 24 questioning the existence of a photonic gap in
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the band structure of fcc crystals. The outstanding prob-
lem was to lift a degeneracy of the bands, particularly at
the 8'point. It was found' that if the symmetry of the
structure was lowered by filling the Wigner-Seitz unit cell
by two atoms, rather than by one, just as in the diamond
structure, then a full photonic band gap opened up. This
was a significant step taken by Ho, Chan, and Soukoulis'
since the diamond structure gives a wide photonic band
gap for a given dielectric-constant contrast. The quest
for crystalline structures that have full photonic band
gaps led the same group to propose some periodic ar-
rangements which are related to the diamond structure
but are easier to fabricate. One of these, the so-called
"three-cylinder structure, " was shown to have full pho-
tonic gaps in the microwave region.

It was suggested that localization of classical waves
(light and sound) could be fostered by some interplay of
disorder and (periodic) order. ' According to this argu-
ment the study of photonic bands is useful for the eluci-
dation of the conditions that can lead to localization.
Since the pipneering work pf Anderspn and Mptt,
considerable research efforts have been devoted to the ob-
servation of electronic localization in disordered solids.
However, successful tests of the scaling theory of localiza-
tion have been hampered by the nearly inescapable
presence of electron-electron interactions and electron-
phonon scattering in real materials. Such interactions
are nearly absent in classical-wave systems, which is the
main reason for the intensive study of elastic-wave and
light-wave localization over the past few years. For
the general aspects of scattering and localization of classi-
cal waves in random media, the reader is referred tp Ref.
36. Most recently, direct observation of localized elastic
waves —the bending waves of a steel plate decorated with
lucite blocks —has been reported. These observations
are supported by theoretical calculations based on a new-

ly developed "finite-element" method. ' This methodolo-

gy is advantageous in applications that call for a descrip-
tion in terms of a complex wave vector.

In a subsequent theoretical development Meade
et al. examined the effect of terminating the crystal.
They computed the EM modes localized at an interface
between the air and a photonic crystal half-space. They
employed a supercell method in which slabs of dielectric
material alternate with slabs of vacuum. It was shown
that these surface Bloch waves are localized clue to in-

terference effects in the photonic crystal. These surface
modes must always exist at the surface of a photonic
crystal. Understanding of the surface band structure is of
particular importance to the design of lasers which em-

ploy vacancies within a photonic crystal.
The proposal of Yablonovitch that a periodic dielec-

tric structure possessing a photonic band gap could lead
tp inhibited spontaneous emission draws on the early
ideas of Kleppner to modify the quantum electro-
dynamic (QED) vacuum experienced by an atom. The
suggestion was that the spontaneous emission by Ryd-
berg atoms and Penning-trapped electrons is inhibited in
a small metallic cavity which has no EM modes at the
transition frequency. Such a capability is no less impor-
tant in condensed matter, where spontaneous emission in

the form of electron-hole radiative recombination plays a
decisive role in limiting the performance of semiconduc-
tor lasers, heterojunction bipolar transistors, and solar
cells. Recently, Yablonovitch, Gmitter, and Bhat ' have
studied the spontaneous emission of light in thin GaAs
double heterostructures. Their observation was that the
spontaneous emission rate can be markedly increased or
decreased depending on whether the refractive index of
the surrounding medium is higher or lower than that of
GaAs. Subsequently the inhibition —rather than
prohibition —of spontaneous emission has been observed
in periodic as well as disordered dielectric structures.

Following the marked success achieved in obtaining
photonic band gaps in three-dimensional periodic dielec-
trics, the interest of theorists and experimental-
ists ' also turned to two-dimensional periodic struc-
tures. It is clear that these are relatively easy to fabri-
cate. In these systems one has a periodic array of
infinitely long dielectric rods embedded in a different
dielectric background. The intersections of the rods with
a perpendicular plane form a two-dimensional lattice.
The EM waves are assumed to propagate in the plane
perpendicular to the rods, and hence decouple into two
distinct polarizations. These are the H polarization and
the E polarization corresponding, respectively, to the
magnetic and electric fields parallel to the cylinders. Full
photonic band gaps were obtained for each polarization
with circular cylinders in a square lattice and in a hex-
agonal lattice. ' It was found that rods with circular
cross sections require a lower dielectric-constant contrast
to generate a band gap than rods with a square cross sec-
tion, but do not necessarily yield wider gaps at higher
contrasts.

In contrast to the numerous studies of photonic band
structures of three- and two-dimensional periodic dielec-
tric structures (photonic crystals), to our knowledge there
have been only two elaborate investigations of band
structure for "phononic" crystals, namely periodic elastic
composites made up of two materials with different elas-
tic properties. In two recent papers ' full acoustic
band structures (ABS) for periodic elastic composites
have been presented. In both studies a periodic array of
parallel rods of circular cross sections was embedded in a
different background. The intersections of these rods
with a perpendicular plane form a square lattice.
Kushwaha et al. considered only the transverse polar-
ization mode —with displacement u(r, t} parallel to the
cylinders (and perpendicular to the Bloch wave vectors}.
The numerical computation was performed for Ni (Al)
cylinders in an Al (Ni) background. Absolute acoustic or
phononic band gaps, extending throughout the first Bril-
louin zone, were found in the low-frequency regimes in

both cases. Sigalas and Economou also studied the
mixed, longitudinal-transverse, polarization mode for
which u(r, t) (as well as the Bloch vectors) is perpendicu-
lar to the cylinders' axis. They found that gold cylinders
in Be exhibit a narrow, however complete gap, shared by
both polarizations.

In analogy to the photonic crystals, in the frequency
range of a phononic band gap, vibrations, sound, and
phonons are forbidden. Thus a vibrator or a small (real)
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crystal introduced into a periodic composite as a defect
would be unable to generate sound or phonons within the
band gap. From a practical point of view, a complete
acoustic band gap could be engineered to provide a vibra-
tionless environment for high-precision mechanical sys-
tems in a given frequency range. Piezoelectric and py-
roelectric periodic composites have had long-standing ap-
plications as transducers for transmitting and receiving
signals in water. These are used in sonar and depth-
finding systems (at frequencies of tens of KHz and
above), and have also been designed for medical ul-
trasonic imaging (0.5 —20 MHz). ' It should be pointed
out that corresponding computations of acoustic band
structure were very limited in scope. ' Understanding
the full band structure of elastic composites could lead to
improvements in the design of transducers. Finally, we
expect that carefully fabricated, periodic elastic compos-
ites with moderate disorder may have important conse-
quences for the localization of vibrational and sound
waves.

In this paper we present a detailed theory of the band
structure of periodic elastic composites, assuming that
only isotropic materials are involved. Equivalent theoret-
ical calculations were performed in Refs. 52 —54. Howev-
er, the band-structure computations in Refs. 52 and 53
were limited to a single direction in the Brillouin zone
and were not concerned with the question of a complete
acoustic band gap. As for Ref. 54, the authors' interest
lay in the low-frequency limit, in which they calculated
the elastic moduli for periodic composites.

In Sec. II we start by deriving the general equation of
motion for an inhomogeneous medium that supports cou-
pled (longitudinal and transverse) modes. In Sec. III we
present the derivation of a general secular equation used
to calculate the acoustic band structure of an elastic com-
posite of arbitrary periodicity. It is noteworthy that no-
where have we made use of boundary conditions. Section
IV is devoted to the special case of binary composites,
namely the unit cell is composed of only two materials.
In Sec. V, we restrict ourselves to two-dimensional
periodicity by assuming a translational symmetry along
one direction which is perpendicular to the plane of wave
propagation. Numerical results for the acoustic band
structure of the two-dimensional square lattice are given
for a specific (transverse) polarization in Sec. VI.

II. WAVE EQUATION
FOR AN INHOMOGENEOUS ELASTIC MEDIUM

We consider an inhomogeneous, however isotropic
elastic solid of infinite extension. At every point r the
medium is characterized by three material parameters:
the mass density p(r), the longitudinal speed of sound
ci(r), and the transverse speed of sound c, (r). In terms of
these the stress tensor assumes the form

is the deformation tensor, u; (i = 1,2,3) being the com-
ponents of the displacement vector u(r, t). The conven-
tion of summation over equal indices applies.

In the absence of external forces.Newton's Second Law
takes the form
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After some algebra this can be brought to the form

p =V (pc, Vu, )+V pc,

+ [(pci —2pc, )V uj .
a

(6)

This compact form of the law of motion is particularly
convenient because it allows us to avoid applying messy
boundary conditions, as we shall see. Of course Eq. (6) is
the wave equation for an inhomogeneous elastic medium.
It is complicated because, with p, c„and c& being position
dependent, this equation cannot be separated into two
equations, one for the longitudinal displacement (that
satisfies VXu=0), and the other for the transverse dis-
placement (with V u=0).

III. BAND-STRUCTURE CALCULATION
FOR PERIODIC INHOMOGENEITY

The wave equation (6) is valid for arbitrary inhomo-
geneity. Now we focus attention on an inhomogeneous
medium which exhibits spatial periodicity. This implies
that the material constants p(r), ci(r), and c, (r) may all
be expanded in the Fourier series. Actually it is con-
venient to expand pc& and pc, , rather than c& and c,
themselves:

Now we shall restrict the treatment to linear media,
thereby omitting the quadratic term in u; in Eq. (2).
Then Eq. (4) simplifies to

B2

p =pc, V u, +p(c, —c, ) V u

o z =2pc, uuc+p(c, 2c, )uii5;», —

where

(2)

p(r)= gp(G)e'
G

p(r)c,'(r) = g &(G)e'
G

p(r)c, (r)= g r(G)e'
G

(7a)

(7b)

(7c)
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u(r r) ei(K.r —cA) g u (6)eiG r

G
(8)

where K is the Bloch wave vector, and co is the circular
frequency of the wave. Equations (7) and (8) must be sub-
stituted into Eq. (6). Straightforward vector algebra, then
multiplication by exp( i G—" r), and integration over the
unit cell gives the result —for convenience in vector
form—

The periodicity of the medium may be three, two, or one
dimensional, and the reciprocal-lattice vector G has cor-
responding dimensionality. The summation in Eq. (7) ex-
tends over the infinite reciprocal lattice that corresponds
to the Bravais lattice in real space. The displacement
u(r) must satisfy the Bloch theorem

IV. BINARY COMPOSITE

In this case every unit cell is composed of only two ma-
terials, labeled a and b T. hus material a (b) is character-
ized by the parameters p, (pb ), ci, (c,b ), and c„(c,b ). In
addition we must specify the occupancy ratios, which are
f and (1 f)—for the materials a and b. The Fourier
coefficients in Eqs. (7) now take a particularly simple
form. First consider p(G), given by

p(6)= V,
' f d r p(r)e (10)

where the integration is over the unit cell and V, is its
volume. For two-dimensional periodicity d r is replaced
by d r, and V, is replaced by the area of the unit cell A, .
For 6=0, Eq. (10) gives simply the average density,
hence

g [r(6—6')uz(6')(K+6') (K+6)

+r(G 6')u~—(G').(K+6)(K+6')

+[A(G —G') —2r(6 —6')]u~(6') (K+G')(K+G)

—co p(G —6')uK(6')
I
=0 .

If we allow G to take all the points of the reciprocal lat-
tice, then Eq. (9) is an infinite set of linear equations for
the eigenvectors uK(G). For a given value of the Bloch
vector K this set of equations has solutions for some ei-
genvalues co„(K), where n =1,2, . . . is the first, second,
etc. vibrational band. Notice that, in the derivation, no
recourse was made to boundary conditions.

One may inquire whether Eq. (9) simplifies if the polar-
ization dependence is taken into account explicitly,
separating uK(G) into a longitudinal part (parallel to
K+G), and into two transverse parts (perpendicular to
K+ G). Unfortunately this is not the case.

p.f +pb(1 f)=p- —

(p, —pb)F(G)=(&p)F(6), 6@0 .(6)= '

In an entirely similar way Eqs. (7b) and (7c) give

(12)

p«=0)=P =p.f +pb(1 f) . —

If GAO we can write

p(6)=V, 'p, f d're ' '+V, 'pbf d re
a

The first (second) integration covers only material a (b).
This may be also written as

p(6)=V, 'pb f d re
a +b

+ V, '(p, —pb) f d r e
Q

The integral in the first term is identically zero. The in-
tegral in the second term defines a structure function

F(G)= V ' f d'r e

Then we have

p.c,'.f +pbci', (
—f)—=pc,'=

(p, ci, pbcib )F(G)—=—b(pc, )F(6)=(bA)F(G), GWO,
(13)

p. ci'.f +pbcib(1

(p, c„pbc b)F(G) =—b(pc, )F(6—) = (bw)F(6), 6—40 .
(14)

The structure function F(G), Eq. (11), is of course the same in Eqs. (12)—(14). The results are still valid in the two-
dimensional case, with the aforementioned replacements in Eq. (11). Also notice that in evaluating F(G) the vector G
is arbitrary, which is to say that the form of the structure factor F(G) does not depend on the type of the Bravais lat-
tice, but only on the geometry of the "atom" a.

If in Eq. (9) we single out the term G' =G in the summation, then this equation may be rewritten as

(v~K+6 —pcs )uK(G)+(A —w)(K+G)(K+6).uK(6)

+ $ F(6—6') [ (b ~)[(K+G) (K+6')uz(6')+ (K+6')(K+6).u~(6') —2(K+6)(K+6').u~(6') ]
G'+G

+(b A)(K+6)(K+6').uK(6') —(hp)co uK(G') I
=0 . (15)
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In general there is no simplification of this formidable equation. It can be expressed in dyadic notation, with I denoting
the unit dyad:

[(riK+G~ —pro )I+(A —r)(K+G)(K+G)] ux(G)+ g F(G—G')U(G, G') uK(G')=0, (16a)
6'&V

U(G, G')=(br)[(K+G) (K+G')I+(K+G')(K+G) —2(K+G)(K—G')]+(bA)(K+G)(K+G') —(bp)co I .

(16b)

We see that, for a binary composite, the material parameters may be grouped into "average parameters" p, A, and ~
and "contrast parameters" b p, b,A, and hr. In practice the band structure is rendered in terms of dimensionless quan-
tities. While we derive Eq. (15) for arbitrary crystalline symmetry and arbitrary composition of the unit cell, it is con-
venient to introduce some lattice parameter a for the sake of normalization. We define the following quantities:

k=Ka/2m, g=Ga/2n,

0= cuba /2n. C, ,

C, =(rjp)' '=(pc,'/p)' ',

1/2
CI&

Ctb

Ci =(A/P)' =(pci /p)'

fp, ci, Ipbcrb+1 f-r=
7 fp, c„/pbc, b+ 1 f—

(17)

(18)

(19)

(20)

(21)

fp. /pb+ I f '—
2 2

be= pgcl~ Ipbclb 1

fp.c(' jpbci'b+1 f—
p, c« Ipbctb 1

2 2

fp, c„/pb c,b + 1 f—
Now Eq. (15) takes the form

(ik+gi —0 )u„(g)+(y —1)(k+g)(k+g) ul, (g)

+ g F(g —g')[(5r)[(k+g) (k+g')u„(g')+(k+g')(k+g) u„(g') —2(k+g)(k+g') uk(g')]

(22)

(23)

(24}

+y2(5A)(k+g)(k+g') u„(g') —(5p)Q ul, (g') j =0 . (25)

From the last equation it is apparent that it is convenient to plot the dimensionless frequency fL versus the dimen-
sionless wave vector k. Then one must supply the four dimensionless parameters y, 5p, 5A, and 5r. From Eqs.
(21)—(24) we see that the input involves the ratios p, Ipb, CI, /Crab, C„IC,b, and Cib /C, b, as well as the occupancy f.
The last term in the curly brackets of Eq. (25) is proportional to Q, which means that the matrix operating on ul, de-
pends on the eigenvalue. A very substantial saving in computational time is achieved by transforming Eq. (25) into the
form

gA (k) uk(g)=Q ul, (g), (26)
8

with the "dyadic matrix" A independent of Q. The existence of such a matrix implies that its elements must be corn-
puted only for every value of k, rather than for every value of k and Q. We note, however, that Eq. (26) does not have
the form of the standard eigenvalue problem. This is because the left side of this equation couples the three components
of ul, . The difficulty stems from the inseparability, in general, of the longitudinal and transverse modes of vibration.

In order to derive the expression for A, (k), we express Eq. (25) in the form

g Mss"ul, (g')=0 g N ~ uk(g},
8 8

M =ik+gi I5 .+(y —1)(k+g)(k+g)5ss

+F(g —g')[(5r)[(k+g) (k+g')I+(k+g')(k+g) —2(k+g)(k+g')]+y (5A)(k+g)(k+g')j(1 —
5ss ),

Nss =5ss+F(g —g')(5p)(l —
5ss ),

(27a)

(27b)

(27c)
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where 6 ~ is the Kronecker delta. Equation (27a) may be
rewritten in matrix form as

M.u„=O'Nu„. (28)

If we operate on this equation, from the left, by the in-

verse of the matrix N, namely N ', we have

N 'M. uk=A, uk . (29)

Therefore the matrix A defined in Eq. (26) is given by

A=N 'M . (30)

V. TWO-DIMENSIONAL PERIODICITY

This expression is independent of 0, for which benefit we

pay the relatively small price of having to invert the ma-

trix N and having to perform the multiplication N 'M.
Once the crystalline symmetry and the structure of the

unit cell have been specified, Eq. (26) with the definitions

(30) and (27b) and (27c), is the starting point for the cal-
culation of the bands A„(k).

larization mode. " On the other hand, in Eq. (32) only c,
appears, as one can expect from the fact that the vibra-
tion zu, is perpendicular to the plane xy in which the
wave propagation takes place. This then is a "transverse
polarization mode. "

We see that Eq. (32), which governs the behavior of the
transverse polarization mode, is considerably simpler
than Eq. (31). In fact, in Ref. 1 our starting point was
Eq. (32), and there we considered only the transverse
mode.

Now let us restrict attention to a binary composite
with periodicity in the xy plane. This is to say that we
have a periodic array of identical, infinite cylinders of an
arbitrary cross section. Rather than pursuing Eqs. (31)
and (32) we shall proceed from our general result for a
periodic binary system, Eq. (15). Now G is the two-
dimensional reciprocal-lattice vector in the xy plane. Be-
cause we have restricted wave propagation to the same
plane, the Bloch vector K is also two dimensional. If we
take the component perpendicular to z of Eq. (15), an ex-
amination of this equation reveals that the only change is
the replacement u(G)~uT(G) =xu, (G)+yu (G),
where the index K has been suppressed. For the z corn-
ponent we find

First we only assume that the system has translational
symmetry in one direction (z). This means that the ma-

terial parameters p(r), Ci(r), and C, (r) in this case de-

pend only on the coordinates x and y. We also limit the
wave propagation to the xy plane —an assumption which
follows all the studies, both theoretical and experimental,
on the photonic band structure of dielectric cylinders.
Then the displacement u is also independent of the z

coordinate. Here we use the notation (x,y, z) for the
coordinates, rather than (x „x~,x & ) as in Sec. II.

Taking the x component of Eq. (6), we have now

Zl BUT
p =VT (pc, VTu„)+VT pc'

at2 Bx

+ [(pci 2pc, )VT uT]—, (31)

where uz-=xu, +yu and VT=x(B/Bx)+y(B/By). The

y component of Eq. (6) is obtained by the replacement
x~y. For the z component, we get

[riK+Gi' —pro']u„(G)

+ g [(br)(K+G) (K+G') —(bp)co']
G'AQ

XF(G —G')u~(G') =0 . (33)

(~k+g~ —0 )uk(g)

Here uz(G) denotes the z component of uz(G), the in-

dex z having been omitted.
Equation (15), with u replaced by ur, can also be ob-

tained from Eq. (31), and it leads to the band structure
for the mixed-polarization mode. Equation (33) also fol-
lows from Eq. (32); it is the starting point for the band-
structure calculation of the transverse mode, and it was
the final result in Ref. 1. The mixed mode wi11 be the
subject of a subsequent study, and from this point on we

shall consider only the transverse mode.
It is useful to rewrite Eq. (33) in terms of the quantities

defined in Eqs. (17), (18), (22), and (24). The formula also
follows from Eq. (25),

up, =V, -(pet'~Tu, ) . (32)
+ g F(g —g')[(6r)(k+g) (k+g') —(6p)Q ]

X uk(g') =0 . (34)

From Eqs. (31) and (32) there follows the important con-
clusion that the vibrations of this system fall into two dis-
tinct categories: vibrations in the transverse plane (ur)
and vibrations parallel to the translational axis (zu, );
these variations are independent of each other and are
governed by Eqs. (31) and (32), respectively. In Eq. (31)
the longitudinal and transverse sound velocities both ap-
pear, hence the longitudinal and transverse vibrations
remain coupled. We shall call this mode the "mixed po-

It is apparent that if we plot 0 against k then the only
parameters that ought to be specified are 6p, 6r, and f.
By Eqs. (22) and (24) this is equivalent to giving p, /pb,
C„/C, b, and f. Clearly, in this particular configuration,
the computation and interpretation of results are bound
to be much less involved. The procedure outlined
between Eqs. (26) and (30) now simplifies. The matrix
elements Xs are still given by Eq. (27c); however, in Eq.
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(27b) for Mss we can omit all the terms that terminate
with (k+g) and (k+g'). This is because the scalar prod-
ucts of these factors with uk in Eq. (28) vanish for the
transverse mode. This leaves us with the terms in M
that are proportional to I. Because I.u&=u&= U&z, it is
convenient to replace M ~ by the scalar matrix

M« = Ik+gl'5«

+F(g—g')(5r)(k+g) ~ (k+g')(1 —5ss. ) . (35)

Then the matrix A in Eq. (30) also becomes scalar, and
Eq. (26) is replaced by

g A (k)Uk(g')=Q Uk(g) . (36)

F(G)= A, 2nro J&(Gro)/G,

J, being the Bessel function of the first kind of order 1.
The filling fraction is

f =pro/A, ,

so this can be rewritten as

(37)

F(G)=2fJ, (Gro)/(Gro) . (38)

The last step is to specify the symmetry of the lattice.
The only specific Bravais lattice to be considered in this

This equation, unlike Eq. (26), corresponds to the stan
dard eigenvalue form.

In order to evaluate the structure factor F (G) we must
specify the cross-sectional form of the cylinders a. This
we choose to be a circle. Then, with the origin coinciding
with the center of the circle, Eq. (11) gives

P'p 2'F(G)=A ' rdr e ' ""'d8,
0 0

where r0 is the radius of the cylinder. The result is

paper is the square lattice. Its reciprocal lattice is also
square, with the reciprocal-lattice vectors given by

G=(2n. /a)(n x+n y), (39)

where a is the lattice constant and n and n assume all
the integer values. The corresponding dimensionless vec-
tor is g =n x + n y. The argument of the Bessel function
in Eq. (38) can be written as

Gro=[4nf(n, +n )]'~ (40)

With the substitutions (38)—(40) in Eq. (34), once the pa-
rameters 5p (or p, /pb), 5r (or c„/c,l, ), and f have been
given, we are ready for the computation of eigenvalues
Q(k) and eigenvectors u&(g).

VI. NUMERICAL RESULTS
FOR THE SQUARE LATTICE

As has been pointed out earlier, we confine our atten-
tion to binary elastic composites with two-dimensional
periodicity. The crystal is an array of cylinders of circu-
lar cross section, whose intersections with a perpendicu-
lar plane form a square lattice. This means that our
structure factor F(G) is specified by Eq. (38) and the sec-
ular equation used to compute the band structure is Eq.
(36) which corresponds to the standard eigenvalue prob-
lem. The integers n„and n~ were permitted to take the
values in the interval defined by —10& n„, n ~ + 10 (441
plane waves). This resulted in very good convergence.
The relevant material parameters are p=8.936 (2.697)
gm/cm and C44(=pc, }=754 (2.79} X. 10" dyn/cm for
Ni (Al) alloy.

Figure 1 shows the first ten bands for Ni alloy
cylinders in an Al alloy background. The figure is
comprised of three parts. In the first part, we have plot-
ted the band structure in the three principal symmetry
directions, letting k scan the periphery of the irreducible
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FIG. 1. Acoustic band structure and density
of states for Ni alloy cylinders in an Al alloy
matrix. The figure is comprised of three parts.
In the first part, we plot the band structure in
the three principal symmetry directions letting
k scan the periphery of the triangle I XM.
The second part of this figure illustrates the ei-

genvalues Q„as a function of ~k~; i.e., the dis-

tance of a point in the irreducible part of the
Brillouin zone from the I point. The third
part shows the density of states. The material
parameters are p =8.936 (2.697) gm/crn,
C44(=pc, )=7.54 (2.79)X10"dyn/cm for Ni
(Al) alloy, and f=0.35. Attention is drawn to
the photonic band gap between the first two
bands extending throughout the first Brillouin
zone.
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This part of the computation embodies 1326 values in the
uniformly distributed grid of k points throughout the ir-
reducible part of the Brillouin zone. Using the same
number of k points, we have computed the density of
states (DOS), plotted in the third part of the figure. The
magnitudes of the phononic gaps coincide in the second
and third parts of the figure, which leads us to infer that
the existing band gaps extend throughout the Brillouin
zone. This in turn establishes the fact that wave propaga-
tion in the transverse plane is forbidden for vibrations
parallel to the cylinders. The value of the normalized gap
width in this case is AQ =0.12.

We now examine the magnitude of the lowest band gap
as a function of variations in the elastic constant and den-
sity. The geometry is the same as for Fig. 1, that is Ni al-

loy cylinders in an Al alloy matrix. The numerical re-
sults, for f=0.35, are depicted in Fig. 2. Note that b, C44
and hp stand for

FIG. 2. Magnitude of the lowest band gap as a function of
the differences (contrasts) in the elastic constant and in the den-

sity. We emphasize that this three-dimensional plot provides a

guide to the feasibility of designing phononic band gaps by an

appropriate choice of the materials for a binary composite.
Here f=0.35, just as in Fig. 1. The contrast parameters have

the same units as defined in Fig. l.

triangle of the first Brillouin zone. We obtain a pho.'ionic

band gap opened by between the first two bands. For this

value of the filling fraction (f=0.35), there is another,

very narrow band gap lying between the fourth and the
fifth bands, with b,Q =0.02. (There are no higher gaps, at
least as far as the 50th band. ) The second part of this

figure illustrates an interesting way to present the band

structure; namely, now we plot the eigenvalues Q„as a

function of ~k~, i.e., the distance of a point in the Bril-

louin zone from the origin. We have scanned not only

the periphery but also the interior of the irreducible tri-

angle I X M of the Brillouin zone (see the inset of Fig. 1).

44 44 C44 Pa ta Pb tb~
a b 2 2 ~P Pa Pb

The superscripts a and b refer to the cylinder and the
background, respectively. This three-dimensional plot
contains a wealth of information about the existence of
phononic band gaps and the choice of the materials to
create such gaps. For instance, the arrow (on the right-
hand side of this surface) indicates our explicit choice of
the materials producing a gap given by b,0=0.12 (see
Fig. 1). In other words, the plot in Fig. 2 provides a
guide to the feasibility of designing the phononic band

gaps by an appropriate choice of the materials for a
binary composite. In particular, let us comment that ac-
cording to Fig. 2 large gaps require that the contrasts Ap
and EC44 both be large. Here we have explored only the
case that p, & pb and C44 & C44.

Now we turn to the situation where Al alloy cylinders
are embedded in a Ni alloy background. The numerical
results are illustrated by the specific example f=0.'75 in
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FIG. 3. The same as in Fig. 1, but for Al al-

loy cylinders in a Ni alloy matrix. The filling

fraction is f=0.75
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FIG. 4. The width of the lowest band gap as a function of
filling fraction. Case A (case 8) refers to the Ni (Al) alloy

cylinders in Al (Ni) alloy background.

zone. The rest of the discussion related to Fig. 1 is still
valid. It is noteworthy that there are no phononic gaps
opening up above the second band, or up to the 50th
band, at least.

Finally, we examine the width of the lower gap as a
function of filling fraction for both cases. The numerical
results are shown in Fig. 4. The curve marked case A

(case B) represents the situation with Ni (Al) alloy
cylinders in the Al (Ni) alloy matrix. It is found that the
lai:gest gap in case A corresponds to the filling fraction
f=0.33. Similarly, the largest gap in case B opens up at
a filling fraction corresponding to the close packing
(f=0.7854). It is noteworthy that, in case A, an absolute
gap opens up over a large range of filling fraction defined

by 0.10~f ~ 0.69. In case B, on the other hand, there is
no phononic gap for f ~ 0.52.

Fig. 3. We find one phononic band gap opened up be-

tween the first two bands. The existence and magnitude
of this gap is well established by the complete band struc-
ture (central part of this figure) and by the density of
states (the third part of the figure). It is thus concluded
that this phononic gap extends throughout the Brillouin
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