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The electronic dc transport along a spatially disordered chain of scatterers is described within
the Landauer-Biittiker approach. The chain is composed of single scatterers which allow for elastic
as well as for inelastic processes. The scattering matrix of the disordered chain is calculated with a
recursive method. In the absence of dissipation the transmission coefBcient and the dc conductance
decrease exponentially with the length of the chain. We show that these disorder effects are gradually
suppressed with increasing dissipation. For large dissipation the conductivity of the chain becomes
even independent of the disorder. The results allow us to relate the onset of the dc conduction at
finite temperature to the loss of phase memory during inelastic collisions of the electrons. Further
we analyze the decrease of the chemical potential along the chain in presence of disorder. For small
dissipation we find a strikingly nonuniform behavior, which is characterized by large steps and nearly
constant plateaus in between.

I. INTRODUCTION

Since the pioneering work of Mott and Landauer it
has been well established that for sufficiently low tem-
peratures the dc electronic transport in disordered sys-
tems is determined by the localization properties of the
electronic wave functions near the Fermi level E~. For
strongly localized states near E~, i.e., small spatial over-
lap between the current carrying states, the electronic
transport is generally described in terms of the hopping
model, which is based on the assumption that the hop-
ping rate between localized states decreases exponentially
with respect to the distance between the respective local-
ization centers. The hopping picture breaks down in the
limit of weak localization, where the spatial distance be-
tween the current carrying states near E~ is much smaller
than the localization length. In this case it can be ex-
pected that interference effects become important. This
situation can more adequately be described within the
less restrictive approach of Landauer, which expresses
the dc conductance in terms of the scattering matrix of
the sample. For vanishing dissipative scattering within
the sample the dc conductance is determined by the
transmission probability at E~.

The Landauer approach has proven to be very use-
ful for analytical as well as numerical studies of non-
dissipative conduction in disordered systems. It has in
particular been the motivation for the recursive calcu-

lations of the transfer matrices of quasi-one-dimensional
systems in order to determine the Lyapunov exponents
which characterize the exponential decay of the localized
electronic wave functions. In this picture the localization
of the electronic states is understood as a consequence
of the destructive interference between coherently multi-

ply scattered waves in a disordered sample. Bearing in
mind that phase coherence will be destroyed by dissipa-
tive processes, we obtain an alternative picture of the dc
conduction in presence of localized states, namely that
the onset of dc conduction at finite temperature should
be related to the loss of phase memory. This idea, which
is apparently rather different from the hopping model,
will be pursued in the present work.

For this purpose, we calculate the dc conductance of
a spatially disordered chain of single scatterers within
the Landauer approach in presence of dissipative scat-
tering processes. A one-dimensional disordered sys-
tem with elastic scattering only was numerically studied
by Lenstra and Smokers, who determined the average
transmission probability and derived a Landauer-type ex-
pression for the resistance. The average resistivity of a
disordered chain with inelastic scattering was calculated
by Band et al. in a semiempirical approach. The con-
ductance of an ordered quantum wire has been discussed
within a continuum approach for inelastic scattering.
D'Amato and Pastawski have used the Landauer ap-
proach to determine the conductance of ordered and dis-
ordered chains in presence of inelastic scattering. How-
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ever, ~hereas in their work the scattering probabilities
are calculated with a Green's function mean Geld method,
we propose here a rather different approach, which is
based on the recent extension of the Landauer theory to
ordered dissipative systems. For disordered systems
this method has already been shortly discussed in Ref.
11, where also preliminary results for the behavior of the
transmission probability have been reported.

We consider a system composed of single scatterers
which do not only allow for elastic scattering within the
transport channels, but also provide scattering into side
channels connected to an electron reservoir or heat bath
where the electrons are thermalized. This is not just a
toy model but a reasonable description, e.g. , for a poly-
mer chain, in which the constituting monomers are repre-
sented by single scatterers and where the intramolecular
vibrations as well as the vibrational modes of the envi-
ronment (such as side chains or solvents, if they exist)
provide the heat bath. In this picture the side channels
of a single scatterer can be visualized as a side loop in
which the electrons couple to a heat bath, i.e., a phonon
reservoir. This approach allows us to study the effects of
dissipation on the conductivity of polymer chains, and it
shall be used in the future to extend existing studies
of disordered polyanilines. We note that a similar inter-
pretation of the phase destroying side channels has been
given by Datta, who has introduced an ensemble of har-
monic oscillators to describe the heat bath. In contrast,
Buttiker has connected the side channels to electron-
rich reservoirs. Current conservation in the transport
channels is imposed, so that no net current is allowed
into or out of the reservoirs. Consequently, electrons en-

tering the reservoirs lose their phase memory. In this
way, for example, the transport of electrons through het-
erostructures can be modeled, alternating strongly scat-
tering barriers and more or less incoherently transmit-
ting layers. An interesting topic in this context is the
spatial dependence of the chemical potential which can
be "measured" by means of the side channels. Pro-
vided that electron screening is eKcient, the chemical
potential reflects the voltage drop across the sample as
discussed by Landauer. ' In the following we shall usu-

ally refer to this interpretation of the model to visualize
the consequences of our numerical results. Analogously,
the relation between the local voltage and the change
in the local electrochemical potential was recently used
to determine a local resistance in terms of an equilibrium
resistor.

To obtain our results, the transport properties of the
full chain are expressed in terms of its scattering ma-
trix, which can be calculated exactly using a recursive
method. First we investigate the decay behavior of
the elastic transmission probability, which means the
scattering probability directly between the incoming and
the outgoing transport channel, disregarding the contri-
bution of electrons entering and leaving the reservoirs.
We further analyze the behavior of the chemical poten-
tial along the chain. This problem has been posted by
Landauer recently. We find that the usual assumption
of a linear decrease of the chemical potential between the
contacts is not vahd for small dissipation. While it is not

really surprising that the chemical potential changes in a
nonuniform way across the sample, it may be quite strik-
ing to realize that for small dissipation its drop between
the contacts is determined by very few large steps. This
behavior is reminiscent of hopping transport along a dis-
ordered chain, which is governed by the segments of the
chain with the lowest hopping probabilities. Based on
this investigation, we finally discuss the behavior of the
dc conductance in presence of disorder and dissipation.

Two different regimes have to be distinguished already
in the ordered chain, 5 both corresponding to different
ranges of wave vectors q: In the "surface regime" in-
coming waves can penetrate into the sample over a finite
distance only; the elastic transmission probability van-
ishes exponentially with the chain length due to destruc-
tive interference of the multiply backscattered waves,
and in this case dissipative scattering reduces the de-
structive interference and thus increases the (exponen-
tially small) conductance. The situation is different in
the "bulk regime, " in which the incoming waves are co-
herently transmitted with finite probability for arbitrary
length of the chain. It is shown below that in this regime,
where the transmission coefBcient of the ordered sample
oscillates as a function of the chain length, both disor-
der and dissipation lead to an exponential decrease of
the elastic transmission probability. Accordingly, the dc
conductance of a disordered chain vanishes in the limit of
small dissipation. With increasing dissipation the influ-
ence of disorder in the bulk regime is shown to be grad-
ually suppressed. For large dissipation the conductance
becomes completely independent of the disorder.

Using band structure terminology, the surface regime
may be called a forbidden band, because incoming waves
can penetrate the sample only over a Gnite length. In
the band picture the introduction of disorder leads to a
smearing out of the edges of the allowed bands. The ap-
pearing band tails contain strongly localized states, so
that transport is enabled by disorder, although exponen-
tially decreasing with increasing system size. In our scat-
tering approach we find an analogous behavior near the
edge of the bulk regime. Here the disorder leads to an
increased elastic transmission probability in the surface
regime. In order to avoid confusion we emphasize that
in our picture the surface and bulk regimes comprise
scattering states which are distinguished by their wave
vector q, while in the usual band picture the forbidden
and allowed bands correspond to different energy inter-
vals. It should be noted, however, that for the chain of
parametrized scatterers introduced below the wave vec-
tor q cannot be related to a respective energy, because
we do not have a dispersion relation. The specific infIu-
ence of the energy dispersion on the electron transport
will be discussed in a future paper, where we relate the
scattering parameters to the Anderson Hamiltonian.

II. THEORETICAL APPROACH

Following Refs. 5, 6, and 11,we consider single scatter-
ers, which allow for scattering between four channels as
indicated in Fig. 1. The diferent scatterers will be linked
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FIG. 1. Single scatterer. The channels 1 and 2 are the
transport channels, channels 3 and 4 denote the heat bath
channels.

via the transport channels 1 and 2. The side channels 3
and 4 connect the system to electron reservoirs or heat
baths which are defined by their statistical properties and
thus account for the inelastic scattering processes within

the sample. Assuming the single scatterer to be posi-
tioned at the origin, the elastic scattering between the
transport channels can be described by the 2 x 2 scatter-
ing matrix

Et r)
in the absence of dissipation. In the following we

parametrize the reflection coefficient r and the transmis-
sion coefficient t in terms of the elastic transmission prob-
ability 8 of the single scatterer:

r=i 1 —b,

with0&b & 1.

The single scatterers (see Fig. 1) are fully described by
a 4 x 4 scattering matrix s, which relates the incoming
waves in all four channels to the corresponding outgoing
waves. It can be written as

fn s~ p
(p 1 —cx si)

1 means a completely inelastic scatterer by which
the waves in the transport cha, nnels are entirely deviated
into the heat bath. Other couplings between the trans-
port channels and the side channels have been discussed
by Burmeis ter et al. The inclusion of the submatrix
—s*& ensures the unitarity of s. It is worthwhile to note
that this part of the scattering matrix does not influence
the physical results and in particular that it does not
enter the transport equations.

We now consider a spatially disordered chain of N scat-
terers as sketched in Fig. 2. The individual scatterers are
linked by the transport channels 1 and 2, and the remain-

ing channels are used to connect each scatterer to its elec-
tron reservoir or heat bath. We assume that there is no

correlation between the di6'erent reservoirs or heat baths.
The positions of the single scatterers n (1 & n ( N) are
given by

z„=z„-' + a(1 + r„),

where the r„are random numbers which are uniformly
distributed over the interval [

—W/2, W/2], and where the
average distance between the scatterers, i.e., the lattice
constant in the ordered case, is given by a. The scatter-
ing of a plane wave which enters the system through one
of the channels is described by the scattering matrix S
of the entire chain. S can be calculated in an efficient
manner with our recursive method, which has been in;
troduced in Ref. 11 and analyzed in detail in Ref. 19.
The spatial positions of the single scatterers enter the
calculation of S via the phase factors

q iq(X —Z 1 ) iqa(1+r )p„z „—e —e

which describe the phase shifts between two successive
scattering events at sites n —1 and n for a given wave

vector q.
The scattering probabilities p,~ between channels i and

j of the chain are obtained from S as

in terms of the inelastic scattering probability e:

1 —6)

p= v~ for 0 ( ~ ( 1.
(4)

The 2 x 2 unity matrix 1 in Eq. (3) mediates the cou-

pling between the transport channels and the heat bath
channels. Thus e = 0 corresponds to a completely elas-
tic scatterer which is decoupled from the heat bath and

In particular, p2q describes the elastic transmission prob-
ability between channels 1 and 2, i.e. , directly through
the entire chain without diversion into and out of any
reservoir. This quantity completely determines the trans-
port in absence of dissipation within the chain, and there-
fore it will be studied in detail in the present paper. In
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FIG. 2. Chain of N scatterers between two contacts with the corresponding chemical potentials p,. for the ith scatterer and

pl ft and p,„-~ht for the contacts. The labeling of the channels corresponds to the scattering matrix of the chain.
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the general case, it depends on the dissipation param-
eter e and on the disorder parameter TV, therefore we
write pqi ——pqi(e, W). For the subsequent discussion we
introduce the dissipation-induced decay length ( by

R(N) =-h 1

pzi + P X py(n)

(15)

p~i (e, 0) = p» (0, 0) exp( —N/()

and the disorder-induced decay length ( by

p21(e, ~) = J 21(e, o) exp( —N/&)

Thus ( describes the leakage through the side channels
for the ordered chain, whereas ( characterizes the inffu-
ence of the disorder for a given dissipation parameter e.
It should be noted that it is a priori unclear whether
definitions (8) and (9) are reasonable, i.e. , whether the
elastic transmission probability p~q decays exponentially,
so that ( and ( become independent of the chain length
for large ¹ We demonstrate below that this is indeed
the case. The overall decay of the elastic transmission
probability is then described by

where y are the normalized chemical potentials

P 7z Pright

pleft pright

pf (n) p2, 2n+1 + p2, 2n+2) (17)

where the scattering probabilities p;~ are given by Eq. (7).
For the discussion of our results it will be convenient

to introduce the quantity

which shall also be discussed in detail below. The forward
scattering probabilities py(n) in Eq. (15) describe the
total scattering probability from the side channels of the
scatterer n into the transport channel 2, i.e. ,

pgi(e, W) = pzi(0, 0) exp( —N/A) (10) (18)

with the total decay length A given by

p, (1) = p),r~,

p(2) = @right~ (12)

p(2n + 1) = p(2n + 2) = p„ for n=l, . . . ,N.

The chemical potentials p for n = 1, . . . , N are obtained
from the current conservation conditions

I„=I(2m+ 1) + I(2n+ 2) = 0,

where the currents are determined by (see, e.g. , Ref. 5)

2N+2
for i = 1,. . . ,2N + 2.

(14)

Following the arguments of Ref. 5, we obtain for the
resistance of the chain, including the contact resistance,

The second transport property which we will analyze in
the present paper is the resistance or its inverse, the con-
ductance. It depends not only on the elastic transmission
probability pqz, but also on the scattering probabilities
between the transport channels and the side channels.
For the calculation of the resistance we consider the sit-
uation of Fig. 2, where contacts with different chemical
potentials p~, gt and p,„ght are attached to the transport
channels 1 and 2 of the chain of N scatterers. The chem-
ical potentials p(i), which are attributed to the different
channels i, are the same for the two side channels of each
individual scatterer (see Fig. 2), i.e. , we have

which defines the conductivity for sufficiently large N.
The subtracted value h/e in the denominator represents
the contact resistance (see Ref. 5).

Recently there has been some discussion in the
literature ' whether it is necessary to take the Pauli
exclusion principle into consideration in the determina-
tion of the current [Eq. (14)j. This would lead to a block-
ing factor 1 —f with an appropriate occupation proba-
bility f accounting for the other electrons already in the
system. In the following we give a plausibility argument
that the above derivation is consistent without additional
blocking factors. First, we consider two reservoirs i and j.
In this case, as mentioned by Landauer, the respective
additional terms cancel in the calculation of the net tran-
sition rate between the reservoirs, provided that the scat-
tering probability is symmetric, i.e. , p,.j = pj, . In addi-
tion to that, the question arises ' ' whether electrons
emitted from other reservoirs could hinder the transmis-
sion in a particular channel. This is, however, impossi-
ble, since the different reservoirs have been assumed to
be uncorrelated, and therefore electrons coming from dif-
ferent reservoirs are in orthogonal states as pointed out
by Landauer, too. These orthogonal states can be pop-
ulated independently and therefore Pauli exclusion does
not apply. In conclusion, there are no additional block-
ing factors required in our case because the symmetry
of the individual scatterers leads to the symmetry of the
total scattering matrix, so that the condition pzj pj's
is fulfilled. The symmetric parametrization of the inelas-
tic scattering (3) is the crucial point here. Datta has
shown that the condition of symmetric inelastic trans-
mission is obeyed in the linear-response regime. The sit-
uation is different if the inelastic scattering probability
depends on the energy of the incoming electron, which
could be due, e.g. , to a time-dependent potential ' or
to a specific microscopic description of the interaction
between the electron and the inelastic scatterer.
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III. NUMERICAL RESULTS

A. Elastic transmission probability

In the following we discuss our results for R' = 1,
which corresponds to a relatively strong disorder. For
small dissipation the electron transport across the chain
is governed by the behavior of the elastic transmission
probability p2q [see Eq. (15)]. The wave-vector depen-
dence of ps' for the ordered and the disordered chain in
absence of dissipation is shown in Fig. 3 for a relatively
small sample of 20 scatterers. As already discussed in
Ref. 5, the elastic transmission probability of the or-
dered chain is symmetric with respect to n/2a and be-
comes very small near q = 0 and q = x/a. In these sur-
face regimes incoming waves penetrate the chain over a
6nite distance only and p2q decreases exponentially with
the length of the chain. This can be understood as a
consequence of the destructive interference of multiply
scattered waves. In this q range the elastic transmission
probability pqq of the ordered chain is small already in
the case of only 10 to 20 scattering sites, but for the sub-
sequent discussion it should be noted that it does not
completely vanish even for long chains. For intermediate

q values we 6nd a transmission window, which is char-
acterized by N —1 rapid oscillations of p2q. Already for
rather short chains the amplitude of the oscillations as
well as the width of the transmission window become
practically independent of the length of the chains and
depend only on the elastic transmission probability b' of
the single scatterer in Eq. (2). In contrast to the surface
regime we call this q range the bulk regime because the
incoming waves are sustained in the bulk. The width of
this transmission window increases with the parameter
6. At the same time, the envelope function which de-
scribes the minimum of the elastic transmission p~q in
this regime (cf. Fig. 3) is lifted towards higher values,
i.e. , the amplitudes of the oscillations decrease with in-

creasing h. In the limit b = 1 no reflection takes place
at the single scatterers [cf. Eq. (2)], and the waves are
transmitted with probability 1 through the chain, for all

q values and independent of the positions of the scatter-
ers.

In the following we present characteristic results for
b = 0.7. The results for other b values are very similar,
and the b dependence can easily be understood from the
above arguments. The range of the transmission window
for h = 0.7 is given by 0 187.r/a & q & 0.82m/a (see Fig. 3).

In Fig. 3 we have also displayed the behavior of the
elastic transmission probability p2q in the presence of spa-
tial disorder. In this case the symmetry with respect to
q = vr/2a is lost and the surface regime near q = n /a has
disappeared. For small wave vectors the elastic transmis-
sion remains extremely small, as in the ordered case. This
can be explained by the fact that according to Eq. (6) for
vanishing wave vectors q the scattered waves do not ac-
quire any phase shift between two scattering events. We
therefore expect the scattering matrix of the chain to
be independent of the positions of the single scatterers.
This argument is no longer true for larger q values, where
the transmission depends strongly on the disorder. The
strong oscillations of p2q for higher q values are strongly
sample dependent and can be understood as fingerprints
of the specific disorder con6guration.

The influence of the disorder on the q dependence of
the elastic transmission probability p2q for a large sam-
ple containing 601 scattering centers is shown in Fig. 4
for the case e = 0.1. The behavior can easily be ex-
plained by the fact that perfect constructive or destruc-
tive interference of multiply scattered waves is impossible
in presence of disorder. Therefore, even if p2~ remains
small in the presence of disorder near q = 0, the disorder
leads to a strong relative increase in the surface regime
0 & q & 0.187r/a. On the other hand, the transmission is
strongly suppressed by the disorder within the transmis-
sion window 0.187r/a & q & 0.82+/a. In the other surface
regime 0.82+/a & q & x/a the enhancement factor due
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FIG. 3. Elastic transmission probability vs wave vector q
for a chain of 20 scatterers without dissipation (e = 0.000 01),
b = 0.7. Full line, ordered chain; dashed line, disordered chain
(W = 1).

FIG. 4. Ratio of the elastic transmission probabilities of
the disordered and of the ordered chain vs wave vector q.
The chain length is N = 601. The single scatterers are de-
scribed by the dissipation parameter e = 0.1 and the elastic
transmission probability 8 = 0.7.
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to the disorder is even larger. This enhancement corre-
sponds to the results of Fig. 3, which shows already for
a much smaller sample that for strong disorder incoming
waves in this q range (e.g. , q = 0.87vr/a in Fig. 3) may
traverse the sample with a large probability, so that this
regime can no longer be called surface regime.

In Fig. 5 we display the convergence of the dissipation-
induced decay length I,

' [cf. Eq. (8)] of the elastic trans-
mission probability @2' with the chain length N for the
wave vector q = 0.4'/a, which is representative for
the bulk regime. We reach satisfactory convergence for
N = 400. In the surface regime (not shown here) the
convergence is even better. The fluctuations in Fig. 5 are
related to the N —1 peaks of p2q for the ordered sample
in the q range 0 ( q ( m/a (see, e.g. , Fig. 3 for N = 20).

The convergence of the disorder-induced decay length
( [cf. Eq. (9)] of the elastic transmission probability p2r is
shown in Fig. 6 for the same value of q. We observe strong
oscillations which can be seen as fingerprints of the spe-
cific disorder in the chain. The convergence in the bulk
regime is slower than in Fig. 5, but it is still satisfactory.
In the surface regime (not shown here) ( becomes nega-
tive, which corresponds to the strong enhancement of p2y
in this region (see Fig. 4 and its discussion). For large
dissipation e the absolute values of ( become very large
and we shall see below that then they become physically
unimportant.

The thus determined asymptotic values of the
dissipation-induced decay length ( and the disorder-
induced decay length (, as well as the total decay length
A [cf. Eqs. (9)—(ll)] are shown in Fig. 7 for both wave-

vector regimes: For small dissipation parameter e we have
A = (, whereas for large e we find A = (; i.e. , as expected,
for small values of e the decay of the elastic transmission
probability p2q depends strongly on the disorder, whereas
for large values of e the decay becomes independent of the
disorder. It should be noted that in all cases p2q decays
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exponentially with the length of the sample. It can be
seen from Fig. 7(b) that the above mentioned large nega-
tive ( values, which are obtained for large dissipation pa-
rameters e in the surface regime, do not have a significant
influence on the overall decay length A since, according
to Eq. (11), A is essentially given by the much smaller
quantity ( (the dissipation-induced decay length). Simi-
larly, the negative values of A for q & 0.12m/a, which can
be observed in Fig. 7(b) for small e, are rather insignifi-
cant due to the strong exponential decay of the incoming
waves which occurs in the surface regime for small dissi-
pation: Here the negative values of A indicate only the
weakening of this strong decay in presence of disorder
(see Fig. 3 and the corresponding discussion).

Figs. 3 and 4. Thus, the decrease of p2q in the bulk regime
(see Fig. 4) leads to an increase of the resistance in this

q range in presence of disorder, whereas the decrease of
the resistance in the surface regimes 0 & q & 0.18'/a and
0.82vr/a & q & vr/a corresponds to the relative increase
of p2q in Fig. 4. For increasing dissipation ~, interfer-
ence effects are expected to become less important. This
explains the weaker dependence of the resistance on the
disorder for larger values of e, which can be inferred from
Fig. 8. For e = 1 the resistance becomes completely in-
dependent of the disorder axxd of the wave vector q.

C. Chemical potential

B. Resistance

In the following we shall discuss the influence of the
disorder on the resistance. For vanishing dissipation the
resistance is essentially given by the inverse of the elastic
transmission probability @2' [see Eq. (15)j. Accordingly,
for an ordered chain the resistance increases exponen-
tially with the chain length in the surface regime, while
in the bulk regime it shows oscillations between the min-
imum value R = /t/e2 and some envelope function, which
corresponds to the smallest values of p2q in this q range;
see, e.g. , Fig. 3. Since the number of these oscillations
increases linearly with the chain length, it follows that
the oscillations become very rapid for long chains, in ac-
cordance with Fig. 5. These oscillations are somewhat
smoothened in presence of disorder (see also Fig. 3).

The influence of the disorder on the q dependence of
the resistance is shown in Fig. 8 for a chain of 601 scat-
terers which is suKciently long to obtain convergence.
For the considered small dissipation parameters t the re-
sistance is again practically determined by the behavior
of the elastic transmission probability p2q, as shown in

(a)

0.5
~JJ JL~~MJL l ~~ k. J —,a ~a JJ LL~~JJ JJ

0.0000'i'

200
position

600

Let us now investigate the influence of the disorder on
the chemical potential. For this purpose we have calcu-
lated the spatial dependence of the chemical potential.
The result for a wave vector q within the bulk regime is
shown in Fig. 9 for the ordered and the disordered case.
The difference between both cases is rather dramatic:
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FIG. 8. Difference between the resistances of the disordered
[R(e,l)] and of the ordered chain [R(e,0)] vs wave vector q.
The length of the chains is N = 601. The single scatterers
are described by the elastic transmission probability b = 0.7
and the indicated dissipation parameters e.

FIG. 9. Chemical potential across the sample for wave vec-
tor q = 0.4s/a. The single scatterers are described by the
elastic transmission probability b = 0.7 and the indicated
dissipation parameters e. (a) Ordered chain; (b) disordered
chain (W = l).
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For the ordered chain in Fig. 9(a) we observe a strongly
dissipation-dependent voltage drop at the contacts. The
drop is largest for small e values and disappears grad-
ually with increasing dissipation e. Inside the sample,
the spatial dependence of the chemical potential remains
essentially linear. For extremely small values of ~ the
entire voltage drops at the contacts. Thus, in the limit
of vanishing dissipation the chemical potential does not
decrease over the sample, but rather displays periodic
fluctuations around the mean value (p~ + p„)/2 which
are due to multiple scattering as discussed in Ref. 6.

The situation changes drastically in presence of dis-
order: In this case [see Fig. 9(b)] we can clearly identify
regions of high resistivity inside the sample which lead to
rather sharp and large drops in the chemical potential.
This behavior can easily be understood if we keep in mind
that the Huctuations of the chemical potential are again
a consequence of the interference between multiply scat-
tered waves (see also Refs. 6, 19, and 25—27). Obviously
there are certain regions in the disordered sample which
constitute very large obstacles for the electrons in the
transport channel, so that most of the voltage drops at
these locations. Between the obstacles the chemical po-
tential remains approximately constant. In the ordered
sample the largest obstacles are the contacts, as discussed
above.

For the disordered case we have studied in detail the
most prominent structure in Fig. 9(b), which occurs
around the position n = 204. First we confirmed that
there is no obvious peculiarity in the sequence of random
numbers around this position, i.e., there is no special
local arrangement of scatterers, accidentally simulating,
e.g. , a crystal with a forbidden band for q = 0.4ir/a. [We
note in this context that we have chosen the wave vector
precisely in such a way that for disorder W = 1 even
the extreme values r„= +1/2 in Eq. (5) do not yield
a phase factor in Eq. (6) with an effective wave vector

q, n = q(1 + r„) corresponding to the surface regime, so
that even a sequence of such extreme random numbers
would not yield a "forbidden band" locally. ] It is rather
the complex multiple scattering in this spatial regime
which is responsible for the formation of the obstacle.
The relative importance of the obstacle can be changed
by altering one of the random numbers near n = 204.
But unless we alter r~p4, the chemical potential always
drops drastically around n = 204. Only by altering rgp4

(which appears to be in no way special otherwise) is it
possible to avoid the large drop of the chemical poten-
tial in this segment of the chain. The significance of the
destructive interference effects between more than just
two scat terers becomes obvious by the observation that
a change of rzp4 not only diminishes the large decrease
at this position, but also the relatively large drops in the
neighborhood, namely at n = 200, 203, and 205.

As already stated above, a complex interplay between
several scatterers leads to the observed drop in Fig. 9(b).
We have verified that slight changes of the wave vec-
tor (+0.01vr/a) do not significantly alter this feature,
whereas larger changes (+0.05vr/a) do. Nevertheless, the
general behavior of the chemical potential remains simi-
lar for all wave vectors q within the bulk regime. How-

ever, the spatial location of the voltage drops depends
strongly on the wave vector q and on the specific sample.
Other ensembles of scatterers (i.e., with other random
separations) show a similar striking behavior: there are
always several large steps of the chemical potential and
nearly Hat plateaus in between. In order to corroborate
that these are local phenomena, one can divide the chain
into several pieces and rearrange them in different or-
der: The steps and plateaus of the chemical potential
are rearranged accordingly, unless the steps occur close
to a division. In conclusion, there are always some local
arrangements of scatterers with a much lower transmis-
sion probability than average. Viewing the chain as a
series of resistors these specific local arrangements trans-
late into unusually high local resistances. In the hopping
description they correspond to chain segments with low

hopping probabilities. Both pictures show the same char-
acteristics, namely that the transport is decisively de-
termined by very few exceptionally large obstacles. The
high-resistivity regions disappear with increasing dissipa-
tion ~. For large values of e the spatial distribution of the
chemical potential becomes independent of the disorder
and we obtain the same linear behavior of the chemical
potential as in the ordered case.

In contrast with the above results for the bulk regime,
we find for q vectors in the surface regime that the chemi-
cal potential p for vanishing dissipation parameter e m 0
remains constant in the region near the contacts, i.e. ,

there are "effective contacts" somewhat shifted into the
inside of the sample. This shift of the contacts corre-
sponds to the decay length of the incoming waves near
the surface in this q range. Beyond the contact region p
drops nearly linearly. The inHuence of disorder turns out
to be negligible in this q range. For increasing dissipa-
tion ~ the shift of the contacts disappears and we obtain
again a linear drop of the chemical potential over the full

chain length for e ~ 1. We note that the transmission
probability as well as the conductance can become very
(namely exponentially) small in this situation. Neverthe-
less, there are still some carriers interacting with the local
heat baths or reservoirs and therefore we can define still
define a chemical potential and derive a conductivity.

D. Conductivity

In the following we discuss the behavior of the con-
ductivity. In the absence of dissipation, the resistance
of the chain cannot be characterized by a conductivity,
since the resistance does not increase linearly with the
length of the chain: in the bulk regime the resistance of
ordered chains oscillates with the chain length; for disor-
dered chains as well as in the surface regime (with and
without disorder) the resistance increases exponentially
with the length of the chain. It follows that the quan-
tity cr(N) [Eq. (18)] does not converge to a finite value.
In presence of dissipation, however, we may expect that
Ohm's law is valid so that the dc transport of sufBciently
long chains can be characterized by a conductivity. The
conductivities calculated from Eq. (15) are shown in Figs.
10 and ll. Figure 10 displays the convergence of o.(X)
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with the chain length for different degrees of dissipation e.
As may be expected, the oscillations of 0 (N) for ordered
samples as well as the Quctuations in disordered sam-

ples are damped for large ~ values and the convergence
becomes faster. We obtain satisfactory convergence for
chains containing 601 scattering sites for ordered as well

as for disordered chains. The comparison of Figs. 9(b)
and 10(b) confirms the explanation given above, namely
that the sharp drops of the chemical potentials in the dis-
ordered case take place in chain segments with high resis-
tivity [corresponding to large drops of the conductivity
in Fig. 10(b) near N = 200], where incoming waves are
strongly backscattered. In the language of the hopping
theory, these chain segments would correspond to regions
with comparatively small overlap between localized wave

functions, and thus with low hopping probability. From
this point of view we can understand the localization of
the wave functions as an interference effect. In the pres-
ence of dissipation the destructive interference of multi-

ply scattered waves in these regions is destroyed and the
high-resistivity regions disappear, as seen in Figs. 9(b)

and 10(b).
The e dependence of the conductivity is shown in

Fig. 11 for different values of q. As expected, for ordered
chains the conductivity decreases monotonously with the
dissipation parameter e in the bulk regime. The influence
of disorder is largest for small e; we obtain a vanishing
conductivity in the limit e ~ 0. This behavior is directly
related to the suppression of the elastic transmission in
presence of disorder (see Fig. 4), i.e. , to the strong lo-
calization of the wave functions. With increasing e the
inelastic forward scattering in Eq. (15) becomes more and
more important and the dc conductivity is enhanced. In
the inelastic limit e ~ 1, the interference effects disap-
pear and the conductivity becomes o = e jh, indepen-
dent of the disorder and of the wave vector q. The max-
imum of the o(e) curve for q = 0.4vr/a in the presence
of disorder can be understood by comparison with the
results of Fig. 8, which shows that the effect of disorder
is relatively small for this value of q. Accordingly the
tr(e) curve for the disordered case approaches the curve
for the ordered case already for rather small ~ values,
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FIG. 10. Convergence of the conductivity for wave vector
q = 0.4s'/a. The single scatterers are described the elastic
transmission probability b = 0.? and the indicated dissipa-
tion parameters e. (a) Ordered chain; (b) disordered chain
(W = 1).

FIG. 11. Dependence of the conductivity on the dissipa-
tion parameter e. Full lines, ordered chain; dashed lines, dis-
ordered chain (W = 1). The results are given for the elas-
tic transmission probability b = 0.7 of the single scatterers
and the wave vectors (a) q = 0.1,0.2, and 0.4s/a and (b)
q = 0.6, 0.8, and 0.9s/a.
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where the conductivity is still rather large, leading to
the prominent maximum at e = 0.09. For q = 0.2vr/a
the behavior is similar, but the maximum is less pro-
nounced since the conductivity of the ordered chain is
already small in comparison with the case q = 0.4vr/a.
For q = 0.6vr/a the influence of the disorder is more sig-
nifican (see Fig. 8) and therefore the conductivity of the
disordered chain approaches the curve for the ordered
chain (which is identical to the case q = 0.4m/a) less
rapidly. For q = 0.8vr/a the influence of the disorder is
even larger as can be seen from Fig. 8. In consequence,
the deviations in Fig. 11 due to the disorder remain sig-
nificant even for relatively large e. In this case the con-
ductivity increases only slightly above the limiting value
e /h, leading to a weak maximum around e = 0.6.

In summary, Fig. 11 shows that in the bulk regime the
conductivity of disordered samples is always smaller than
that of the ordered samples. It increases with the dissi-
pation e up to a wave-vector-dependent maximum. This
case is conventionally covered by the hopping picture, in
which the conductivity increases with the temperature,
i.e. , with the inelastic scattering. For larger dissipation
the conductivity decreases towards the inelastic disorder-
independent limit at ~ = 1. This is the metallic regime,
in which the conductivity decreases with increasing tem-
perature.

In Fig. 11 we have also shown the behavior of o (e) in
the surface regimes. In the case q = O. lvr/a the disor-
der has only negligible influence and the curves for the
disordered and the ordered case practically coincide. For
q = 0.97r/a the conductivity of the disordered chain ex-
ceeds significantly that of the ordered chain, in correspon-
dence with the large relative decrease of the resistance in
presence of disorder seen in Fig. 8. The agreement be-
tween the o (e) curves for q = 0.8x/a and q = 0.9+/a is
fortuitous. In summary, Fig. 11 shows that in the sur-
face regime the conductivity of disordered samples is al-

ways larger than that of ordered systems and it increases
monotonously with dissipation towards the q indepen-
dent limit for e = 1.

IV. CONCLUSIONS

In the present paper we have investigated the influence
of dissipation on the dc transport properties of a disor-
dered chain by using the Landauer-Buttiker approach.
We have shown that within this approach the localiza-
tion of electronic states in presence of disorder can be
understood as a consequence of the destructive interfer-
ence of multiply scattered waves. We have demonstrated
for small dissipation that, depending on the particular
disordered configuration of the scatterers in the sample,

the chemical potential along the chain features character-
istic steps and intermediate plateaus. These correspond
to chain segments of destructive and of constructive inter-
ference, respectively. It turned out that there is usually
one highly resistive segment which dominates the behav-
ior of the entire chain. This gives rise to the observed
dramatic changes of the chemical potential for certain
arrangements of the scatterers.

In the absence of dissipation the localization due to
the disorder leads to vanishing conductance. We have
demonstrated that the onset of conductance for small
dissipation, which is commonly described within the hop-
ping theory, can be explained by the fact that destructive
interference e8'ects are gradually suppressed with increas-
ing dissipation due to the loss of phase memory. This
description thus leads to an alternative physical under-
standing instead of the usually employed hopping pic-
ture, which expresses the conductivity in terms of tran-
sition rates between localized states at finite tempera-
ture. It should be noted that our usage of the Landauer-
Buttiker approach has several advantages with respect to
the hopping model: In particular, the present approach
remains valid over the full range of dissipative coupling
parameters, the presented description of the dc transport
with and without dissipation is conceptually the same,
and it describes equally well the ordered chain. In other
words, the Landauer-Buttiker picture can be considered
as a general approach which, in principle, covers the full
range of dc properties, without any restriction, e.g. , to
low temperatures.

However, to make the description complete, one should
relate the scattering parameters more closely to the un-
derlying physical interactions. In particular, the elastic
part of the scattering matrices can be easily related to a
Hamiltonian, such as, e.g. , the Anderson Hamiltonian.
This immediately introduces a q dependence of the
scattering parameters. Work along these lines is in
progress. Moreover, as mentioned in the Introduction,
it is possible to describe the dissipation in terms of the
interaction between electrons and lattice vibrations by
introducing a heat bath of harmonic oscillators (see, e.g. ,

Ref. 1.4). This not only yields a microscopic derivation
of the dissipation parameter e, but also allows us to es-
tablish its temperature dependence. It would also be in-
teresting to generalize the present one-dimensional chain
model to wider systems in which more than one trans-
port channel connects the left and the right contact. In
this way the description of two-dimensional and three-
dimensional transport should be feasible. A systematic
approach for the calculation of an appropriate scatter-
ing matrix for such multiply connected systems has been
given in Ref. 28. Another interesting extension is the
consideration of electron-electron interaction as discussed
recently.
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