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Pressure and density of vacancies in solid He
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Crystals of He contain vacancies that move around by a quantum-mechanical hopping process.
The density and pressure of these vacancies can be experimentally studied. The accuracy of the
experiments is high enough to detect the effect of the Bose statistics of the vacancies. In this paper
we examine the effect of the hard-core repulsion between the vacancies, which should also have a
measurable effect on their behavior. We set up a virial expansion for a lattice gas of hard-core
particles, and calculate the second virial coefficient. It turns out that the vacancies behave as ideal
Bose particles at low temperatures, but that the hard-core interaction makes them behave more and
more like fermions as the temperature increases.

I. INTRODUCTION

The thermodynamic behavior of vacancies in solid He
is an interesting experimental and theoretical problem.
Vacancies in helium are more mobile than in any other
solid. At the temperatures where solid helium exists the
motion of vacancies requires a quantum-mechanical de-
scription. They hop Rom site to site with a certain rate
v„, leading to a band of states e(k), much like the elec-
tron Inotion in the tight-binding approximation. For 4He

the vacancies are obviously bosons, since the creation op-
erator for a vacancy is the annihilation operator for a He
particle, which is a boson. 2 The fact that two vacancies
cannot occupy the same lattice site has to be incorpo-
rated as a hard-core potential for the hopping bosons. So
the simplest model for vacancies in He is that of a gas of
hard-core bosons on a lattice. In reality the strain fields
around the vacancies produce a more complicated inter-
action between them than the simple on-site exclusion.
However, we consider the hard-core boson approximation
as a sufficiently realistic description of the vacancy mo-
tion to leave out these further refinements, in order not
to complicate the model too much.

Experiments show that the percentage of vacancies in a
crystal is at most of the order of l%%uo,

s at least at temper-
atures of the order of 1 K, where the experiments take
place. As a first approximation the vacancies thus be-
have as an ideal gas. However, present day experiments
are sufficiently accurate that eKects of Bose statistics can
be detected. It is one of our points that then also e8'ects
of the hard-core interaction become detectable.

In this paper we present a systematic analysis of the
vacancies using exp( —b, /k~T) as a small parameter, A
being the excitation energy, or band gap, required to cre-
ate a vacancy. This is equivalent to a virial expansion
for the quantum lattice gas, and we work out the proper-
ties in detail up to the second virial coeKcient. A general
formula for the second virial coefficient of the hard-core
Bose lattice gas is derived and evaluated for hypercubic

lattices in one, two, and three dimensions. The case of
the hcp lattice, which applies to real solid He, will be
treated elsewhere.

II. THE HARD-CORE BOSE LATTICE GAS

The vacancies are represented by Bose creation and
annihilation operators b~, b; obeying the usual Bose com-
mutation relations. The Hamiltonian for the vacancies is
given by

Here the transfer integral t is equal to hv„, and the hops
take place between all pairs of nearest neighbors (i, j) on
the lattice. The coordination number of the lattice is c,
and 6 is the energy required to create a vacancy. It func-
tions as minus the chemical potential for the vacancies.
The last term represents the vacancy-vacancy repulsion.
We will let U ~ oo, or U is much larger than any other
energy in the problem.

Without the potential term we have an ideal Bose lat-
tice gas, the Hamiltonian of which is diagonal in momen-
tum space,

'Ro ——) [4+e(k)jbt(k)b(k). (2.2)

Here b(k) = ~g. bse* 'r (N is the number of sites,

and periodic boundary conditions are used), and the en-

ergy band e(k) is given by

e(k) = t Q(1 —cosk rs), (2.3)

where rg is the set of the c nearest neighbor positions
with respect to any site. A is the gap of the energy band,

'8 = t ) (btb~ y—btb;) y(A+et) ) btb, + )b—tbtb, b;

(i,j) z

(2.1)
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since we have s(0) = 0 as lowest energy in the center of
the Brillouin zone. One sees that t is a measure for the
bandwidth, which for a d-dimensional hypercubic lattice
is m = 4dt.

The interaction is written in terms of b(t) (k) as

The two terms are given by

bint —p('R —2A) —p('Ro —2A)1

N
e —e

the contribution of the hard-core interaction, and

(3.7)

V = ) hi„+g, i„+i,.+~b (kq)b (k2)b(ks)b(k4),
k;,G

(2.4)

bo = —W
—P('Ro —2A) Tr

—P('Ro —A)
2

(3.8)

where G is a vector of the reciprocal lattice. The ma-
trix elements of the interaction have no other structure
than the conservation of the total incoming and outgoing
momentum (up to a reciprocal lattice vector), a feature
which is of great advantage in solving the two-particle
problem.

III. THE VIRIAL EXPANSION

The grand partition function of the vacancy system is
given by

the effect of the Bose statistics of the vacancies.
The statistical effects are trivial to calculate, and we

find for the unperturbed system that

bP ) —SPY(k) b (Pg)xe
k

(3.9)

with bq(P) given by (3.4). Thus it suffices to focus our
attention on the calculation of b2" . As a general observa-
tion we note that the two contributions in (3.6) will have
opposite signs. To see this more clearly, we go over to a
series in the density n of the vacancies,

:-=Tre P+= Z„e (3.1)
n = ) btb; = Bp/84—= —) Ebqe

NVp Vp

where P = 1/k~T, Tr stands for the trace over all sym-
metrized states, and Z„ is the canonical partition sum
for n vacancies excluding the contribution from the gap
A. Of course, Zp ——1, and

(3.10)

Eliminating e ) + &om (3.3) and (3.10) we obtain a virial
expansion for the pressure

Z ~ —P(Ro —b, ) —P (k)

k
(3.2) pp = n —(b2/b,')vpn2 + (3.11)

because for one vacancy no hard-core effects enter. Tr„
is the trace over n-vacancy states.

For ln= we may deduce &om (3.1)

So at fixed density n the statistical effects lower the pres-
sure as b2Pis positive according to (3.9). The hard-core
repulsion can only increase the pressure, and so b2" must
be negative.

PpNvp ——ln= = N) bye

1=1
(3.3)

where vp is the volume of the unit cell, p is the pressure
of the vacancies, and the bg are the fugacity expansion
coeKcients. The first of these, bq, reads

IV. THE SECOND VIRIAL COEFFICIENT

The second virial coefficient (3.7) is evaluated as

(4.1)bint dE (E) P (E) P(E 2K)— —1

b (P) = —Zg ——
q dke ~'("),

N (2x)~ Bz
(3 4) where the level densities p2(E) can be obtained from the

Green's function,

bg
——vp/A, (3.5)

where we have replaced the sum over k by an integral
over the Brillouin zone. For temperatures so low that
s(k) may be replaced by its low-momentum behavior, we
find the familiar result for the continuum case,

1
p2(E) = ——Im Tr2 g+(E). (4.2)

The states of the unperturbed two-vacancy Hamilto-
nian are denoted by two wave numbers ~kq k2), and the
two-vacancy energy band is given by

with the thermal wavelength A = h /2mm*knT, and the
effective mass m,' = )'t /2ta .

The second term b2 in (3.3) is our main concern in
this paper. It can be written as the sum of two terms
by adding and subtracting the contribution of the non-
interacting two-vacancy system,

Ep(kl k2) = 2A + s(kt) + s(k2).

The matrix elements of V are obtained from (2.4),

2U
(kg k2~V~k~ k2) = ) bi„+I„i,,~g;+~,

(4.3)

(4.4)

g2 $
b = —

i
Z — '

i

= b b'"' (3.6) which shows that a representation in center-of-mass and
relative coordinates will be advantageous. Thus we in-
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troduce

K = kg+ k2) k = (ki —k2)/2.

The sum over G is eliminated by choosing the Brillouin
zone in such a way that no two points in it have values

of K diKering by a reciprocal lattice vector, so that only
the term with G = 0 contributes. The matrix element
of V is then diagonal in K. From now on we will assume
that the Brillouin zone has been chosen in such a way,
and drop the reference to G. Since the total momentum
K is conserved by 'Ro and V, Q becomes diagonal in it,
and we have

(Kk~g(z)~Kk') = (Kk] [go(z) + gs(z)Vg(z)] ~Kk') = hi, k + ) (Kk"~g(z)~Kk') . (4.6)
z 0 ) 1c"

The simplifying feature of (4.6) is that the general matrix element of Q couples only to the total sum over the first
entry of the matrix elements. For the latter we can obtain an expression by summing (4.6) over k. The result is an
algebraic equation for P&(K k~P(z) ~K k ). Using the solution of this equation in (4.6) one finds

1

z —ED)K, k) ' 1 —2U7z(z, K) z —RD(K, k') I' (4 7)

with 'R(z, K) given by

1 - 1

N ) z —Eo(K, k)
(4.8)

Trg(z) = Trgt)(z) + —) ln [1 —2U7Z(z, K)],
0

t9z
(4.9)

which in turn yields for the difference p2 —p2

p2(E) —p2(E)

Note that the off-diagonal elements of (4.7) are of order
N while the diagonal elements are of order 1.

From (4.7) we can now calculate the trace, leading to
the compact expression

dE~ F(E) ~e
)

(4.12)

with

each other. Both kq and k2 run through a Brillouin zone

appropriate for the structure of the lattice, and this in

principle defines the ranges of K and k. But as was

mentioned before, we have chosen the Brillouin zone such
that there are no points whose values of K diR'er by a
reciprocal lattice vector.

The expression (4.1) for the second virial coefficient
can be further simplified by changing the integration vari-
able so as to eliminate the shift 2A in the energy, and by
making use of the fact that Im ln z = arg z. The result is

F(E) = —) arg74'(z, K) ~,—@+;„X (4.13)

= ——Im —) ln (1 —2U7Z(z, K))
1 t9

19z
- z=E+ie

(4.10)

This expression holds generally for any on-site repul-
sion U. We may let U ~ oo, by which it will disap-
pear &om the formula as the U term under the logarithm
starts to dominate the argument for any z and K. Omit-
ting the 1 in the argument of the logarithm, the term
ln( —2U) drops out after differentiation with respect to z.
So for (4.10) we have in the limit U ~ oo the equivalent
expression

and where 'R'(z, K) is given by (4.8) with 6 set equal to
zero.

Prom (4.13) one sees that only E values occur in (4.12)
which lead to complex values of 'R'(z, K). These occur
when z = E + ie is a pole in the k integration in (4.8).
Thus the combined bandwidth of s(K/2 + k) + s(K/2—
k) determines the range of E values. This is twice the
bandwidth of s(k) just as in the ideal Bose contribution
(3.9).

V. THE ONE-DIMENSIONAL CASE

1 8
pg(E) —p2(E) = ——Im —) in%(z, K)

Oz K z=E+ie

(4.11)

Hereby the problem is essentially reduced to the evalua-
tion of R(z, K) given by (4.8).

A few comments are in order about this expression.
For bosons the state ~ki kz) is the same as ~kz ki). So
the relative momenta k and —k should be identified with

We interrupt the general discussion for the treatment
of the one-dimensional case of (4.12) and (4.13), as this
case is interesting, completely analyzable, and elucidat-

ing for the structure of the functions occurring in (4.12)
and (4.13).

Using the d = 1 band structure (2.3) (with a lattice
constant a = 1) we find for bi(P) the expression

1
y) dk

—2Pt(1 —cos k) —2Ptl (2Pt)
27r
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where Ip(z) is a modified Bessel function of the first kind.
For the evaluation of R(z, K) we rearrange the Bril-

louin zone in such a way that its boundaries in K, k space
are convenient, and also such that no reciprocal lattice
vector G enters into the problem. In Fig. 1 we have di-
vided the original Brillouin zone —x ( k~ & m,
k2 & vr into four domains, I, II, III, and IV. Domains I
and IV, as well as II and III, refer to the same states, as
they are obtained &om each other through interchanging
kq ~ k2. So it suKces to take one of each, say, I and III.
Now III is equivalent to III', which follows &om III by
shifting kq over 2x. The combined domain I and III' is
given in K, k space by 0 (K & 2x, 0 & k ( x.

Using this parameter space, and putting z = 4t((+ 1+
ie), one can write R explicitly as (dropping the primes)

Ia/2 = m

K/2 =O

FIG. 2. The phase 4((,K) = argR((, K) in the (, K/2
plane.

R((, K) = I 1

p (+te+cos 2 cosk

'P dk (+ cos 2 cos k

Z K
dk 8((+ cos —cos k),8t 2

(5.2)

1
b' ' = —— d( e ~'(~+ l = e ~'I (4pt)

We now compare this with the result for an ideal lattice
gas, given by (3.9),

[( ( -i cos(K/2) ],
arg R((, K) =

&
—7r/2 [[&I &

I cos(K/2) I],
0 [( & [ cos(K/2) f].

(5.3)

These values of arg R are plotted in Fig. 2 in the (,K/2
plane. Integrating in the K direction, we find for F(()

F(() = — dK arg R((, K)
271 0

—7r (( & -1)
—arccos ( (—1 & ( & 1),
0 (( & 1).

(5.4)

Using ( instead of E in (4.12) as integration variable we

for e $ 0. 'P indicates a principal value integral. Two
cases must be distinguished: For ~([ ) [cos(K/2)[, the
imaginary part of R is zero, and for [g[ ( ~

cos(K/2) [
its

real part is zero. The result for arg R is

b2 = —b1(2p) = —e 'Ip(4pt) = b2"'——
2 2 2 22

So the hard-core interaction giving rise to b&"~ changes the
value of b2 &om b2 into its opposite, or in other words, the
Bose value is turned into the Fermi value. This is exactly
what has to be expected from the well known fact that a
hard-core Bose gas in one dimension is equivalent to an
ideal Fermi gas (for all virial coefficients).

The picture shown in Fig. 2 for arg R has some general
validity, in the sense that for sufficiently negative ( one
has argR = —vr while for ( sufficiently positive arg R =
0. In the zone in between, one has for d ) 1 a continuous
transition &om —x to 0, in general, with eventually also
zones with arg R = —vr/2.

VI. THE TWO- AND THREE-DIMENSIONAL
LATTICES

The calculation of b2 for hypercubic lattices in higher
dimensions runs along the same lines as what was done
in Sec. V for one dimension. Using the one-vacancy band
structure (2.3) with a = 1 in d dimensions, b1(P) is simply
found to be

1
(P) dk

—2Pt(1—cos s)
(2z)~

- d

= -'"'[I.(2Pt)]'

FIG. 1. The Brillouin zone for the one-dimensional prob-
lem. Domains I and III' are the Brillouin zone used in the
calculation.

As before, we rearrange the Brillouin zone such that its
boundaries in K, k space are convenient. The difFerent
components of K, k are independent, and we have 0 &
K; &2xr 0&k~ x~ —& ky&kz &vr. Thek~
interval is halved to avoid counting the same (symmetric)
state twice. The two-vacancy energy bands are given by
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K. K„Ep(K, k) = 4t 2 —cos cosk —cos "coskv
2 2 ")

(d =2),

We scale the parameter z as

St(( + 1 + i~)
12t(( + 1 + i~)

(d =2),
(d = 3), (6.3)

K.—cos cos k,
2

(d = 3).

K KyEQ(K, lc) = 4t 3 —cos cos k —cos " cos k

l
9

(6.2)

so that in both cases the energy band runs from ( = —1
to(=1.

In two dimensions we find with (5.2)

1 1 . 1 ( K Ky
R2((, K) = dk„dk —(+ ie + —

~

cos cos k + cos " cos k„~2z2 — o 8t 2k 2 2

f(A, B)
32tvr "

Q~A2 —B2~

where

1 Ky 1 K
A = (+ —cos "cosk„, B = —cos

2 2 "' 2 2

and

sgn(A) (A ) B ),
i (A' —& B').

(6.4)

(6.5)

(6.6)

The integral in (6.4) can be expressed in terms of complete elliptic integrals of the first kind (see the Appendix). This
gives an analytic expression for Rz((, K).

This expression can also be used to And the result in three dimensions,

1 1 " — . 1 K Ky
Rs((, K) = — dk, dk„dk (+is+ —(cos cosk + cos "cosk„)

271 7t 32t& ~ g 2 2
*

2

dk, R2((, K, Kv),2' (6.7)

F( r', ) = —7r —F—((). (6.9)

Using F((), b'2"' can be found from Eq. (4.12). Partial
integration gives

1 — d F sinh4d t8dPt
7t O

(6.10)

To find b2", this equation can be numerically integrated
for various values of Pt.

As before, we compare this with the result for the ideal

where

K,St((+ 1) = 12t((+ 1) —4t
~

1 —cos ' cosk,
~

. (6.8)
)

Using the analytic expression found for 'R2, 'R3 can be
calculated by numerical integration of (6.7).

The next step is to obtain F(r', ) as given in (4.13) by
integrating over K. This is done numerically using Monte
Carlo integration. The result is a function F(r', ) that is
equal to —vr for ( & —1, where Rg is real and negative,
equal to 0 for ( ) 1, where R~ is real and positive, and
that is in between these two values for ( E [

—1, 1], where
7Z,p is complex. It follows kom the symmetry of 'Rp that

lattice gas (3.9)

b2 = -bi(2p) = -e '""[Io(4pt)]" (6.11)

The ratio bz"~/bo2 is given by

1

b , '/b, = 'i — d(FI() sinh44rit( j.[I,(4pt)]" 7r

(6.12)

For pt -+ 0, this ratio goes to —2. The second virial
coefficient 62 ——62 + 62" thus approaches —62 for high
temperatures. This is indicative of fermionic behavior,
which is indeed what one would expect: At high tem-
peratures, the only important contribution to the &ee

energy of the system is the entropy involved in distribut-
ing a certain number of hard-core particles over the lat-
tice. This is the same as for fermions. For Pt i oo the
behavior of (6.12) depends on the behavior of F(() for

g ~ 1. In two dimensions, F(r,) oc (1—()/ ln(1 —(), which
leads to bz"~/bz going to zero like —1/ ln(Pt) as Pt m oo.
The same low-temperature behavior is found for quan-
tum hard disks. s In three dimensions, F(() oc (1 —()
which gives b2" /b2 oc —1/~Pt for Pt + oo, just as for
quantum hard spheres. So, in both cases, b2 approaches
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FIG. 3. The ratio b2/b2 as a function of Pt for the square
lattice. For high temperatures (small Pt), b2 —— b~, wh—ich
is the same value as for fermions. For lower temperatures its
value crosses over to bq ——bq, the ideal boson value.

The system of vacancies that exists in solid He should
behave to a good approximation like this simple model:
The vacancies move through the crystal lattice by a tun-
neling process, they are bosons, and they have a hard-
core repulsion. The gas of vacancies has been experimen-
tally studied by probing the attenuation and the velocity
shift of sound in a He crystal. Very pure hcp helium was
used, so that the effects of both the phonons and the de-
localized, bosonic vacancies could be observed. Treating
the vacancies as a gas of free particles, it was seen that
they obey Bose statistics. For the expressions (7.1) and
(7.2) this means that not only the first term, but at least
also the second is experimentally observable. One can
use the expressions (3.5) and (3.9) for a gas of free, ideal
bosons to estimate the order of magnitude of the various
terms in (7.1) and (7.2). One finds that bto ——vo/Es/2As,

so that

the value for the ideal Bose gas at low temperatures. This
shows that when the thermal wavelength A exceeds the
lattice constant a(= 1), the effects of the Bose statistics
starts to dominate. Plots of b2/b2 versus Pt for two and
three dimensions are given in Figs. 3 and 4.

VII. CONCLUSION

The pressure and density of a gas of quantum particles
on a lattice can be expressed in fugacity expansions,

) b
—tPA

V0
(7.1)

n = —) Ebte
1

Vp' e=l
(7.2)

0.5-

b/b p

-0.5—

For bosons with a hard-core interaction, the first two
coefficients, bl and b2, can be calculated. It turns out
that the effect of the hard-core interaction on b2 depends
strongly on temperature and on the transfer integral t.
For small Pt it is fermionic in character, as far as b2
is concerned. For large Pt the effect of the hard-core
disappears, and only the Bose character remains.

(7.3)

(7.4)

Using the value 6/k~ = 0.71 K found in Ref. 3, and the
maximum temperature T = 0.85 K at which the experi-
ments were performed, this shows that the ratio between
the second and first terms in (7.4) is 0.15, and that be-
tween the third and first terms is 0.04.

If experiments can be done that detect the contribu-
tion of 15% of the second term in (7.4), it is also possible
to detect the effects of the hard-core on the coefficient b2

in (7.2). As can be seen from Fig. 4, it varies consider-
ably with Pt, and it can even change sign. However, it is
difficult to extract this information from the attenuation
experiment, since there it is not clear what exactly the re-
lation between the measured quantities and the vacancy
density is. It would be necessary to directly measure,
say, the pressure due to the vacancies, 7 and then corn-
pare this with (7.1). In such an experiment it would be
crucial to take the hard-core effects into account. Work
is in progress to calculate the coefficient b2 for the hcp
lattice; however, the results are not expected to differ
much &om those given for the simpler cubic lattice here.

The results for the two-dimensional system might
have relevance for low-density 4He films on textured
substrates. There, the presence of adsorption sites lo-
calizes the helium particles on the points of a two-
dimensional lattice, defined by the substrate. Thus the
tight-binding approach used in this paper becomes appli-
cable. The adsorption sites cannot hold more than one
particle, so that the hard-core repulsion is also present.
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APPENDIX

The integral (6.4) can be expressed in terms of elliptic
integrals as follows. ' 'R2 is equal to

1 1
K(x) = dp l(I —p')(1 —*'p')

There are several cases to be considered:

(z e [0, 1]).

(A6)

expressed in terms of the complete elliptic integral of the
first kind, K(x),"

z, (q, K) =
16tvr g~ )~~

dky
16tz ~~(~~

(A1)

where k„c [0,z]. On making the substitution p = cos k„,
and writing

(la): q, q+ & —1 and (1b): q, q+ ) 1

'Rz((, K) =
4tn. cos(K„/2) g(q+ I )(q + I)

'

where e = + for (la) and e = —for (1b).

(A7)

A' —B2 o ( v/ )
(4

where

—2(+ cos(K /2)
cos(K„/2)

we end up with integrals of the type

(A2)

—2( —cos(K /2)
cos(K„/2)

(A3)

(A4)

(2): q & —1,q+ ) 1 or q, q+ g [—1, 1]

z, (q, K) =
4t7r~ cos(K„/2)

~ g(q+ + I)(I —q )

(3a): q & —1,q+ P [—1, 1] and
(3b): q g [—1,1],q+) 1

(A8)

q = min(qi, q2), q+ = max(qi, q2), (A5)

we see that values of p E [q, q+] give A2 & B, and
thus contribute to the imaginary part of 'Rq. Values of p
outside this interval give A )B and thus cor.tribute to
the real part, for p & q with sgn(A) = —sgn[cos(K„/2)],
and for p ) q+ with sgn(A) = sgn[cos(K„/2)]. The result
is a sum of integrals of the type (A4) between limits that
are consecutive zeros of m. These integrals can all be

where io = (1 —p) (1 + p) (qi —p) (q2 —p) and p C [
—1, 1].

By de6ning

z, (q, K) =
4t7r cos(K&/2) /2(q+ —q )

Z K(1/r, )
4t7r

~
cos(Ky/2)

~ /2(q+ —
q )

'

2(q+ —q-)
(q+ —1)(q-+1) '

2(q+ —q-)
(q++ 1)(1—q-)

(A10)

where e = + for (3a) and e = —for (3b). In the above,
r z and rq are given by
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