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The macroscopic diffusion coeffxcient, obtained in an ideal pulsed-field-gradient spin-echo (PFGSE)
experiment in the long-time limit, should exactly equal that derived from the electrical conductivity
only when the surface relaxivity p and surface electrical conductivity vanish. In general, the coef-
6cient derived by PFGSE techniques can be either greater or less than its electrical counterpart,
depending on the pore geometry and other factors. FormaIly, the efFect of p can be seen from the
structure of a perturbation expansion based on the p = 0 time-dependent solutions of the pore
space difFusion problem. In addition, analytic results for periodic structures with partially absorbing
boundary conditions and numerical simulations are used to illustrate the difFerences between the
diffusion coefEcients for p = 0 and p g 0. In treating disordered media, our sixnulations are limited
to systems that are not heterogeneous beyond the PFGSE difFusion length scale.

I. INTRODUCTION

This paper is concerned with the influence of sur-
face relaxation on the long-time behavior of the dif-
fusion coefficient in homogeneous porous media. In
particular, we compare two different diffusion measure-
ments, pulsed-field-gradient spin-echo (PFGSE) mag-
netic resonance and electrical conduction. The diffu-
sion coefficients measured in these experiments are iden-
tical only if reflecting boundary conditions apply in both
cases. This will not be the case if there is excess sur-
face conductivityi (in the electrical measurement) or en-
hanced surface relaxivity (in the PFGSE measurement).
We study here the inHuence of surface relaxivity, p, in
model systems which are not heterogeneous beyond the
PFGSE diffusion length scale. Only in such systems
can PFGSE experiments be meaningfully compared with
truly long range measurements like dc electrical conduc-
tivity. We assume, further, that the PFGSE diffusion co-
efficient is measured under ideal circumstances in which
internal field inhomogeneities arising &om the suscepti-
bility contrast between grain and fluid are either negligi-
ble or can be taken care of by proper pulse sequences.

The formation factor is among the most important
geometrical parameters characterizing the tortuosity of
porous media:

Here P denotes the porosity (i.e. , the volume fraction as-
sociated with the pore space), Drr is the bulk fiuid molec-

ular diffusion coefficient, and D,H is the corresponding
coefficient when the fluid is confined within the complex
pore geometry with reflecting boundary conditions. A
common method of estimating F is by measuring electri-
cal conductivity since electrical conduction and diffusion
are related by the Einstein relation. Assuming that the
solid phase is electrically inert (i.e. , that surface conduc-
tion can be neglected) we have

where 0. is the conductivity of the porous medium satu-
rated with a fluid of conductivity cry. Physically, F re-
flects the infiuence of tortuosity (i.e., of constrictions and
direction changes) in the fiow paths for electrical current.
In addition, F is related to Quid flow, sound velocity,
and other properties of interest in porous media.

In practice, the direct electrical measurement of F may
be problematic. Often the precise value of o.

y is not
known. In addition, Eq. (2) does not hold for systems
with charged interfaces (e.g. , rocks with clays) where the
apparent value of F depends on the parameter o.y. Ac-
cordingly, an alternative method of determining this im-
portant geometrical quantity would be quite valuable.
Under certain conditions, diffusion measurements based
on nuclear magnetic resonance (NMR) provide such an
alternative.

PFGSE experiments measure the diffusion of nuclear
magnetization which arises, physically, out of the diffu-
sive motion of Quid molecules. The magnetization den-
sity can be visualized as the density of an ensemble of ran-
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D, (r= D(t m os p = 0) —=
(r'(t)) D()

6t
(4)

We will see that, in principle, D(t
~ p) may be either

greater or less than D(t m oo
~ p = 0).

It should be emphasized that the length scale difFer-

ences between the electrical and PFGSE measurements
vis-a-vis sample heterogeneities may be the most impor-
tant reason for the difFerences in measured formation fac-
tors in many porous media. In the electrical measure-
ment, the macroscopic fields are constant over the entire
sample, while in NMR the longest coarse-graining length
is the diffusion distance, (DoTi)~i(' ), which the walk-

ers can go during their lifetime, Tq. This distance
is typically 10—100 p, m in rocks with Tq 10—1000 ms.
Thus the formation factors measured by these two meth-
ods can be meaningfully compared only if this length is

larger than any inhomogeneity fluctuations in the rock.
Otherwise, these fluctuations may be far more important
than the efFects of surface relaxivity. Glearly, in macro-
scopically heterogeneous systems, the NMR signals from
difFerent parts of the pore space are roughly independent
of each other and the total signal is a sum of contri-
butions coming from each part. In the long-time limit,
the longest lived NMR signal wilL dominate the measure-
ment even though the corresponding efFective difFusion

coefficient may be totally unrelated to that of the entire
sample.

Section II begins with a brief review of the central
equations that describe difFusion in the presence of par-
tially absorbing boundary conditions. We then present
a series of physical arguments to illustrate the relation-
ship between pore geometry and the long-time behavior
of D(t

~
p). Section II concludes with the derivation of

a formal perturbation theory that allows D(t
~ p) to be

calculated in terms of the p = 0 solutions of the difFusion

problem in the same pore geometry. In Sec. III we evalu-
ate the efFects of surface relaxivity on the t m ao limit of
the difFusion coefficient in periodic unconsolidated struc-
tures. In Sec. IV we present the results of numerical
simulations for severaL periodic modeL geometries and
also for one of the simplest disordered porous systems,

dom walkers moving through the pore space and getting
either re8ected or absorbed at the pore-grain interface.
Physically, the absorption of walkers represents the en-
hanced relaxation of magnetization associated with para-
magnetic impurities at the grain surfaces. i Let (r (t)),
be the mean square displacement of the walkers surviving
to time t. In the presence of surface relaxation, the num-
ber of walkers is not conserved, so that their motion is not
difFusive in the usual sense. However, PFGSE measure-
ment still provides a time-dependent dift'usion coefficient
via the operational definition:

D(, [ )
(r'(t))

6t

where ( ), denotes an average taken over only those
walkers surmving to time t. (In Ref. 6 the notation

(r2(t))„was used, the subscript n denoting a normal
ized expectation value [see Eq. (8), below]. ) Thus, in the
absence of surface relaxation, we have

a dense packing of spherical grains. These simulations
allow us to illustrate the important interplay between
the pore geometry and the influence of p.

II. GENERAL CONSIDERATIONS

A. Basic equations

In PFGSE measurements one studies the wave vector
(k) and time (t) dependence of a spin-echo amplitude
M(k, t) In .this experiment, the dephasing and rephas-
ing of the transverse magnetization are modulated by two
hard gradient pulses. [If the running time of the measure-
ment sequence is denoted by r, the applied magnetic Geld
is changed by an amount g rf (r) where f (r) = 0 except
for two short intervals, each of duration b separated by a
time t.] We will be concerned with an idealized limit of
the PFGSE measurement in which 8 ~ 0 and Jg~ -+ oo
such that the magnitude of the wave vector k:—pbg re-
mains finite (here, p is the proton gyromagnetic ratio).
The measured amplitude is then given by

c)G(r, r', t) = DoV'G(r, r', t), t & 0,
Ot

G(r, r', t = 0+) = 8(r —r'),

(6a)

(6b)

and the boundary condition at the surface Z with an
outward normal n is

Don . 7'G(r, r', t) + pG(r, r', t) ~,~g= 0 .

The measured efFective difFusion coefficient is obtained
from the normalized average

(8)

or, equivalently,

1 . 0
D p(p) = —iim — (i.m n (( Mt)k)t k~o (9)

It is clear Rom Eq. (8) that D(t [ p) is a ratio of two
quantities, each of which is infIuenced by p. Both the
denominator and numerator decrease as p is turned on,
reflecting the fact that the average involves only the sur-
viving walkers. %e will see, however, that the ratio may
either increase or decrease with p and that the net be-
havior of D(t [ p) is not easily predicted.

B. Physical arguments

To develop insight to the behavior of the difFusion
coefficient, we consider a class of systems for which
D(t ~ oo [ p) is independent of p. First, as a con-
crete, but trivial, example, consider random walkers mov-

ing in free space, but in the presence of a uniform den-

M(k, t) = — drdr'G(r, r', t)e
p

where Vz is the pore volume and the bulk fIuid magneti-
zation decay has been factored out. The difFusion propa-
gator G satisfies the diffusion equation in the interior of
the pore space with difFusion constant Do,
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sity of sinks. The number of walkers decays exponen-
tially in time, but the surviving walkers move the same
distance that they would have without the sinks; thus,
D(t ] p) = D(t ] p = 0). When the distribution of sinks
is not uniform, D(t ] p) no longer equals D(t ] p = 0).

Consider next a pore space comprised of straight cap-
illary tubes as in Fig. 1(a). The presence of interface
relaxation obviously has an important effect on the mag-
netization, M(k = O, t), but has no effect on the long-
time diffusion coefFicient. Formally, separation of coor-
dinates implies that the Green's function (6a) factorizes
into a product of a function of the distance along the
tube axis and a function of the transverse distance. The
latter function does, indeed, depend on p. However, in
the long-time limit, only the axial contribution to the
mean square displacement counts, and this is controlled
by the (p independent) axial Green's function. If we pic-
ture the diffusion in discrete terms (i.e. , in terms of ran-
dom walk paths) the same conclusion follows once we

note that steps in the axial and transverse directions are
independent and that the mean square displacement at
long times is controlled by the axial steps. Essentially
the same lines of argument can be applied to a model in
which the pore space is viewed as a collection of slowly
winding and twisting capillary tubes, each with constant
cross section [Fig. 1(b)].

In Fig. 2 we show a model in which the pore space
consists of straight tubes connected to an array of "dead
end" channels. If p = 0, the presence of the dead ends
will certainly decrease the limiting value of the diffusion
coeKcient below the value corresponding to just straight
tubes. Physically, those walkers that stray into the dead
ends tend to make much less progress in the axial di-
rection. Now, suppose we turn on interface relaxation.
Molecules that enter the dead end regions are very ef-

FIG. 2. A pore space made of straight tubes connected to
"dead ends" by narrow throats.

flciently eliminated (demagnetized) and do not, there-
fore, contribute to the mean square axial displacement.
Thus the effective diffusion coefBcient is increased by the
presence of wall relaxation and, as p ~ oo, D(t ] p)
approaches a value characteristic of the original straight
tube.

%hile the above example illustrates that, in principle,
p can act to increase the diffusion coeKcient, in most sys-
tems of interest the opposite trend is to be expected. A
model geometry that is sometimes used to study a class
of porous media is shown in Fig. 3. Here we have a
system comprised of relatively large pores connected by
narrow throats. If p = 0, the throats control the final
value of D,g because they provide roughly one dimen-
sional links between the larger pores where the diffusion
can be quite close to the value characteristic of the bulk
fluid. However, once p g 0, relaxation proceeds very ef-

ficiently as molecules move down the throats, and the
probability for diffusing large distances is greatly dimin-
ished. Thus we expect a decrease in the limiting value of
D(t

~ p) whose magnitude is proportional to p (at least
as p -+ 0) and is controlled by the throat length. Physi-
cally, the walkers most likely to survive in this geometry
are those that remain confined within a single pore. On
the other hand, if the throat lengths are decreased to the
point where the pore geometry is as shown in Fig. 4,
then we expect surface relaxation to have relatively little
effect on the limiting behavior of the diffusion coeScient.
Here the throats are reduced to simple apertures whose
width limits the p = 0 diffusion coeKcient but which
do not provide especially eKcient regions for relaxation
when p j 0.

(b)

bc. ~%%$1
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W
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FIG. 1. (a) A pore space made of straight tubes. (b) A
pore space comprised of a number of winding but noninter-
secting tubes.

PIG. 3. A pore space comprised of large pores connected
by narrow throats.
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Don . VG(r, r', s) + pG(r, r', s) ~«~= 0 . (11b)

Now, let Go(r', r", s) be the p = 0 Green's function de-
6.ned by the equations

sGo(r', r", s) —h(r' —r") = Do& Go(r', r", s) (12a)

and

FIG. 4. A pore space in which the length of the connecting
throats (shown in Fig. 3) has been decreased to zero while

keeping the throat width constant.

How are these qualitative arguments reconciled with
Eq. (8)"? For simplicity, we take the view that the
pore geometry acts to divide the random walkers into
two populations: %~ „zwalkers that diffuse a long dis-
tance, (r (t)}~ „g,and N, h, t, walkers that diffuse a short
distance, (r (t)),h, t. Roughly, Eq. (8) then reduces to

n. V'Go(r', r", s) ~,~g= 0 . (12b)

-p do'G(r, r', s)Gp(r', r", s)

or, in the time domain,

G(r, r", t) = Gp(r, r", t)

Multiplying Eq. (lla) by Go(r', r", s), Eq. (12a) by

G(r, r', s), integrating over r', and subtracting we have

G(r, r", s) = Go(r, r", s)

Nlong(~ (t))long + Nshort(r (t)}sht»t'r
&io I;+ ~.ho.~

—p de dt'G(r, r', t')Go(r', r", t —t') .

(18b)

C. Short-time expansion

To derive a formal perturbative expansion we follow

an approach that is similar to the one developed in our
previous paper on the short-time behavior of D(t

~
p).

We work with the Laplace representation of Eqs. (6a)
and (7):

sG(r, r', s) —b(r —r') = Do%' G(r, r', s) (1la)

If p = 0, N& g and X,h, t do not vary with time. Suppose
that, for p g 0, we find at long times that N~ „g)) N, h, t
so that (r (t)), = (r (t))~,„g.It follows that D(t

~ p) &

D(t p = 0) as in the "dead end" model above where on
physical grounds we expect N~ „z&& X,h, t. On the other
hand, in the "pore and throat" model we expect N~ „z((
N, h»t {for p g 0} so that (r (t)}, = (r (t)},h„,t and
D(t

~ p) & D(t
~ p = 0). In the case of dilute suspensions

of spherical grains this kind of separation is not easily
made; nevertheless, the analytic results presented in Sec.
III A show that D(t

~ p) & D(t
~ p = 0).

Here we have made use of the boundary condition (lib)
and employed Stokes' theorem to convert a volume inte-
gral to a surface integral.

While the preceding equations are correct, their util-

ity in connection with the long-time behavior of the dif-

fusion problem is rather limited. The Green's function

G(r, r', t) decays exponentially because of enhanced re-

laxation at the interface. By contrast, Go(r, r', t) does
not decay and therefore, as t ~ oo, provides a very poor
starting point for a perturbation series. Nevertheless, if

p is suKciently small, perturbation series derived from

{13)can still be quite useful. For example, in a periodic
system, suppose that t is large enough that the diffu-

sion length, [D(t
~

0)tj ?, is several times larger than
the unit cell length. At such times the diffusion coefFi-

cient will have nearly reached its asymptotic limit. If the
value of p is small enough that the magnetization has not
decayed appreciably, a perturbation expansion generated
from the above equations should be valid.

To illustrate the use of Eq. (13b) let us first con-

sider the influence of p on the decay of the magnetization
M(t) = M(k = 0, t). Keeping terms up to linear in p, we

have

M(t) = 1

Vp

1

Vp
Argo dx
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If p = 0, there is no decay and V~ jdrdr"Go(r, r", t) =
1. The second term in (14) may then conveniently be
written in terms of an effective time-dependent surface
area, 8(t),

p8(t)t p8(t)t
M(t) = 1— +. -- =exp

Vp Vp

where

In addition, it is easily shown that 8(t) = S for all t if the
pore space can be described in terxns of a discrete normal
mode spectrum. i Returning to Eq. (13b), we consider
next the analog of Eq. (14) for the diffusion coefficient.
Recalling Eq. (8), the leading effects of surface relaxation
may be written as

1 t

8(t)—:— drdo'dr" dt'Go(r, r', t')Go(r', r", t —t') .
0

(15b)

Note that as t ~ O, Go(r, r", t) ~ b(r —r"), and so
8(t) ~ S, where S is the pore surface area. Thus, as
expected, (15a) properly describes the short-time limit

D(t
I p) = D(t

I o) 1 — vi(t) —L2(t)}
D(t [0)

where

D(t [0) = (r —r") Go(r, r", t)drdr"
6tV„

(i7)

lim
t +0

dM(t) pS
dt Vp

(16)

t
Li (t) = dt' (r —r") Go (r, r', t —t') Gs (r', r", t') dr do'dr",

p 0
(iga)

L2(t) = dt' Go(r, r', t —t') Go(r', r", t')drdo'dr" =
p 0 p

(19b)

We emphasize that Eq. (17) represents a short-time
expansion of D(t

~
p). As described above, its utility is

limited to the case of very small p values. It is interesting
to note that the two length parameters, Li(t) and L2(t),
enter Eq. (17) with opposite signs. This is to be expected
based on our earlier discussion of the influence of p on
Eq. (8).

III. CALCULATIONS ON PERIODIC SYSTEMS

m„&r = e'~'u„~ r (22)

which satisfy the Bloch-Floquet theorem. Here n is a
band index, the function u„z(r) has the translational
periodicity of the underlying Bravais lattice, and p is
a vector in the first Brillouin zone (BZ) of the recipro-
cal lattice. Given an arbitrary momentum vector k, the
magnetization density can be written as

Let us begin by expressing M(k, t) in terms of
eigenfunctions~

A. Nonoverlapping spherical grains M(k, t) = ) e ~"i i'
[ u„p(K)[' . (23)

In this section we consider the effective diffusion coef-
ficient for a periodic array of solid spheres, each of radius
a, immersed in the fluid. The PFGSE amplitude, m(r, t),
obeys Eqs. (6a) and (7) and is most conveniently writ-
ten in terms of the eigenfunctions, m(r, t) = m(r)e
where

(7' + q )m(r) = 0, (2o)

q2 = E/Do, and E is the eigenvalue. The structure of
this eigenvalue problem is quite similar to that of many
problems encountered in the electronic theory of solids.
Indeed, we will see that the variable q in Eq. (20) cor-
responds to the electron energy and that boundary con-
dition

[Don - V'm(r) + pm(r)] = 0 (2i)

gives rise to the analog of the scattering phase shifts,
(hi(q) j. Within this framework, D,ff(p) is related to the
curvature at the bottom of the lowest energy band and
is analogous to the effective mass.

Here K is the unique reciprocal lattice vector that returns
k to the 6rst zone, i.e., k = p + K and

1
u„p(K)= exp(iK r)u„p(r)dr, (24)

with the integration con6ned to a single unit cell of vol-
ume O. The splitting between the two lowest "energy"
bands will be of order of Do/b2, where b is the lattice con-
stant. For t )) b /Do, the lowest band controls the sum
in Eq. (23). Assuming that the effective mass tensor is
isotropic (as it will be in cubic systems) Eo(p) = p D ff,
and we have (for p (( b )

M(k, t) = e- -"'
~
u. ,(K) [' . (25)

Returning to Eqs. (20) and (21) we proceed to evaluate
D ~ by estimating the curvature of the lowest energy
band at the center of BZ for a periodic array of solid
spheres immersed in a fIuid. It is convenient here to use
the formalism of scattering theory. Following Schwartz
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and Johnson the eigenvalues are obtained by solving
the secular equation

This implies that the long-time decay rate is a simple
exponential:

II ri '(q)b« —B«(&Iq) II= o . (26)
2

M(k=0, t )=. e '~" =e (35)

71 (q) = ——e' ' sin[br (q)].
1

q
(27)

The phase shifts are calculated by applying the boundary
condition (21) at the surface of each sphere of radius a,

Here I, = (l, m) is a composite angular momentum index
where l(m) is the orbital (azimuthal) quantum number.
The quantities Bl,l, (pIq) are known as structure func-
tions and depend only on the geometry of the lattice.
The energy-shell scattering matrix 7~ for the lth partial
wave can be expressed in terms of the phase shifts b~(q):

where 8/V& ——3f/(1 —f)a in this simple case. We noted
in connection with Eq. (16) that this is exactly the de-

cay rate of the overall magnetization at the earliest times.
That the late-time decay constant is approximately equal
to the early-time decay rate is a re8ection of the fact that
we chose a simple geometry and assumed that p (& 1.
In this case, the diffusion time across unit cell is small
compared to the decay time. (Recall, that this was the
condition given for the validity of the results in Sec. II C.)
In the literature, this condition is known as the fast dif-
fusion limit. Equation {32) gives the curvature at the
bottom of the band:

jl(q ) —(p /D. )j (q )

I(q ) —(p /Do) (q )
' D'(p) = Dp

and

4amB00: B11q2 p2

4~+~3 p
01 10

q p

1+ 2 —, , (3O)
s'

Here n is the density of spheres per unit volume. The
volume fraction of solid f = 1 —P and porosity P are
related to the sphere size a and density n via f = 1 —P =
47rna /3. Equation (29) simplifies to

where

2 1 —20.'= Wp+u 1+ o.

47t;n 4am
tanbo(q). o. = tanbq(q)

q q

(32)

are independent of p. In the limit pa/Do (( 1 the roots
are obtained by expanding the Bessel and Neumann func-
tions for small arguments qa &( 1. We find that the bot-
tom of the lowest energy band moves from q = 0 (when

p = 0) to qo where

P 3f
1 —f + (1+2f)P 1 —f (34)

where jt (x) and n~ (z) denote, respectively, spherical
Bessel and Neumann functions, and the prime indicates a
derivative with respect to z. It can be seen from (28) that
pa/Do is the parameter which controls the phase shifts.
We find that for many cases of interest, p = pa/Do is a
small parameter.

For simplicity, we choose a simple cubic system where
the eigenvalues are independent of p, as

I p I~ 0. The
eigenvalues E(p) = Doq (p) depend on the number of
angular momentum considered. Taking I „=1, we find
from Eq. (14) of Ref. 19 that the eigenvalues are given
by

[Bop + q cot b& (q)] [BIz + q cot bz {q)]—Bo&B&o ——0

(29)

where B'l,l, (pIq) = BI,L, (pIq) + iqbl, l, ,

2 + p —2f [1 —p —qo2 a (3 —p) /10]
2+ I-+ y[1 - p —q,'~ (3 —P)/10]

B. Perturbation theory

While the results derived in the preceding subsection
give an explicit formula for the long-time diffusion coef-
ficient in the limit of small p, the methods of scattering
theory are suitable only for a special category of peri-
odic structures, viz. , nonoverlapping spherical grains. By
contrast, in most porous media of interest the grains are
nonspherical and well consolidated. Since we are inter-
ested in long wavelength behavior of the lowest "energy
band, " it is natural to employ a version of perturbation
theory to study the effects of p on the effective diffusion
coefficient. Beginning with the eigenfunctions (22) and
recalling the derivation of (13a), we have the identity

@-(p) —&"'(p) dr u* (r)u~ l (r)

= p dS u„* (r, )u~ l (r,), (38)

The inHuence of p is to reduce D,rr(p) from its electrical
equivalent. Expanding the above equation in p,

D rr(p) 2 3 5+20f +2f
Dp 3 —P 5 (1 —f)2(2+ f)2

brings out the interplay of p with geometry. Indeed,
Eq. (37) is of the same form as the perturbative ex-
pansions derived in Sec. IIC. As expected, this D,g(p)
is identical to that obtained from the electrical conduc-
tivity when p = 0, since for a dilute array of spheres,
1/F = 2P/(3 —P). Note that the further decrease in the
diKusion coefficient is proportional to pf/(1 —f) . Thus
the present results suggest that D,rr(p) will decrease as
the porosity decreases. Of course, as the sphere radius
increases, the approximation qpa &( 1 breaks down, we
can no longer take t „=1, and the analysis of the secu-
lar determinant (26) becomes more complicated. Never-
theless, D,rr(p) may reasonably be expected to decrease
rapidly as the porosity decreases.
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u, p(r) = ) ( „u()(r) . (39)

The lowest band of eigenvalues, Eq(p), through second
order in p is given by

where the superscript (0) denotes quantities associated

with the limit p = 0. Since the functions (u„~(r)}form(0)

a complete set for each wave vector p in the Brillouin

zone, we can develop a perturbation series based on the
expansion

D,g(p) = D,~(0) 1— p dMgg

—= D,~(0) 1— pL
(43)D,fr 0

This equation relates the length scale, L, that controls
the p dependence of D,s(p) to the p dependence of the

p = 0 eigenfunctions through the matrix element Mqq (p).
One way of calculating this p dependence is to use a per-
turbation series based on the p = 0 solutions. Recalling
Eqs. (20), (21), and (22), we have

&~(p) = &I '(p) + ~M»(p)
(4o)

g( ) (p)u( ) —D /2u(o) + D 2jp . g p2 u( )

=Do V +V(p) u() (44)

where

~'
I M~-(p) I'.&&

&I"(P) —E-' '(P)
(41)

and

[D()n V'u(o,)+p nu(o)]„~=0. (45)

Assuming that the solutions at p = 0 are known, we seek
an expansion of the form

M„(p)—= jdS(ut;~(, .))* ~'~ (r.) . (42) 1' = C~tC 0 (46)

To 6rst order in p the effective diffusion coefBcient is Straightforward algebra leads to the linear equation

) &,"'(p) —&P'(o) ~1m+ DOV1n, (p) Do~p ' Qlm cn (47)

where, for systems with cubic symmetry, the matrix elements reduce to

Qi = (1 —di ) J(uiii(r ))*uti(r )udS

and

(48)

Vi (P) = J (uiii (r))*V(P)u„~J(r)dr = —P Si + 2r'P f(uiu (r))'PuPu (r) dr

= —p bi„+2x(1 —b)„)p (49)

Note that the last of these equations indicates that the off diagonal couPling in Eq. (47) simP+es to DoV~ (P)
Do&p pi~ = Do&p Qx„.The momentum dependence of the eigenstates is then given by a series of the form

(o)( )
(o)( ) ) - Doip Qi u o(r)(o)

gp F = tbsp I' + + ~ ~ ~.„&-(o) —D.p'
(50)

Substituting this expansion into Eq. (43), we can calculate directly the momentum derivatives of Mqq(p) For
example, &om the term dispalyed in (50), we have

. = ). ): .' —. (~..}.'(~. }.+„;,.- E(') (o)E(')(o)

Additional contributions to D,g(p) are obtained from the terms in the series (50) of second order in p.

IV. NUMERICAL SIMULATIONS

Calculations of the kind described in the preceding sec-
tion are valuable in that they provide an unambiguous
analytic framework within which the behavior of D,fr(p)
can be estimated. In more complex geometries, however,
the utility of these techniques is quite limited, and numer-
ical simulations of diffusion are the only computational

technique available. Indeed, even within the context of
ordered, nonoverlapping, sphere packs, the analysis of
D(t ] p) becomes rather involved as the sphere radius
increases. [Many angular momenta are required for con-
vergence of the secular Eq. (26) and detailed numeri-
cal calculations are required. ] By contrast, simulations
techniques are applicable in both ordered and disordered
geometries and can even be carried over to the consoli-
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dation regime in which the spherical grains overlap.
In Figs. 5—7 we present the results of random walk sim-

ulations on a number of ordered cubic packings and on
one disordered monosized sphere pack. 2 In these simula-
tions, a random walker moves through the pore space tak-
ing steps of fixed length, e. In ordered systems the value
of e is typically chosen in the range 0.005 & e/b & 0.01
where b is the length of the unit cell edge. Here the cal-
culation is carried out in a single unit cell with periodic
boundary conditions used to keep track of diffusion into
neighboring cells. For the disordered sphere pack the step
size was taken equal to 0.016 where b is the grain diame-
ter. Here we employed a single large representation of the
packing [(20 grains) x (20 grains) x (40 grains) in the z,
y, and z directions, respectivelyj with periodic boundary
conditions in the x and y directions. This representation
is large enough to provide an effective average over differ-
ent spatial configurations of the grains so that there is no
need for configuration averaging. In both the ordered and
disordered cases, walkers were released from initial posi-
tions chosen randomly throughout the pore space in order
to properly reHect the experimental situation. (For the
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FIG. 5. Simulation results for fcc packings. Upper panel:
three porosities are compared in calculations with p = 0 and

p = 0.0025. Lower panel: for the two lower porosities, calcu-
lations with p = 0, p = 0.0025, and p = 0.0050 are compared.
Here, as in Figs. 6 and 7, the quantities plotted on both axes
are dimensionless.

FIG. 6. Simulation results for ordered and disordered
packings are compared. Here p = 0.0025 and the cube edge,
b = 2.0, for the ordered packings in (a) and (b). In (c) the
grain diameter, 6 = 2.0. In all three 6gures the arrow on the
horizontal axis marks the t = Tq ——Vp/(pS) position, and

P = 0.376.
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FIG. 7. Simulation results for a cubic swiss cheese model
in which the pore throat diameter is 0.10 in units where the
cube edge, b = 2.0. Calculations with p = 0.0 and p =
0.05 are compared Th.e arrow marks the t = Ti ——V~/(pS)
position.

disordered packing, the z position of the starting point
was taken within a band of values chosen such that the
walker never sampled the regions at the very top or bot-
tom of the packing. ) The implementation of the bound-
ary condition (7) is identical in ordered and disordered
systems. In the case p = 0, we have blind reBection at
the pore grain interface. 2 For p g 0, when a walker en-
counters the interface the proton magnetization decays
(i.e. , the walker is "killed" ) with probability p (per unit
time step, 7). In the case of weakly enhanced interfacial
decay the relation between p and the phenomenological
parameter p is

p= '=6' (52)

where, in the second equality, we have used the identity
Dp ——e /(67 ). Given specific values for the unit cell edge
or the grain diameter and Do, we can easily convert the
results of computer simulations into physical units.

In Fig. 5(a) we compare the results of simulations on
three ordered fcc packings of spherical grains. Here the
lattice constant, b, is fixed and the porosity is varied by
changing the grain radius. [The P = 0.376 system corre-
sponds to isolated spheres, P = 0.259 corresponds to close
packed (touching) spheres, and P = 0.150 corresponds to
overlapping spheres. ] At each porosity we compare cal-
culations in which p = 0 and pb/Do ——0.35.2s Recalling
Eq. (37), we expect the effect of finite surface relaxation
on D(t

~ p) to become more pronounced as the porosity
decreases. This trend is quite evident in Fig. 5(a). In
Fig. 5(b) we verify that the shift in D,~(p) is indeed lin-
ear in p. For the two porosities considered in Fig. 5(b),
the numerical data can be used to estimate the length L
entering Eq. (43) and we find L = 0 10b (P = 0. .259) and
L = 0.19b (P = 0.150). The fact that L increases as P de-
creases is in qualitative accord with Eq. (37). Physically,
this result indicates that surface relaxation is effectively
limiting diffusion through the narrowest channels of the

pore space in this simple geometry.
It should be noted that the number of walkers required

to achieve statistically significant results varies widely for
the cases considered in Fig. 5. For pb/Do ——0 (i.e. ,

p = 0) a few thousand walkers are sufficient. When
pb/Do ——0.35 several hundred thousand walkers are re-

quired and the number of walkers must be increased as
the porosity is reduced because diffusion from pore to
pore is being made more difficult. For pb/Dp = 0.71
several 10 walkers are needed to obtain accurate re-
sults with the number again increasing as P decreses.
Of course, computational time does not increase directly
with the number of walkers because, with nonvanishing

p, most of the walkers are killed after a relatively small
number of time steps. Indeed, a large number of walkers
is required just so that at long times enough survive to
give a significant sample.

In Fig. 6 we compare calculations on three different
packings, sc, fcc, and dense random, all of which have
the same porosity, P = 0.376. In each case p = 0 results
are compared with results for small p. Note, first, that
the asymptotic values for the three p = 0 calculations are
not identical, as different formation factors are to be ex-
pected for different geometries. The differences here are
small and all the values are close to the rule of thumb
value for sphere packs, D,g/Do Pi~ . The calcula-
tions shown in Figs. 6(a) and 6(b) both indicate a very
small shift of D(t

~ p) to lower values at long times for

p g 0. A larger effect is seen in Fig. 6(c) where results
for a dense random sphere pack are presented. This in-
crease is not necessarily associated with the randomness
of the packing directly. As we have seen above, in pe-
riodic models, such as the pore-throat model, a similar
reduction was due to a decrease in the throat aspect ra-
tio (diameter/length). In open sphere pack geometries,
of the kind considered in Sec. III A, this separation into
pores and throats is not possible. We note that in the
random packing, the narrow throats connecting pores are
smaller than the corresponding regions in either of the
two ordered packings (Fig. 8). In the unconsolidated fcc
packing the "throats" are formed by three nonoverlapping
coplanar spheres, and are much larger than the throats
typically found in dense random packings. In the simple
cubic case, the throats are formed by four spheres and
are again larger than those found in the random packing.
Note that in Fig. 6(c) the results for p g 0 have not
yet reached their long-time limit. Physically, because
the throats are longer and narrower in this case, it takes
more time for a random walker to average its motion over
many pores and throats than in either the simple or face
centered cubic packing.

In Fig. 7 calculations with a small surface relaxation
value are again compared with the results of p = 0
simulations. Here the system is a three-dimensional
simple cubic version of the swiss cheese geometry pic-
tured in Fig. 4. The pores are essentially spherical, their
radius, however, is taken large enough so that they over-
lap to form zero-length apertures whose diameter equals
0.05 times the cube edge. Here we see that, as expected,
the inHuence of p on the long-time behavior of the diffu-
sion coeKcient is greatly reduced. Even for observation
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Ag'
FIG. 8. Schematic representation of the throat formed

by three touching spheres in a close packing environment.
Throats of this kind are formed in a random packing with

P —0.38 and in a fcc packing with P = 0.259. The throats in
a g = 0.38 fcc packing are formed by a similar configuration
of nonoverlapping spheres.

times significantly greater than the effective relaxation
time (shown by the arrow) the two calculations are in
good agreement. As we argued in Sec. II, nonvanishing

p values, in this case, do not greatly affect our ability to
estimate the value of D,ff.

the NMR experiment and when interfacial conductivity
can be neglected in the electrical problem. In addition,
we must assume that the sample is not heterogeneous be-
yond the diffusion length scale (which is determined by
both the NMR lifetime and the pore-space tortuosity). In
this paper we have examined several aspects of the way
that surface relaxation affects the behavior of D(t

i
p).

Our principal results are the following.
(i) On physical grounds one can see that in pore ge-

ometries with many "dead ends" surface relaxation will
tend to increase the effective diffusion coefFicient. By con-
trast, when the pore space contains long narrow throats
connecting larger pores, the diffusion coeKcient will typ-
ically decrease with p.

(ii) When the pore geometry is defined by an ordered
packing of nonoverlapping grains, the PFGSE problem
can be formulated in terms of a secular equation simi-
lar to those employed to study electronic energy bands.
In the high porosity limit, this equation can be solved
analytically to give the dependence of D,p(p) on p.

(iii) A perturbative form D,fr(p) = D,ff (0) [I
pl/D, s(0)j + 0(p ) is suggested for a general homoge-
neous disordered medium. Here L is a length param-
eter roughly analogous to the A parameter of electrical
conductivity. In general L can be either positive or neg-
ative, depending on the pore geometry.

(iv) In more general pore geometries numerical simula-
tions can be used to clarify the influence of p on the time
dependence of the diffusion coeKcient. This influence
is greatest in systems where the pores are connected by
long narrow throats, the aspect ratio of the throat being
especially important, .
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