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Pseudomorphic-to-close-packed transition. I. General formulation

Jan H. van der Merwe, E. Bauer, * D. L. Tonsing, and P. M. Stoop
Department ofPhysics, University ofSouth Africa, P.O. Box 392, Pretoria 0001, South Africa

(Received 2 August 1993)

Monolayers (ML s) of Ni aud Co grow at equilibrium on [110]W aud Mo substrates, with which they

bond strongly and have large negative misfits, pseudomorphically until completion of the pseudomorph-
ic monolayer. When excess atoms are deposited atop the pseudomorphic monolayer, it transforms to a
misfitting, more or less close-packed (cp) monolayer with misfit dislocations at the monolayer-substrate
interface. In nonequilibrium growth, the pseudomorphic-to-close-packed transition occurs in monolayer
islands before completion of the pseudomorphic ML. The main objectives of the paper are (i) to show

that the pseudomorphic ML is more stable than the close-packed monolayer and (ii) to develop an un-

derstanding of the pseudomorphic-to-close-packed transition. In paper I we introduce force models and

derive expressions for (a) equilibrium zero-order energies of complete and incomplete misfit dislocations
having displacement vectors equal to a lattice and half a lattice vector, respectively, and (b) equilibrium
first-order energy for incomplete misfit dislocations (assumed to yield the lowest energy configuration),
these two being the candidates for minimum energy of the close-packed monolayer. The numerical com-
putation of parameters (using embedded-atom methods) and derived energies (including anharmonic

pseudomorphic strain energy), needed to answer the relevant questions, are left for paper II.

I. INTRODUCTION

~X=XI+r;—r, (0 (la)

This condition for two-dimensional (2D) growth can also
be expressed as a useful bond strength relation

hy=E) f EI, 0 . (lb}

In (lb), EII and EI, are respectively the film-film and
film-substrate adhesion (bond) energies. Condition (lb)

The growth mode, structure, and thermal stability of
ultrathin metal films are of great fundamental and tech-
nological interest and comprise a topical field of research.
Studies' of the growth of Ni and Co on Mo and
WI110I, for example, revealed the tendency to form in
equilibrium initially extensive monolayer (ML) islands
displaying a (1 X 1) low-energy-electron-diiFraction
(LEED) pattern which undergo a transition to a phase
displaying a (8 X 2) LEED pattern when excess atoms are
deposited on top of the initial ML. Whereas the (1X1)
pattern is interpreted as coming from a pseudomorphic
(ps) ML, the (8X2) pattern is interpreted as being gen-
erated by an almost close-packed (cp) ML in Nishiyama-
Wassermann orientation on a bccI110) face (Fig. 1) in
which there is perfect registry in the x direction-
bcc[110]—and an 8 substrate by 10 ML atom row coin-
cident in the y direction.

For the purpose of the present considerations it is use-
ful to elaborate on two aspects of the observations: the
growth mode and the geometry of mismatch and strain.
The condition that the deposit starts to grow as an exten-
sive ML at equilibrium, i.e., by the so-called Frank —van
der Merwe or in the Stranski-Krastanov growth mode,
has been expressed in terms of specific surface free ener-
gies y(y„yI, and y; for the substrate, film, and film-
substrate interface, respectively) as

satisfies our intuition that strong epilayer-substrate bond-
ing is conducive to 2D growth and also lends itself more
to an atomic interpretation. Condition (la), on the other
hand, has a practical advantage in that surface energies
are often known.

It is customary to express the interfacial misfits f, be-
tween an epilayer in Nishiyama-Wassermann orientation
on a bcc substrate in terms of bulk dimensions —diagonal
lengths a; (substrate) and b; (epilayer) shown in Fig. 1—
as

br= —, i =x,y,a' (2a}

where a and b are the corresponding nearest-neighbor

Y), k

) i I+3,ki1)

(l, It)

A

FIG. 1. Diagram showing ML atoms in a bulk rhombic
close-packed unit ce11 AEFCx (diagonal lengths b„and b~) as
solid circles and substrate potential minima located on corners
of bcc (110) rhombic unit cell ABCD (diagonal lengths a„and
ar) as open circles. [110]and [001]are the directions within the
bcc (110) plane. The integers (I,k) enumerate the adsorption
sites within the (110)bcc lattice.
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distances and

b„=2b sinP, b =2b cosP; P=60',

a„=2a sina, a»=2a cosa; a=artan&2, (2b)

b; —b;
e =—

h I

(3)

b; being the strained value of b;.
Two types of MD's are relevant: complete misfit dislo-

cations (CMD's), in which the displacement vector is two
atom row spacings (a lattice vector), and incomplete
misfit dislocations (IMD's), in which it is only one row
spacing. If p; (P; substrate atomic rows) designate MD
spacings

p; =(P; +2)b;/2=P; a;/2 for CMD's; i =x,y,
(4)

p, = (P, + 1 )b, /2 =P, a, /2 for IMD's .

The observations' suggest that Py 8.
It follows that

f C fi . PC 2PI2 — 1

P, +2 P,'+1

and, hence, from Eqs. (2)—(5), that

f„=O, e„=—r„f„/r =0.0325,

f =0, e = r f /r=0. 2646, —
(6)

in the ps configuration of Ni on Mo, and

r„=si na/si nP=V 8/9, r =cosa/cosP=&4/3 .

For Ni[111) and Mo(110), b =2.489 A and a =2.726
A, so that f„=—0.0315 and f» = —0.2092. Strictly
speaking, we should express the misfit in terms of the
equilibrium dimensions of the epimonolayer, which may
differ from that of the bulk.

In general, the misfit is accommodated by both misfit
dislocations (MD s) of density f, and misfit strain (MS;
e;), where

f, =(b; —a;)/a, ; i =x,y,

where e is the average energy per ML atom?
(ii) How can we explain the apparent violation of the

minimum-energy principle for the ps-to-cp transition?
(iii) What roles do bond strength and large negative

misfit (f = —0.2092}play in the phenomenon?
To address issue (i) we need to calculate e,. This re-

quires an anharmonic description because of the large
(e =0.26) ps strain. We assume the embedded-atom
methods (EAM} are appropriate for this purpose. In the

cp configuration the strain (e„e )=(0.0325, 0.0116) is

small enough for the validity of the harmonic (elastic) ap-
proximation in calculating the energy e,p

In this case
the misfit is accommodated by both MS's and MD's.

As to issues (ii) and (iii), it will be shown that the tran-
sition is favored by kinetics in a process involving the for-
mation of MD's by penetration —previously named
climb —of excess atoms into the ps ML. It is anticipat-
ed that the penetration is facilitated by strong ML atom-
substrate bonding and large (e =0.2647) ps strain.

In paper I we develop the analytical framework to ad-
dress the issues involved and in paper II we compute the
quantities needed to answer the set questions.

II. MODEL

A. Governing physical principles

We accept that thermodynamic processes proceed to-
ward configurations of lower free energy and, according-
ly, that in equilibrium, the free energy is a minimum. In
ordered configurations, for example, those with regularly
spaced straight MD's, lowest free energy may be approxi-
mated by lowest energy. We adopt this minimum-energy

principle as a condition for stability of our systems.
The equilibrium rate depends on the driving forces and

the kinetic mechanisms involved. The transition route
may be biased by contributions of configurational entropy
of disordered intermediate or final configurations and by
kinetic short cuts to speed up the transition rate. Such
route and rate factors will be invoked to gain understand-

ing of the ps-to-cp transition.

f„=O, e„=0.0325,

f =f = — = —0.20, e =0.0116

B. Atomic interaction

1. Interlayer interaction

in the cp configuration.
Since f„ is small, clearly well below a critical misfit

below which a ps ML is stable, it is not surprising that re-
gistry dimensions are obtained in the x direction for both
the ps and the cp ML. In the y direction the strain is
small (e =0.0116) in the cp configuration, but rather
large (e =0.2646) in the ps ML.

The issues that need to be addressed are as follows.
(i) Is the occurrence of the ps configuration in accor-

dance with the equilibrium minimum energy principle

Eps Ecp +0

In order to calculate the energetics, we need to con-
struct models for the atomic interaction. For the ML
atom-substrate interaction V, we adopt a rigid substrate
and assume that the interaction has the periodicity of the
substrate. V(x,y) may thus be expressed in terms of a
Fourier series in the coordinates of Fig. 1 and with
coefficients that decrease rapidly with harmonic order so
that the series may be truncated at fairly low order. A
truncation that is analytically tractable, suitable for the
description of MD s in the Nishiyama-Wassermann
orientation ' and satisfies the twofold symmetry of the

( 110] bcc substrate, is the second-order truncation'
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V(x,y)=Ao 1+3, cos 2m. + 3'

a ay

+cos 2'
ax ay

O x C ]]ex +C ]2ey +C &3 ez +C ]4eyz

VyC]2ex+C)]ey+C]3ezC]4eyz

CTz =C (3ex +C $3ey +C33ez

O yz
—C ]4ex C )4ey +C44eyz

4' 4~yc i cos +c2cos
ax ay

(9)

in which the origin is taken at an adsorption site. V(x,y }
is a normalized form in which V(0,0}=0 in the full
series —in the truncation only approximately
[V(00}=0.0236 eV]—and AD&0 is its average. Equa-
tion (9) accordingly does not include the energy of
desorption.

A prerequisite for the present application is that values
of the Fourier coefficients be available. We assume that
reliable coefficients for the systems under consideration,
can be calculated using EAM's, " ' of which more de-
tails will be provided in a later section. At this stage it is
necessary, though, to mention, as will be shown in paper
II, that A, is negative and c, positive. This has impor-
tant consequences, as will be seen in Sec. III A.

O xz =C44exz+C &4exy

O.
xy

=C i4exz+C66e, y

C11 =(C11+C1g+2C44)/2,

c]3=(c» +2c,2
—

2C44 )/3

c,2 =(c» +5C,2
—2C44)/6,

C 14
= ( C 11 +C 12 +2C44 ) /3&2 = —C 24

c33 (c» +2c,2 +4C44 )/3

C44 (C11 C12+C44 }/3

C66
= (C11

—c12+4c~ }/6 .

(10a)

(lob)

For the analysis the Hookean equations needed to de-
scribe the elastic behavior of the ML, two obvious
choices for boundary conditions that drastically simplify
the Hookean equations within the ML plane exist: either
the surface is taken to be free

2. Interlayer interaction: Rigid model

The intr alayer interaction —atom-atom interaction
within the overlayer (ML)—has been usefully modeled
on difFerent levels of sophistication: rigid, harmonic, and
anharmonic. In the rigid model the ML is constrained
to have a fixed, uniform structure, which may be the bulk
structure or a homogeneously deformed version thereof.
This model is used in a search for the main levels of ML-
substrate interaction energy. By this search we identify
the lowest imaginable energy configurations to which MS
and MD energy should be added to obtain the energy
needed to asses the stability of a given configuration.
With weak ML-substrate bonding and/or high densities
of MD's, the oscillatory strains accompanying the MD's
are negligible, so that the ML configuration approaches
a rigidlike behavior in which the misfit is accommodated
by a so-called misfit vernier, i.e., a mode in which the os-
cillatory strains are absent.

O=e, =ex, =e, , (12a)

which means that there is neither linear strain normal to,
nor shear strain on the two "surfaces" of the ML. We
adopt the boundary condition (12a}, yielding the Hooke-
an equations

o„=c»(e„+Pe~), o'~=c»(e~+Pe„),

+xy 66 xy

and the energy per atom to

e= —,'Qc11[e„+e +2Pe„a+Re„];
Q=b /&2, P=c 1'/1, 1

R =c66/c», b, =&2/3b,

(12b)

(13a)

(13b)

0=o =o. =o.
z xz yz

or for a ML, which is a single layer of atoms, it seems
more appropriate to take

3. Intralayer interaction: Harmonic model

Useful predictions have been made in the past by ima-
gining the epilayer atoms to be embedded in a sheet of
elastic continuum. *' This approach will be adopted
here to investigate the energetics of the cp ML. For the
ps ML an anharmonic approach would be required.

For the I 111]fcc ML's under consideration we need to
describe the behavior of MD's in local axes
(x,y, z):—([110],[112],[111]),the z axis being normal to
the ML plane. This requires a transformation of the
Hookean equations and stifFness constants c;1 (in con-
tracted form) from cubic to local axes

where 0 is the volume per atom and the ML "thickness"
is taken equal to the fcc [ 111J interlayer spacing b,

4. Embedded atom method (-EAM)

In order to accomplish our goals of assessing the stabil-
ities of the cp and ps ML's and the role of kinetics in
effecting the ps-to-cp transition we need values for the
Fourier coefficients in Eqs. (9), the elastic constants in
Eqs. (13), the strain energies at strains in the anharrnonic
regime, and energetics of penetration formation of MD's,
in which, where appropriate, proximity effects of the sub-
strate' and/or free surface are accounted for. The
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EAM's developed by Johnson' are used to calculate the
desired quantities.

In the EAM, originally developed by Daw and
Baskes, " the energy of an atomic arrangement is ex-
pressed in the form

sin(Ma)
cos

sin(a/2)
4mx0

a

sin[a(M+ 1/2)]
sin(u/2)

a=
a„

where the pair potential P(r; ) provides for repulsion be-
tween atoms i and j at a distance r;, p; may be interpret-
ed as the electron density at atom i due to all other
atoms, f~ (r;~ ) is the electron density contribution of atom

j at atom i, and the embedding energy F; (p; ) of atoms of
type i in the electron density p; effects the binding. The
analytic forms of the functions (t, F, and f appropriate to
bcc-fcc combinations have been discussed elsewhere. ' '
For the present, it suffices to mention that these functions
contain parameters which are normally obtained by
fitting to empirical values of the cohesive energy, lattice
parameters, unit cell volume, isolated vacancy formation
energy, Voigt's average shear modulus, and anisotropy
ratio, all for bulk crystals.

We appreciate that the EAM is less accurate than
more fundamental models. Furthermore we employ
fitting parameters obtained from bulk properties at small
deformations, whereas we wish to apply the results to
ML's, even in the anharmonic regime. Its success in cal-
culating adsorption properties' diminishes the
significance of the first objection. As to anharmonicity, it
is simply the best we can do at present. Some details of
the procedures followed to obtain values of the desired
quantities will be presented in Sec. III F.

III. ANALYTICAL DERIVATIONS

A. The rigid model

The main merit of the rigid model is that the average
energy per ML can be calculated exactly by summation.
The role of the individual physical parameters can thus
be simply established. Such calculations have been car-
ried out in the past and have justified energetically,
among other ways, the row-matching rule for minimum
interfacial energy that has been successfully applied to
understand the occurrence of Nishiyama-Wassermann
and Kurdjumov-Sachs epitaxial orientations in fcc{111]-
bcc{110] metal epitaxy. ' The fact that the Fourier
coefficient A0l A, lc, in the ML atom-substrate interac-
tion Eq. (9) is positive and that matching is maintained in
the x direction (f=0) has significant consequences for
the ML substrate atomic configurations.

For the purpose of summing the interaction energy in
Eq. (9) it is convenient to think of the atoms in both the
bcc {110] and fcc {111j planes to be on two interpenetrat-
ing rectangular lattices. If we take the origin at an ad-
sorption site on the {110] bcc plane, superimpose the bcc
and cp lattices in parallel (Nishiyama-Wassermann orien-
tation}, assuming that the two interpenetrating lattices of
the cp ML have, respectively, (2M+1)X(2%+1) and
2M X2X atoms [a total of G =(2M+1)(2%+ I )+4M+,
the term cos(4@x /a„) in Eq. (9) yields the sum

It is easily shown that S has an extremum per atom of

S/G =cos(4mx0/a„) for b„=ma„ (16)

Since this average is well defined, it is convenient to take
it as an energy reference. In the present investigation we
are interested in the case where the system is misfit
strained to coherence in the x direction (f, =0, i.e.,
b„=a„). This row matching (b„=a„), then, represents
an energy decrease

EV3 = AQ A, c, & 0 for x0 =+a /4 and b„=a„, (18)

where we write b„ to emphasize that b„may be horno-

geneously "strained" into b„. When xp=0, matching
constitutes an energy increase AQl 2, lc, &0. This means
that minimization of Eq. (9) with respect to the term in c,
requires a rigid translation x0 =+a„/4.

For the other terms we similarly obtain the relevant
changes (decreases)

6 &] =2&p &
&

& 0 for xp =yp =0 and b, =a„,by =ay

(19)

V4=ApAlc2&0 for yp=O and by=ay (20)

where (18) may be combined with (20) but not with (19).
This gives two possibilities,

(i) f„=O; x0 =+a„/4,
x =integer Xa„+a,/4 and yp=0;

VJ(y}=~0{1—I
~ i l [ci+c2cos(4~y/a, )]!

(21)

(ii} f„=O; xp=0,
x =integer Xa„and pp=O;

Vc(y) = 20{1—l 2, l[2cos(2ny/a~)

—c, +cz cos(4my /a~ ) ]], (22)

where V~ and Vz, which describe the MD's of the cp
configuration when rigidity is abandoned, are the corre-
sponding potentials derived from Eq. (9). It is seen that
Vr has an amplitude Vr = A0l A, lc2 and describes

[m is an integer (usually m =1)], where (x0,y0)
represents a rigid translation of the ML relative to the
substrate. The condition that m is an integer is
equivalent to "row matching.

" When there is mismatch,
we have destructive "interference" and the average per
atom lSl/G « 1 on condition that the ML is extensive.
This is equivalent to the vanishing of the sinusoidal term,
namely, cos(4nxla„) in the averaging process. When
there is no matching, all periodic terms in Eq. (9) vanish
on averaging to yield the result

(17)
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IMD's, its displacement vector being a /2, whereas Vc,
which has an amplitude VC=2AoI A, I »AoI A, Icz, de-

scribes CMD's with displacement vector a .
We have shown that in extensive systems, the

sinusoidal terms vanish when we average, except in
matching con6gurations, in which the averages are, re-
spectively, Ao(l —IA, Ic, ) and Ao(1+IA, Ic, }. The
latter two represent the plateau levels for IMD's and
CMD s, respectively. If, in addition, we have matching
in the y direction (yo=O, y=integerXa } we have the
averages An[1 —IA, I(c, +cz)] and An[1 —IA, I(2—c,
+cz)]—the absolute minima —for cases (i) and (ii), re-

Ac{i+ A ci)
0.4520

spectively. The energy levels pertaining to VI and V& are
illustrated in Fig. 2. Note that the displayed energy lev-
els are related to the overlayer-substrate interaction
alone; the energy of MS's and MD's must still be added.

'rhe rigid model analysis thus reveals that there are
two candidates for minimum energy: CMD's, in which
the average energy per atom lies within the bounds
An[1 —

I A, l(2 —c&+c2)] and Ao(1+ I A
& Ic& ), and

IMD's, where the bounds are Au[1 —
I A i I(cl+c2)] and

Ao(l —
I A, Icl) and the atomic arrangement is rigidly

displaced by xz =%a /4 in the x direction. For IMD's
with f, =O the atomic rows along the y directions run
through saddle points (a„/4, a~ /4). The analytical
derivation of the energies for these two configurations,
needed to compare their relative stabilities, is carried out
in the next two sections.

0 4-

Ao0.375

A {I-IAI I cl)
0.3j65 ——

AO[l - IA(I {C~+Ca)] —0.2982; pep 0.297

O. 258

0 2-
C9
K
LLJ

X
W

01-

B. Harmonic model: Governing equations

In the analysis below, the "rigidity" constraint of the
foregoing section is abandoned. In this section we derive
the equations governing the interactions competing for
the positions of the ML atoms —the harmonic ML
atom-atom [Eq. (13)]and the periodic ML atom-substrate
interaction [Eq. (9)]—which we need to calculate the en-
ergetics of MD's in the cp ML-substrate interface. In or-
der to derive the governing equations needed to express
the interactions in terms of local coordinates, displayed
in Fig. 1, we enumerate rows of substrate adsorption sites
(potential minima for overlayer atoms) parallel to y by
l=O, +1, . . . and those parallel to x by k=O, +1, . . . ;
then the points A, 8, C, and D in Fig. 1 are consecutively
assigned the numbers (1,k), (1+1,k+1), (l, k+2), and
(1—l, k+1). We impose a one-to-one correspondence
between potential troughs and interfacial overlayer atoms
by assigning to them the same values of (1,k ) when
strained into registry. The overlayer atomic coordinates
may thus be written as

xrk =(1+urk)a„/2,

peak

=(k+utk)a~/2, (23)

A [l - I A, I {2 - c, + cz)]
0.0236

FIG. 2. Diagram exhibiting the average ML atom-substrate
interaction energies per ML atom as predicted by the rigid mod-
el. Ao represents the average for an extensive ML in the ab-
sence of constraints and with nonzero misfits. %'hen the con-
straint b„=a, i.e., registry, is imposed in the x direction, the
average rises to Ao(1+ I A, Ic, ), bnt drops to A(1 —

I A, Ic, )

when the registry configuration is rigidly translated by
Ax =+a„/4. The respective minima that are obtained when a
registry constraint is also imposed in the y direction (b„=a~)
are AD[1 —

I
A

& I(2—c&+c2)] and AD[1 —
I A, I(c, +c2)]. Also

shown in the diagram are the energies e,p and E'p assigned to the
cp and ps eon6gurations, respectively. The numerical values

apply to the case of Ni on Mo[ 110] computed using the EAM-
calculated Fourier coefficients in Table II of paper II.

where (urk, vI k) defines the position of the overlayer
atom (1,k ) with respect to the corresponding adsorption
site (1,k ), both 1 and k being either even or odd integers.

On substituting from Eq. (23) into Eq. (9), we obtain in
the continuum approximation u =u (1,k ), u =u(l, k ) the
result

V( u, v ) = A o {1+ A
&
[cos I

n.( u + v ) I

+cos[n.(u —u ) J
—c,cos(2nu )

+cocos(2nv)]} . (24}

The strains of Eqs. (13) may also be expressed in terms of
the displacements (u, u ) of neighboring atoms and
simpliSed, using the continuum approximation, '
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a,e„=
b

(ui+, k+, u—i, k+, 2f—„)
2b

This corresponds to the case noted in Eq. (22), with

Vc(v) = A v [1—
~ A, i(2 cos~v —c, +c2cos2mv )], (29)

r Bu

r Bl

ey
= (vkk+z vr, k 2fy }= fy

as may also be deduced from Eqs. (24) and (28). Clearly,
Vc has a minimum at v=0 and wide maxima at v=+1.
The governing equation for CMD's follows by substitut-
ing (28) into (26). Equation (26b) then yields

a ay
V 2b

( I, k+2 ul, k )+
b

( I+1,k vl —1, k )
X

v 7T
[sin(nv)+c2sin(2mv )],

dk 2L

L =Ac»r l4Ao~ A, ~r =L r Ir

(30a)

(30b)
Bu u Bv

b Bk b Bl

If we substitute from the discrete forms of Eq. (25) into
(13},minimize the total energy X(EI k+ VI k ) with respect
to ui k and vi k, and then introduce the continuum ap-
proximation, we obtain the equilibrium equations

Q x y

r Q/ r flak

For the cases of interest fy (0. We accordingly seek
solutions of Eq. (30a) that have a dislocation axis at
v = —1, which we chose as the origin of k. Hence, k in-
creases from 0 upward as v decreases from —1 downward
to —2. The appropriate solution of (30a) may thus be
written as '

dv 1 2 1/2 .
dk [g cos(—n v )

—c2cos (n v ) ]

ax ax 8 0 ay Q v

&, ak' b, al'

g ~ 1+c2,
mk = —G[g, c2, m(v+ I)]

(31a)

= 2m A o ~

A
& ~

[sin(m. u ) cos(~v )
—c,sin(2n u ) ], (26a)

"y 8 v +p "y"x 8 u

,2 a~ak

uy uy Bv ux Bu
b b Bl2 b ()k2

=2m Ao ~ A, [cos(mu )sin(n v )+c2sin(2m v )], (26b)

u=u(k), v=v(k) . (27}

It is assumed that any dependence on l is negligible.

where the quantities 0, c», P, and R are defined in Eqs.
(10) and (13). The same results may be obtained by the
Lagrangian formalism from the continuum approach.
The observation that coherency exists in the x direction,
only requires that the periodicity in this direction be con-
served. This requirement will be satisfied if atomic rows
parallel to y assume a regular wavy nature so that they
are spaced at distances a„ for any arbitrary chosen y.
This feature, as well as a sequence of MD's spaced regu-
larly along the y axis, will be taken care of if we take

Qu+1) dP
(g+cosP —c2cos P)'

(31b)

P +2=2G(g, cz, n)L Irr=2G(g, cz, rr)Lr lvrr, (32)

where the counting of rows is done in the coherent

o ( o
() j 0

()

0 o Q

0

(i)}

———~ ——

0

o

(-- gi

Q 0 Q 0

where g is a constant of integration. An atomic arrange-
ment, illustrating a CMD that has been formed by glide
from the free edge, is shown in Fig. 3. The displacements
are not drawn to scale.

The spacing of CMD's, when expressed in terms of the
number of atomic rows Py (in the substrate) as used in

Eq. (4), follows from (31b) and (30b) as

C. Complete misfit dislocations (CMD's):
Zero-order approximation

Q 0 Q o

o 0 0 0
0 0 0 0

Q o 0
Q o

0

0 0 0

Q o Q 0

0 0 0
Governing equation and its solution 0 Q 0 Q 0 o Q 0 0

u—=0, v=v(k) . (28)

It will be shown in paper II that the amplitudes of the
wavelike displacements of atomic rows parallel to y —the

y rows —are small enough so that, as zero-order approxi-
mations, we may take the rows to be straight. We now
consider CMD's in zero-order approximation,

FIG. 3. Diagram illustrating the atomic displacements (ar-

rows) and atomic configurations E,'small open circles) involved in

the formation of complete misfit dislocations (axes on the

dashed lines): generated by glide from the periphery. The solid

symbols represent the "extra" row of atoms associated with the
CMD. The positions of substrate atoms are shown as large

open circles; positions are only schematic.
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(f„=0) configuration. P is used in defining the CMD
density f» in Eq. (5). When g=l+c2, P = oo and the
CMD's are infinitely spaced. This is equivalent to having
an isolated CMD, which is the situation at onset of MS
relief.

2. Average energy per atom

We calculate the average energy per atom. The aver-
age per atom of a quantity D(k) is defined by

P +2
D,„—: J D (k); P =P—, (33)

0

where (P +2)I2 is the number of atoms per period P of
a strip of width a /2. To calculate the strain energy
from Eq. (13) we express the strains, given in Eq. (25), in
the forms

e=e= — f, e=— f-ry

r "' » r dk Vxy

(34)

2Qc&&r„

r (P +2)
r(g, c,, ~)

+1+P
ml.

(r +Pr„)— (35)

m(1+ )

I'[g, cp, ~(I+vo)]= f (g+cosP —c,cos~P)'» dP,
0

(36)

where the inclusion of vo in (36) makes provision for sub-

sequent use.

3. Formation of CMD's by glide: Stability

The stable MD configuration is most simply deter-
mined by setting the reversible work needed to introduce
an additional MD, equal to zero. The procedure presup-
poses that the overlayer is extensive, so that the addition
of one more MD only causes an infinitesimal change in g.
The work done per length a of MD in displacing the
ML edge, which is parallel to x, by Av = —2 (forming a
CMD) is given by

WF =a„I b, o dv
0 2

using the relations (28). By summing (9) and (29) over all
ML atoms and introducing the continuum approxima-
tion, we obtain on integration, using (33), for the average
energy per ML atom, the result

F,„=Ao[1 —
~ A, ~(2g —c, —c2)]

Qcii+ [(r r„) —+2(1+P)(r r„)(r —r)]-
r

where the tensional stress o is given in Eqs. (12b).
In equilibrium, 8'F vanishes, the equilibrium values of

r and f being

r +Prr'=
I +P+ r(g, c„~)»'~L. ' f'=r'Ir —1 . (38)

The critical misfit f at which the pseudomorphic
configuration (P» = ~, g = I+cz) becomes unstable is ac-
cordingly given by (r'~r', f„'~f'):

ry ry +Pr„

r,
' "» I+P+r, r~l. '

r, = r( I+c,,c,,~)

(39a)

where the term in A0 is the adatom-substrate interaction
energy per atom in the pseudomorphic configuration and
the terms in Qc

& &
constitute the corresponding MS ener-

gy. Equation (41), being based on the harmonic approxi-
mation, is not expected to predict an accurate value of
the strain energy at 26% ps strain e .

If the free (straight) edge of a ML is at v=vo, i.e.,
H»(vp }=0, positive work Wz, which is the activation en-

ergy for formation of a CMD, will be done as v decreases
from v0 to —2 —u0. The additional work as v continues
to —2+ v0 is negative, so that the net work as u var:-s
from v0 to —2+u0 vanishes in equilibrium. Wz may be
calculated by the same procedure as WF so that the value
of WF at f„=f', as well as the value of f =f', where
Wz =0 and MD's enter spontaneously, may be obtained.
Since these are not at present of sufficient interest, they
will not be given.

D. Zero-order approximation:
Incomplete misfit dislocations (IMD's)

The condition for IMD's and their potential are given
in Eqs. (21). The condition, when written in terms of u
and v, becomes

=Q2+4c2+c2 '» ln(+2c2+Ql+2c2), (39b)

where I 2 is given by Eq. (36) with vv =0.
The equilibrium condition Eq. (38} reduces the energy

per atom in (35) to the equilibrium value

e,„=Ao[1 —
~
A i ~(2g —ci —c2)]+Qcii [(r r„)—

+2(1+P )(r r„)(r r—) ]/2r—, (40)

with r =r' Bel.ow the magnitude of critical misfit
~
f'~,

the equilibrium configuration is pseudomorphic
(g = 1+c2, P = ~ ) and Eq. (40) becomes

~e,„'=Ac[1—
~
A i ~(2 —c, +cp }]

+Qcii[(r r„) +2(1+—P)(r r„)(r r)]j2—r;—
r'&r &r, (41}

2Qc iir~ry
r

r

I (g, c2, m. ) +1+P (r +Pr„)—
n.L

u =+—,', v=v(k) (42)

(37)
for the zero-order approximation. When this is substitut-
ed into Eqs. (24) and (26b) we obtain
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VI(v)= Ap[1 —
~ A, ~[c, +c2cos(2vrv )]j,

for the reduced potential, and

d U 7T

2
sin(2mv ),

2 j'2

(43)

(44)

stead of the expressions in Eqs. (35}, (40), and (41), the
average energies

Acket ry 2E(~)
r +1+P (r—+Pr„}(p'+1)r' ~s.l

2 2 2
2 Qc~~fy —2 ry 2 L

I = =—I —,l =
4Apl A

~ l&pr " c2
(45)

Qc, i+ [(r r„) —+2(1+P)(r r„)(—r r—)]
2r

+ Ap[1 —
I A, l(c, c2—+2e2/a )], (51)

for the governing equations. The analysis follows the
same procedure as for CMD's.

It follows from the governing equation (44) that
ascii

e,„= [(r —r, ) +2(1+P)(r—r„)(r r)—]
r

dU

dk
1

[1—K cos (~v)]'~, K& 1,
~l

(46) +A 1 —~A, ~(c, —c )—2IA, lc,

K

n(Py+ 1)
=E(a),

2~1
(47) (52}

where E(x} is the complete elliptic integral of the first
kind, s is a parameter, and the IMD is at k =0, v = —

—,'.
A schematic diagram illustrating the atomic
configuration of an IMD that has been formed by the
penetration of excess atoms into the ps ML is shown in
Fig. 4.

Instead of the work of formation in Eq. (37) we obtain

nc„r ry 2E ~

r KK

where E(a ) is the complete elliptic integral of the second
kind. The equilibrium condition ( WF =0) accordingly
yields the equilibrium ratio

r +Pr„
r'(~) =

1+P+2E(v)/m~1

and a critical misfit (a =1)
1+Pr„ lr —11+P+2/n. l

(49)

(50)

The averaging operation is as in Eq. (33), but with
P +2 replaced by P +1 as in Eq. (5). We obtain, in-

0~ O~ 0~
0 0 0 0 O~

0
~O ~O ~O

~O ~O ~O
0 O ~O ~O 0

FIG. 4. Diagrams illustrating the atomic displacements-
including the rigid translation a„/4 —and atomic
configurations involved in the formation of incomplete misfit
dislocations (axes on the dashed lines) generated by penetration
of excess atoms. The solid circles are the originally excess
atoms. The positions of substrate atoms are shown as large
open circles. Additional relaxation is shown in Fig. 5.

Qcii
~e,„'= [(r —r„) +2(1+P )(r r„)(r r—)]—

+ Ap[1 —
~ A, ~(c, +c2)];r ~ r' . (53)

Also, an activation energy of formation of IMD's may be
calculated. The results are not of sufficient interest here
to be given.

E. Incomplete mis6t dislocations: First-order approximation

J=P +2=2(P +1} (54)

y rows. [See Eqs. (4), (5), and (32)]. The nature of the
first-order configuration is depicted in Fig. 5. The ML
atomic displacements, as measured from the original ps
configuration may accordingly be expressed as

u = u ( k ) = —
—,
' +a, sin(2m k /J ) +a&sin(4nk /J ), (ssa)

In the foregoing we have dealt with the zero-order ap-
proximation [Eqs. (28) and (42)] to the MD's. In this sec-
tion we develop the first-order approximation defined by
Eq. (27). We accept, as will be shown in paper II, that
the cp configuration with IMD's is of lower energy than
one with CMD's and proceed to the first-order descrip-
tion of IMD's. An important feature of the latter is that
the dislocation generating amplitude Ap ~ A, ~ c2 of VI in
Eq. (43) is small; only a small fraction, namely, c2/2, of
the amplitude of Vc (for CMD's) in Eq. (29). It is shown
in paper II that c2/2&0. 05. The consequence of this
feature is that the oscillatory atomic displacements asso-
ciated with IMD's are negligible so that the ML-substrate
atomic configuration may be described by a misfit ver-
nier. Also, recall that the rigid translation xp =a„/4, ac-
companying the formation of IMD's, translates the ML
atomic rows parallel to y —the y rows —so that they pass
through rows of saddle points of V in Eq. (9). Since the
IMD lines are themselves perpendicular to the y rows,
and also pass through rows of saddle points, a little
reflection shows that the atoms in the y rows will experi-
ence first-order displacements u(k) in the x direction.
This displacement changes sign at consecutive IMD*s and
has accordingly a period in k of
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V'"=— dk V(k); J=P +2=10 .J -2 (59)

—RV —RV+ g-'"=V'"+hV, e, =ep +6p
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(60)

Vp= p
'"=A (1—~A, ~C, ),
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b V= ——
Ao~ A

& ~(
—2a&+ma&bz+mazb& —2mc, a,

Q
2'

2—m c, a ~
tr—c~ b, —2c

&
b z ),

2 2

Rr„~(a, +4a~)+ —(b, +4bz )

(62)

There are various anharmonic features involved in the
present problem: values of optimum Fourier
coefBcients, ' elastic constants, ' strain energies in the
anharmonic regime, ' and penetration of excess atoms.
Full reports on the procedures followed are available in
the literature and need not be elaborated on here. The re-
sults will be employed in paper II.

IV. SUMMARY

In Sec. I we have defined the objective —understanding
the ps-to-cp transition. We need to show (i) that the ps
ML, which is highly strained into the anharmonic re-
gime, is of lower energy than the cp ML, which is charac-
terized by a high density of interfacial dislocations in one
direction and none in the other, and (ii) that the transi-
tion from an apparently low to a higher energy
configuration may be understood on kinetic grounds in-
volving penetration of excess atoms. The final accom-
plishment of these objectives is the theme of paper II.

AF and 6 V are the energies of relaxation. The cornputa-
tion of he and AV and their implications will be dealt
with in paper II.

F. Anharmonic model

In Sec. II we have introduced the necessary models of
atomic interaction: (i) the embedded-atom method,
which is used to evaluate various quantities, e.g., the
anharmonic ps strain energy, (ii) the Fourier truncation
for the periodic ML atom-substrate interaction, (iii) the
harmonic (elastic) approximation for the ML atom-atom
interaction, and (iv) the rigid model.

In Sec. III we have (i) used the rigid model to obtain
energy perspectives and to identify the two candidates—
misfit dislocations and incomplete misfit dislocations-
for minimum energy of the cp configuration, (ii) analyzed
the consequences of the two competing interactions —the
harmonic ML atom-atom and the periodic ML atom-
substrate interaction —in terms of zero-order CMD's and
IMD s with the view to establishing which is of lower en-

ergy, (iii) developed a first-order approach to IMD's al-

lowing for further relaxation, the contention being that a
cp configuration with IMD's is of lower energy than one
with CMD's, and (iv) given more details about calcula-
tions involving EAM's.

Not all of the results derived in this paper will be used
in paper II for the resolution of the problems concerned
with the ps-to-cp transition. They are more complete and
meant to cover a wider range of application. The present
analytical approach to describing the behavior of ad-
sorbed ML's, also has an important advantage over cer-
tain numerical approaches, for example, molecular dy-
namics. While the latter is more accurate, it is rather
specific to the case under consideration, whereas in the
former, the general role of the governing parameters is
more transparent and provides useful guidelines for ap-
plication to similar systems.
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