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Fluid-dynamical approach to collective modes in metal clusters
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A simple variational method has recently been used to obtain the bulk-plasmon dispersion relation in

a metal. In the present work we investigate the eigenmodes of the valence electrons in a metal cluster
considering a semiclassical version of the method presented by Ando and Nishizaki. As a variational
function we consider the Slater determinant iP) which is related to the Sister determinant i/0), describ-

ing the ground state, by means of the unitary transformation i/ ) =e'i"'sicko), where

S(x,p, t)=y(x, t)+ z'[p s(x, t)+s(x, t) p]. We use a polynomial approximation to determine the dynami-

cal fields y(x, t) and s(x, t). It is shown that the eigensolutions satisfy the energy weighted sum rule and
the cubic energy weighted sum rule. The spectrum of excited energies, as well as transition densities and
currents are obtained for the sodium, aluminum, and silver.

I. INTRODUCTION

The physical properties of metal particles of small di-
mensions (metal clusters) is presently the object of inten-
sive studies, both theoretical and experimental. '

Semiclassical methods appear as a possible alternative
to study the properties of heavy nuclei, ' (clusters of
nucleons) and their use has proved to be particularly
fruitful in this area.

These methods are rather intuitive, and have a great
physical appeal since they describe the collective motion
in terms of physically meaningful quantities such as the
current, density, and pressure tensor. These quantities
are related to the distribution function f in (x, p) space.
The calculations involved in solving the semiclassical
problem have the advantage of being simpler than a full
quantum-mechanical calculation. The numerical effort
involved in these calculations does not depend on the
number of atoms of the metal cluster, which is not the
case for a completely quantum-mechanical calculation
such as the one developed by Ekardt. ' Calculations for
Na338 have recently been reported. ' However, it appears
that quantal calculations very soon become prohibitive if
the number of atoms is further increased.

We propose to apply such semiclassical methods to
study the collective modes of the electron plasma in met-
al clusters. It is particularly interesting to evaluate the
energies of the collective multipole surface excitations of
metal clusters.

Instead of solving the exact semiclassical random-

phase approximation (RPA) equations, it is convenient to
consider a related variational scheme in terms of some
collective variables which parametrize the fluctuations of
the distribution function. Following these ideas, we
would like to consider a variational scheme analogous to
the one considered by Ando and Nishizaki where one
deals with a variational field g which may be interpreted
as the velocity potential, and a scaling field 8 which is re-
lated to the transition density.

In a recent paper a simple variational approach was

proposed to derive the bulk-plasmon dispersion relation

in a metal. Our present purpose is to apply a semiclassi-
cal version of the variational method described in Ref. 4
to the calculation of the eigenmodes of valence electrons
in a metal cluster.

II. THE EQUILIBRIUM STATE

2 N
V= g + g U(xi)+W,

i(j i J j=1
(2)

where U(x) is the potential energy due to the uniform
positive density distribution, and 8' is the electrostatic
energy of the positive background ( —e being the electron
charge).

In the equilibrium state the density of the jellium,
no(x)=no(0)e(R r), coincides —with the density of the
valence electrons. We are considering a metal cluster
with a spherical shape. The constants no(0) and R, asso-
ciated with the cluster, deserve some attention. In partic-
ular we have N =4nno(0)R /3, where N stands for the
number of valence electrons. In order to solve the equi-
librium problem, we minimize the energy. The energy of
the valence electrons is obtained by adding the kinetic en-

ergy of the valence electrons to their potential energy.
The energy due to the interaction between the valence
electrons themselves, and that due to the interaction of
the valence electrons with the jellium, both contribute to
the potential energy.

We assume that the electron dynamics is well approxi-
mated by the Vlasov equation. ' Since Vlasov dynamics
neglects exchange effects and electron-electron correla-
tions, due to its classical nature, these effects are taken
into account phenomenologically by adding a two-body 6
interaction (exchange effects) and a three-body 5 interac-
tion (correlation eff'ects) to the Hamiltonian. We also add

The operator H = T + V stands for the Hamiltonian of
an electron gas in a uniform positive background (jellium
model), and T and V, respectively, are,

N p.
T
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a one-body 5 interaction which describes the effect of the
more conventional pseudopotential. The effective energy
functional referring to the metal cluster may therefore be
expressed as follows:

2E= fdI'f +a, + ,' f—dI
& fdI &v&2f(1)f(2)

+—,fdI, fdI fdI, v, ,f (1)f(2)f (3)
1

is then

3
E=Q r+pa n

where A=N/n stands for the volume of the cluster. We
note that the Coulomb energy does not contribute to the
total energy, since there is a cancellation of the
potential-energy contributions of the jellium and the
valence electrons. Here ~ is the kinetic-energy density;

(3)

The term E,"' stands for the energy associated with the
Coulomb interaction electron-jellium,

n (1)no(2)E"= e'f—d'x fd'xe-j
/x, —x, f

(4)

and 8'stands for the interaction of the jellium with itself;

8'= fd'x, fd'x,
1 2

The symbol f stands for the distribution function of the
valence electrons, n is the density of the valence elec-
trons, dl =gd xd p/(2iriii) is the volume element in
phase space, and g=2 is the spin multiplicity.

We follow a phenomenological procedure, introducing
an effective interaction (Skyrme interaction) which con-
tains two- and three-body terms. We adjust the parame-
ters of this interaction in order to obtain the experimental
values of the density, energy, and bulk modulus of an
homogeneous system. These interactions lead to the ap-
pearance of an effective potential energy of the form
V ff

=fd x g3 —,a n, which is obtained from the one-

body 5 interaction [a, =b Jd x'nv(x)5(x —x')] and
from the effective interactions v', z =c5(x,—xz} and
v ]$3 d5( x, —xz )5(xz —x3 )~ To the two-body interaction
v &2, we add the Coulomb interaction, so that finally we
work with a two-body effective interaction,
u&z=c5(x& —xz)+(e /~x&

—xz~). Therefore, in Eq. (3)
the term in v&2 includes the energy associated with the
electron-electron Coulomb interaction E,",'.

2

f(x,p)=8 iL — —U 8(R r),—
2Ptl

where U is the self-consistent potential;

U(1)=a, +fd12v, zf (2)

+-,' fdr, fd r,vi/3 f (2)f (3)

2

Plo 2
)X) X2

(10)

In the equilibrium state there is also a cancellation of the
electrostatic contribution of the jellium and of the
valence electrons to the self-consistent potential, so that
wehave U= g, a on

The total energy may be expressed in terms of the elec-
tron density n:

(3ir } n +pa n~N 3iri
(11)

n 10m

The equilibrium density is obtained by requiring that E
should be minimal with respect to the variation of the
density,

5E =5nN (3n')'~'n '~'+ g a (o —1)n
Sm

d p p 47r PF

(2M)' 2m (2efi)' &in

The equilibrium distribution function of the gas of
valence electrons is

e 3 & n(1)n(2)
(6)

Thus the equilibrium condition may be expressed as

(12)

In the energy functional we are neglecting terms which
imply derivatives of the density of the free electrons. We
also restrict the electron density to be homogeneous when
determining the equilibrium properties. This assumption
is consistent with our basic approximation. Such an ap-
proach has been used in the context of nuclear physics,
and it has been shown" ' that it gives good results when
compared to one that includes terms with derivatives of
the density in the energy functional, and therefore is asso-
ciated with a smooth surface profile of the nucleus. We
are therefore considering a semiclassical approximation,
in the sense that we are not including quantum correc-
tions related to the so-called gradient terms associated
with derivatives of the density n in the energy functional
E. The expression for the energy in the equilibrium state

270 + g a~(o —1)no =0 .
O

(13)

In our case, in the equilibrium state, the particle densi-
ty no and the kinetic-energy density ~o are step functions
of r.

III. LAGRANGIAN AND EQUATIONS OF MOTION

and a variational function chosen to be the Slater deter-
minant

~ P ) which is related to the Slater determinant

We begin by considering a general quantum-
mechanical Lagrangian given by

(14)
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~ Pp & describing the ground state, by means of the unitary
transformation

~P& =exp —'S ~Pp&, (15)

N
S= g S(x,p, , t),

j=1

S (x,p, t) =g(x, t)+ —,
' [p s(x, t), +s(x, t) p],

(17)

(18)

where y and s are taken as basic dynamical variables.
We then obtain, from the quantal Lagrangian (16), the

following semiclassical Lagrangian:

L"'=f d'x '
(s Vq —s Vy) —Z'"[y]—Z"'[s], (19)

2

where

(20)

where S is a Hermitian one-body operator. For small
amplitude deviations from the equilibrium state, one ob-
tains the following harmonic Lagrangian:

L"'= '„&(('pl[S,S']ldo& — ', &Al[S, [a,S']]lyo& .

(16)

We consider the classical limit of Lagrangian (16), retain-
ing only the leading terms in a Wigner-Kirkwood expan-
sion in powers of fi.

As in Refs. 4 and 7, we will restrict the generator S to
the first two terms in an expansion in powers of the
momentum. We write

d pn =g f f =no+V (nps),
(2M)

(22)

and

(23)

The field y(x, t) plays the role of the velocity potential,
while s(x, t) may be interpreted as the displacement field

in continuum mechanics.
Following the method of Ref. 14, we make an expan-

sion of the dynamical fields y and s in multipoles and, for
each multipolarity, we express the radial dependence by a
polynomial in (r/R):

point we consider the electron-jellium and electron-
electron electrostatic energies E,"' and E,",', respectively,
given by Eqs. (4) and (6), and insert the expression
n p+ V ( n os ) + —,

' B„(s„B,( n ps„)} in place of n T. his quan-

tity represents, up to second order, the density of the
valence electrons. Adding these two integrals, and as-
suming that we have a neutral cluster, it is then clear that
the Coulomb contribution to the energy functional
E' '[s] reduces to the last integral in Eq. (21).

The distribution function f(r, p, t) is related to the
equilibrium distribution function fo by means of the
canonical transformation (classical counterpart of a uni-

tary transformation}: f =fp+ [fp, S]+ —,
'

[ [fp, S ],S]+, where the curly brackets [ ] stand for the Pois-
son brackets, and S stands for the Wigner transform of
the generator S. The density is obtained by integrating
the distribution function f in momentum space, and the
current is obtained by integrating in momentum space
the distribution function f multiplied by p/m. Up to
first order in the variational fields y and s, one has

E'"[s]=fd'x —'[(V s)'+-,'(Bgp+Bps )']

a(tr —1)
max

max

bk (t)(r /R )"Ytp

min

(24)

[V.(nps)], [V (nps)],
1 2

X) X2
(21)

It has been possible to obtain Eq. (21) due to the cancella-
tion of the electron-jellium contribution with part of the
electron-electron contribution. In order to clarify this

1

min

ak(t)(r/R)" Yto (25)

where the variables a„(t) and b„(t) are fixed variationally

by requiring that the action integral be stationary. In-
serting expressions (24) and (25) into Eqs. (22) and (23),
we find

and

k max
k —1 k —2V.(nos)=no(0) g „[—5(R r)kr" 'Ytp+8(R ——r}[k(k+1}—l(1+1)]r Ytp],

k=k

k
no max akj= g k(kr" xYto+r"VYz) .
m„k R"

(26}

(27}

Since the transition density fin =V.(nos) should not
diverge at the origin, it follows from Eq. (26) that k
should not be less than 2, except for I= 1, when it should
not be less than 1.

Inserting expressions (24) and (25) into Eqs. (19)—(21),
we obtain the Lagrangian

L' '= —'g A (b a ba ) ———a a Bk bl, b—1
kq k q k q k q kq q

kq

(28)

Here, and in the following equations, the dots over the
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dynamical fields stand for a time derivative. Moreover, where

1T' '[y]= g Akqakaq,
kq

&"'[s]= ,' X-B.,b.b,
kq

(29}

(30)
and

kq +1(l + 1)
k+ +1 (31)

8 2

(k+q —1)R
2'(0)

3 [ [I(I + 1)] + I (I+ 1)(2kq —3k —3q + I }

2q'0(0)
+kq(kq —k —

q +3)]+ —— [k(k+1)—l(1 +1)][q (q+1)—l(I +1)]
2 9

+ I (I +1)(2l —k —q)
k+q+1 (2l+1) (32)

Here

4qrno(0)e
N

m
(33)

m g Aqk~k g B kbk
k k

(41)

From Eqs. (37) and (38), we find the following matrix
equation for the variables bk.

is the plasma frequency or bulk volume plasmon, and the
coefficient S is the compression modulus calculated in
the equilibrium state,

a~, a'(Exn)
(34}

The action integral should be stationary for arbitrary
variations of the coefBcients aq,

r

~ l5I = —fdt +5a A k bk+ —ak =0,
kq

and for arbitrary variations of the coefficients bq,

I= fdt X&bq(Aqkdk Bkqb„)=0. —
kq

(35)

(36)

~kg Aqk bk+ =0
k

(37)

Requiring the action integral to be stationary for arbi-
trary variations of the variables aq and b, the following
equations are obtained:

We assume harmonic time dependence for the variables
ak and bk (bk = to bk ),—so that, from Eq. (41), we obtain
the following eigenvalue equation:

co m g A kbk= +Bqkbk .
k k

(42)

Solving the eigenvalue Eq. (42), we obtain the normal
modes for each value of l, which are characterized by the
eigenfrequencies co and the eigenvectors (y'J', s'J'). In
particular, if we choose a variational scheme of order
ks; =k,„—k;„+1, we obtain kd; eigenmodes. As we
will see in Sec. IV, these eigenmodes fulfill an orthogonal-
ity relation and also satisfy the sum rules m1 and m 3.

IV. ORTHOGONALITY CONDITION
AND SUM RULES

dim

The normal mode solutions of Eq. (42) satisfy obvious
orthogonality relations. It is convenient to express these
relations in terms of the fields s and y. To this end we as-
sume a time dependence of the form

and

y ( Aqkdk Bqkbk )
k

(38)

A(x, t)= g A '~'(x)sin(to t+y ),
j=1

for the field s, and a time dependence of the form

(43)

Since the matrix Ak is nonsingular, it follows that

bk+ =0 .
m

(39)

V.(nos'J'}+ V. no
y~( j) p

m

We note from Eq. (39) that we easily obtain the continui-
ty equation:

for the field y.
From Eq. (35) we may write

fd x 5y V.(nos 'J')+ V. no
y~( j) —p

m

Moreover, from Eq. (36) we have

dim

B(x,t)= g B '~'(x)cos(co t+y ), (44)

(45)
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(46)

In Eqs. (45) and (46), g'j' and s'j' stand for the eigensolu-
tion of order j, while 5y and 5s, respectively, are given by
the following equations:

max

5bk(t}(r/R) Yi()

min

where the quantities 5(2k(t) and 5bk (t) are arbitrary.
We consider the symmetric bilinear forms

(48)

max

5y= Q 5ak(t}(r/R)" Yi(),
min

(47)
and

n0
)[g( g(j)]=f d x 0

(Vg( )) (V+(j)}2' (49)

70
(

' '[s",s'j)]= fd x —[(V.s")(V s"')+—,'(c)jIi'+Bt)s (j))(8~ II)+Bt)s (,'))]+ g (2 n (V s")(V s'j')

[V (nos")],[V (nos"')]2
~x —x

~X1 XP
(50)

Making use of Eq. (45) it may be shown easily that

+2)[&(i) &(i)]= fd3x&(i)V . V&(j)
2m

,' fd'x-q")V (n, s(j)}

d X n0S 'j'Vy" .2

Considering Eq. (46) it is also easy to see that

g(2)[ ~ (i) ~ (j)] ( f d3 ~ (i). 5@(2)cs (j) i

(j)

x s(i) (n Vg(j))
2 0

(51)

as follows:

0d'x n s"'Vg(j)=5 (53)

We will now show that the present model satisfies the
sum rules m( and rn3 Let 8.= g; l D(x;) be an excita-
tion operator such that D(x) can be expanded in the
basis of the eigenfunctions g ' ':

dim dim

D (x)= g c g (j)(x)—:g c y(j)(x, 0} . (54)
j=1 j=1

In Eqs. (43} and (44} all the Zk's are taken to be zero, in
agreement with the initial condition g(x, O) =D and
s(x, O)=0. From the orthogonality relation it follows
that

.( d x n s 'V
J 2 0 (52)

c = ——' d xn s"'VD.j 2 0 (55)

It then follows that fd x nos" Vg'j' is zero if

ic), %co We write . y(j)(x, t)=g(j)(x)p (t), and s"'(x, t)
=s(j)(x)a, (t), and we express the orthogonality relation

We note that the coeScient cj represents the transition
amplitude (j~D~O). If we now consider Eq. (45) and re-
place 5g by D, we find

T' '[D]:—fd'x (VD) (VD)= —fd'x DV VD
2m 2m

= —
—,
'

Q c, f d x DV Vy")(x,O)

J

=
—,
' g c.f d x DV (n s ' '(x, O)).

J
k .

dim= —
—,
' g c co.f d x n()s (j' VD = g c.co

J j=1
(56)

Therefore we have proved that the sum rule m, [the energy-weighted sum rule (EWSR)] is fulfilled.
We will now be concerned with the sum rule m 3 (cubic EWSR). We consider yk =n /2 in agreement with the initial

condition y(x, O}=0 and s(x, O}=VD. We consider the following expansion

k .
dim dim

VD = g d, s"' =—g d,.s"'(x,O) (57)
j=1 j=1
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where

d = —,' —fd x no(VD). Vg'J' .

Then, from Eq. (46},if we replace 5s by VD, we find

SE"' VDE' '[VD]= ' f d—x(VD).
2

x
5VD

(58)

=
—,
' g d, fd'x(VD) (no.Vj"'"( x, 0))

dim= ——'gd d a) f d-x n s "Vy'J'= g d t0.
j j=1

(59)

We now consider Eq. (45) in order to relate the
coeflicients d and c . Replacing 5y by D in Eq. (45), one

as

&%~[a,[H, Q]]to)/&'=»"'[x]=(1/ ) y ~ .
kq

and

d x D V (n s'J')+V Vg'1' =0.7l 0
(60) & yol[[H, Q] [»[Q H]]]lyo) /&'=(&/m)'g &kqttkuq

kq

Therefore

noxD nos' ' = — d xD (61}

Thus we have d = —mco c-. Finally, we obtain the m3
sum rule:

dim

t03c~= Et2~[VD] .
j=l m

(62)

We remark that Eq. (59) may also be regarded as the
ml sum rule corresponding to the transition operator
—,'[p VD+(VD) p]. Then d is the corresponding transi-
tion amplitude.

N
Q= g y(x, t) (63)

and

N
P= ,' g [p. s(x, t)+—s(xj,t).pi] .

j=1
(64)

We note that in the classical limit the commutator
[Q,H] is replaced by the Poisson bracket
iA[y, p /2m [ =i(fi/m)p Vg In the. sam. e limit we have
($0~ [A, [H, P]]~$0)/A' =2E '[s]. Therefore we also
have

($0~[[H,Q], [H, [Q,H]]~go)/A' =2E' '[Vy](A/m)

Obviously if we expand y according to Eq. (25), the fol-
lowing relations hold:

V. NUMERICAL RESULTS

In the method presented in this work, the generator S
may be written as 9=a+P, where Q and P are Hermi-
tian operators of the types

The eigenvalue equation (42) which we have obtained is
equivalent to Eq. (30) of Ref. 18, which was derived from
a multidimensional extension of the sum rule approach.
We have used a variational method to arrive at the eigen-
value Eq. (42). As we have seen in preceding sections,
our method fulfills the sum rules m& and m3 and also
gives explicit expressions for the transition density and
the transition current. We have seen that k;„cannot be
less than 2 (1) for 1%1 (1=1). Our method yields the best
possible results within the approximation fixed by Eq.
(18), if we fix k;„at the minimum allowed value and if
simultaneously we allow k,„~~. Including all terms
of an expansion of the generator S in powers of p in Eq.
(18) would lead to the formulation of an exact classical
RPA. Less restrictive assumptions for the generator S
have already been considered, ' in connection with the
analogous nuclear problem.

In recent works, ' the energies of the surface and
volume plasmons have been calculated for spherical met-
al clusters using sum-rule arguments and considering the
"spill out" of some of the valence electrons outside the
jellium. In our present approach, we do not include the
gradient terms in the energy functional when treating the
equilibrium state. However, we still preserve basic
features of quantum systems such as the Pauli principle.
Although in the equilibrium state the density of the
valence electrons is a step function, our method leads to
reliable results because it preserves self-consistency. In
the present model, pure surface modes correspond to a
transition density proportional to 5(R r) which is ob-—
tained if y ~ r'Yto. Moreover, it has the advantage of for-
mal and numerical simplicity.

One of the main advantages of this method is the fact
that for each choice of k,„we obtain not only the most
collective state, but also all the first kd; excited states of
the system. The energies of the collective states obtained
in our method agree with those obtained with sum-rule-
based formalisms, ' which can give only an estimate of
the energy of the most collective state, and not the full
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TABLE I. For the multipolarity l=2, we give the energies of the eigenmodes for different truncation
schemes (2+ kd; +7), and we compare with the energies of the first seven eigenmodes appearing for
kd; =15 in order to study the convergence of the present model. For a test we calculate the lowest ei-
genvalues of a sodium cluster having 92 atoms.

ACt) I

Scop

Ac03

Ac04

i6c05

i6c06

Ac07

kd; =2

3.8818
6.8168

kdim =3

3.8808
6.6064
8.7820

k„- =4

3.8806
6.5999
7.6491

11.8016

k„=5
3.8806
6.5981
7.6275
8.9752

15.7635

kd; =6

3.8806
6.5981
7.5982
8.9331

10.5694
20.5634

kd; =7

3.8806
6.5981
7.5978
8.8047

10.5012
12.4289
26.1378

kd; =15

3.8806
6.5981
7.5975
8.7990

10.1351
11.5598
13.0446

spectrum. In the limit of large clusters (R DO), only
the last term in the matrix B& remains, and we have a
semi-infinite system. In this particular case our matrices
Ak and Bk agree with the corresponding matrices in
Eqs. (36) and (37) of Ref. 18, and our results agree with
the results of Ref. 18. Thus, for /=0, we obtain the ei-
genvalue co=co~, which is kd; -fold degenerate, and for
I & 0 there are the kd; —1 degenerate eigenvalues
co =uz and we find one nondegenerate eigenvalue

ai& =ai~&1/(21 +1) which is the classical Mie frequency
and which exhausts the sum rules m

&
and m 3.

The number of eigenfrequencies co and the number of
eigenfields (y'~', s'J') is equal to kd; and depends there-
fore on the value k,„ for which we truncate Eqs. (24)
and (25). As an example, in Table I for different values of
k,„(k;„=2), we give the energies of the eigenmodes
appearing for l=2. In principle, k,„ is arbitrary, and
the best results would be obtained when we let k,„~0e.
Each time we increase k,„by one unit we are adding a

maxterm proportional to (r/R) '" in expansions (24) and
(25), and as a consequence a new normal mode appears
which has the particularity of being the eigenmode with
the highest energy. When increasing k,„, the energies
of the lower eigenmodes show up to be very stable with
respect to the values they possessed in the previous trun-
cation scheme. We can also conclude from Table I that
the convergence is faster for the lower modes, which are,
therefore, especially stable, being independent of the par-
ticular truncation scheme.

As quoted above, a variational method of this kind was
first applied in nuclear physics, for the description of the
giant resonances. Therefore, as a test of the present
method, which uses a polynomial expansion of the varia-
tional fields, we began by considering the nuclear case.
Considering kd; =10 we have been able to reproduce,

with excellent accuracy, the results presented in Refs. 4
and 7, which also use a "square-well" equilibrium densi-
ty.

When treating the metal clusters, where we are mainly
interested in the energy spectrum of the excited states, we
chose an effective interaction of the form

V,s= jd'x(a, n +a2n +a,n'),

where the set of effective parameters a, , az, and a3 is
chosen in such a way that the binding energy E/N, the
jellium density no, and the bulk modulus 9 have the
known experimental values of a homogeneous system of
atoms of the element considered. These parameters have
been calculated providing that self-consistency, as ex-
pressed by Eq. (13), is satisfied. For E/N we have taken
the value obtained by adding the cohesion energy (energy
necessary for sublimation) to the ionization energy.
Further, we note that the matrices Akq and Bkq depend
only on 8, no, and ro, and therefore we would obtain the
same energies of the eigenrnodes if these quantities
remained constant but E/N was replaced by another
value and new force parameters were calculated. The set
of parameters we have used is given, for each cluster, in
Table II ~

An interesting aspect is the N dependence of the ener-
gies of the eigenmodes. From Eqs. (42), (31), and (32), we

can easily see that, if it were not for the last term in Eq.
(32), which is proportional to R, co would be proportional
to N ', which is a well-known behavior of the giant
resonances in nuclei. In any case, for N smaller than a
certain value, the last term in Eq. (32) can be neglected
when compared to the others, and a behavior close to
co ~ N ' shows up in the energies of the eigenmodes for
all multipolarities, including l=0. This can be clearly ob-
served for sodium (Figs. 1 and 4), aluminum (Fig. 2), and

TABLE II. Parameters of the effective force a„a2, and a, , binding energy E/N, electronic density

no, and bulk modulus % for sodium, aluminum, and silver.

a, [eVA ] az [eVA ] a, [eVA ] E/N [eV] no [A ] S [eV]

Na
Al
K
Ag

—5.8348 x 10'
-1.9147x10'
-4.7922 x 10'
—S.8043 X 10

-1.3317x 10'
—4.8474 X 10'
—1.9685 x 1Q2

-2.3660x 10'

1.6429 x 10'
6.2751x 10'
5.0933x 10'
1.6978 X 10

—6.2669
—18.8642
—5.2811

—10.5381

2.5435 x 1Q

1.8065 x 10-'
1.3277 x 10-'
5.8620 x 10

4.3372 x 10
4.5925 X 10
2.0222 x 1P-'
6.4100X 10
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FIG. 1. Natural logarithm of the cluster excitation energy vs

the natural logarithm of the number of atoms of the cluster, for
sodium, for angular momenta 0 l ~ 3 for the first three eigen-

states of each multipolarity. A fit (20.6N "eV) to the initial

slope of the energy variation of these low-lying modes is also

shown, as a solid line with crosses. In all the figures to come, L
stands for the angular momentum, and M for the order of the

eigenmode, being the eigenmodes ordered from the lowest
(M= 1) to the highest-energy eigenvalues.
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silver (Fig. 3). For the pictures in log scale where the
linear behavior is very clear, as well as for the monopole
energies, a fit was made to show how close we are to the
N ' behavior. For sodium, for the third eigenmodes of
the four lowest angular momenta, the fit (straight line
with crosses) reveals a N ' behavior up to about 200
atoms for sodium.

For higher modes and higher angular momenta, this
linear behavior is followed for even larger clusters (up to
many thousands of atoms), as we can see from Fig. 3,
where the fit to the higher-lying states shows a N
behavior, already closely approaching the 1V

' depen-
dence of the self-bound nuclear systems.

1 ~ 5 I I I I
f

I I I I
f

I I I I

f

I I I I
f

I I I I
f

I I I I

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Ln(Number of Atoms)

FIG. 3. Natural logarithm of the excitation energy vs the
natural logarithm of the number of atoms of the cluster, for
silver, for angular momenta 0 ~ l & 3 for the first 13 eigenstates
of each multipolarity. A fit (419.9N eV) to the initial slope
of the energy variation of the higher-lying modes is also shown,
as a solid line with crosses.

We now consider Fig. 4, which represents the energies
of the nine lowest monopole eigenmodes as a function of
the number of atoms of the cluster. The collective (first)
state has a behavior close to the expected dependence of
Qm3/mI, as a function of N and the higher modes also
show a similar behavior. We also see that these curves
decrease when N increases. As we have pointed out, this
behavior is in agreement with that expected for giant res-
onances in nuclear physics. This is different from the
behavior displayed in Figs. 4—6 of Ref. 20, and Fig. 3 of
Ref. 18, which, for the special case of l=O, show an in-
crease of Qm3/m, when N increases, until the value of
the volume plasmon is reached for N ~~.

As we have shown in Sec. IV, the present model
satisfies the m 1 and m3 sum rules, as long as we consider

40.0

20.0

1 0.0

I I I I
I

I I I I
I

I I I I I I I I I

0.0 500.0 1000.0 1500.0 2000.0
Number of Atoms

FIG. 2. Cluster excitation energy vs the number of atoms of
the cluster, for aluminum, for angular momenta 0~ l ~ 10 for
the first two eigenstates of each multipolarity. The solid lines
stand for the first (lowest-lying) mode, and the dashed lines for
the second.

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I I

0.0 25.0 50.0 75.0 100 0 125.0 150.0
Number of Atoms

FIG. 4. Excitation energies of the sodium cluster for the
monopole, for the nine first (lowest) eigenstates, vs the number
of atoms of the cluster. A fit of the form (60.3N "eV) is also
shown as a solid line with crosses.
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an operator which may be expressed as

max

D(x)= g vkr Yip

min

(66)

and

Simp(0)R
m&=

5m
(6S)

24nR g Snno(0)R
m3 — + Q)

m 5m

and for D(x)=r'Yio we have

)g»+ino(0)

2m

and

(69)

(70)

2ro(0)R ' (0)rd2R 21+1/2
m3= 1(1—1)(21+1)+

3m 2m (2/ +1)
(71)

We shall now focus on the sodium clusters. The ener-
gies of the three lowest eigenmodes are given in Fig. 1, up
to 1=3. In Table III we present these energies up to 1=5,
for %=92, together with the percentages of m, and m 3
sum rules [for the excitation operators given by Eq. (67)]
exhausted by each state. Further, in Table IV we give the
quantities Qm3/mi which indicate the position of an
eigenmode that exhausts completely both m, and m3
sum rules. If the mode only partially exhausts these sum
rules (as it is usually the case), then Qm3/m, gives an

upper bound to the energy of this collective mode. We
can see from Table III that, for l=1, the only state which
exhausts 100% of the EWSR and the cubic EWSR, the
energy of the state given in Table III, coincides with the
value of Qm3/m i, given in Table IV. For all the other
states, which only partially exhaust the sum rules, their
energies lie somewhat below the (upper bound) value of
/m 3/m „as they should.

For large values of N, the first mode of each multipa-
larity (except 1=0) converge for values close to the sur-
face plasmon, defined by the first dipole mode; in other
words, they converge to the Mie limit of each multipolar-
ity. The higher modes converge to the bulk volume
plasmon, defined by the first monopole mode, as can be
seen in the log plots for sodium (Fig. 1) and silver (Fig. 3),
and also in the linear plot for aluminum (Fig. 2), where
the first (solid line) and second (dashed line) modes for
the first ten angular momenta are shown. The collective
1, , which is constant with respect to the number of
atoms, is the lowest Mie limit. The other collective states

We then have mi=T' '[D] and m3=E' '[VD]/m,
where T' '[D) and E' '[VD] are given by Eqs. (29) and
(30), if we replace ak and bk by vkR". In particular, we

consider the operators

D(x) =r for 1=0, and D( x)=r'Y io for 1 )0 . (67)

Then for D (x)= r we have

TABLE III. Picking up some of the results for a sodium clus-
ter of 92 atoms, for each multipolarity (first column) we list the
excitation energies (second column), the exhausted percentage
of the m

&
sum rule (third column), and the exhausted percen-

tage of the m3 sum rule (fourth column). An equilibrium distri-
bution function of the Fermi type [Eq. (9)], satisfying the equi-
librium condition (13) was considered.

+

0+
03+

1,
12

13
2+
2'
23

31

32

33
4+
4+
4+

51

5p

53

fico; [eV]

6.0666
6.7397
7.7130
3.4191
6.3078
7.1528
3.8806
6.5981
7.5975
4.2232
6.9310
8.0675
4.5675
7.3002
8.5579
4.9345
7.7001
9.0647

m, [%]

97.662
1.837 6
0.318 22

100
0.0
0.0

99.947
0.030 618
0.011023

99.735
0.15646
0.054 262

99.340
0.393 22
0.13303

98.777
0.730 92
0.243 47

m, [%]

96.568
2.242 6
0.508 63

100
0.0
0.0

99.751
0.088 343
0.042 172

98.832
0.417 60
0.19621

97.247
0.983 34
0.457 19

95.180
1.714 9
0.791 71

(2i+, 3i,4i+, . . . , except the Oi+ ) converge to their
Mie limit, namely I /&2rdp+(N~ ae ) = 1/&2i'dz —rd«,(

cop /v 3 cd
i
—~

]

Our model, being a semiclassical one, is expected to
give its best description of the spectra for very large clus-
ters. However, experimental results for neutral clusters
are only available for the smallest clusters, and for the
/=1 state, mostly for alkaline metals. For potassi-
um ions, there are some results for clusters up to some
hundreds of atoms. ' From this reference we extract,
for F900, E'"~=2.05 eV. The result of our work is
E=2.47 eV. This is in fair agreement, not only with the
data, if we consider that we calculate a neutral cluster
and further corrections should be introduced in order to
describe an ion cluster, but also with other theoretical
calculations quoted in Ref. 35, based on the works of

0+
1

2+
3
4+
5

6.1108
3.4191
3.8844
4.2425
4.6164
5.0269

TABLE IV. For the multipolarities listed in the first column,
the quantities (m 3/m, )' are calculated in the second column,
where ml and m3 are the energy-weighted and cubic-energy-
weighted sums calculated for the distribution function (9) and
the excitation operators (67), respectively.

A'Qm, /m,
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TABLE V. Calculated (this work with R ~ ao ) and experimental (Ref. 41) energies of the volume

and surface plasmons for sodium, potassium, aluminum, and silver.

Element

N
K
Al
Ag

Aa)p (eV)
this work

5.92
4.28

15.78
8.99

Amp (eV)
experimental

5.72
3.72

15.0
3.78

%co~ /&2 (eV)
this work

4.19
3.03

11.16
6.36

fm, (eV)
experimental

4.28
3.11

11.19
6.35

Kresin ' and Bertsch.
Moreover, we see from our results that for simple met-

al clusters (Na, K, Al} we are within 0.1% of the classical
result only when the number of atoms of the cluster
N & 10 for the volume plasmon, and only when N & 10
for Ag. Therefore, for N=900, we are still far from the
region where our semiclassical model can give its best
description of data.

Up to now, our best testing field has been the infinite
radius limit, where we can compare our results for the
volume modes to the bulk plasmon, whose location is ex-
perimentally well established for a large number of met-
als. ~'~ In Table V, the results of this work are shown, as
well as the experimental results for the volume and sur-
face plasmons for the bulk metal, and we can see that we
have, in general, a very good agreement in this limit. In
some cases, specific structure efFects which are not embo-
died in this model cause the cluster energies to deviate
from the expected semiclassical values, as is the case for
silver. ' Obviously, for a plane surface we should have
1-+~ (in order to have a finite wavelength). It is then
clear that in the limit of a plane surface, when R ~~
and 1~ao, we have E3 Qrn3/——m, =co~/~2, this being
the energy associated with the surface mode in this lim-
it. In Table V we compare co /~2 with the experimen-
tal values for the energy of the surface plasmon.

We consider now the results for the different multipo-
larities. We present the results in terms of radial func-
tions j+ defined by

sible for the appearance of the last term in Eq. (32}, this
state would represent a uniform translation, which occurs
at zero energy, known in nuclear physics as a "spurious
state. " In the present case this eigenmode is associated
with a translation of the valence electrons vs the jellium,
breaking this former translational symmetry and leading,
therefore, to this eigenmode acquiring a nonzero energy.
The velocity potential for this eigenmode is y ~ z. In Fig.
6 we show the transition density and the current corre-
sponding to the second dipole excited state 12 .

For 1&2 (1=2+,3,4+,S, . . . ) the largest fraction
of the m

&
sum is exhausted by the lowest eigenmode for

each multipolarity which corresponds to a surface mode,
because these modes show a small amount of compres-
sion in the cluster interior. In Figs. 7 and 8 we plot the
How fields corresponding to the eigenmodes 2&+ and 22+.

The j+ component of the current and the transition
density of the 2&+ state, difFering from zero only close to
the surface, and peaking at the surface, show the devia-
tion of the actual Bow from the r'Y&o behavior. The same
can be observed in the slight bending of the j com-
ponent of the current close to the surface, since these
quantities are connected through the continuity equation.

We also see that, as we consider larger values of l, the
fraction of the sum rules exhausted by the surface mode
decreases. This might point to the fact that as 1 increases
the strength is more distributed.

i(x)=i+(r»11+10+1 (~»ll 10-—(72) 0,9
P

X 5.0

SODJ U 1f
L=-.O N=: 1,8

(M= i)—
6~ (M= 1)
j (M=2)
a& (M=2) --.

where Y&&+,0 stand for the vector spherical harmonics.
Monopole modes (1 =0+ ) are purely longitudinal

modes. In this case all eigenmodes are volume modes in
the sense that the transition density is nonzero (or close
to it) inside the cluster. In Fig. S we present the fiow field
corresponding to the eigenmodes 0&+ and 02+. The j
component of the current is proportional to &1, being
therefore zero for l=O. The transition density 5p for
M=2 (second mode) presents a further node in regard to
M= 1 (lowest-lying mode), as expected, both being
peaked at the cluster interior. In all pictures concerning
currents and densities, for the sake of clarity, we scaled
the smaller quantities by a suitable factor, as shown in
each picture.

The lowest 1 mode occurs at a finite energy
(fuo, =3.4191 eV) and exhausts the sum rule I, and
m3. If it were not for the Coulomb term which is respon-

0.6

0.3C4

0.0 L
O. O

—0.3
0.0 0.2 0.4 0.6 0.8r/R 1. .0

FIG. 5. For a sodium cluster of 92 atoms (radius R =9.5226
A), we show, for the monopole, the transition density (dotted
curve for 01+, and dashed curve for 02+) and j+ component of
the current (solid curve for 0&+ and solid-dotted curve for 02+)

for the first (lowest) and second eigenmodes of the system. Since
in a fluid-dynamical formalism we have a free overall multipli-
cative factor in the currents and densities, we normalized the
larger to unity and, for the sake of clarity, scaled the smaller
components as indicated in the figures.
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FIG. 6. For a sodium cluster of 92 atoms, we show, for the

dipole, the transition density (dotted curve) and the j~ corn-

ponents of the current (solid curve for j+, and dashed curve for

j ) for the second eigenmode of the system.

FIG. 8. For a sodium cluster of 92 atoms, we show, for the
quadrupole, the transition density (dotted line) and the j~ com-
ponents of the current (solid curve for j+, and dashed curve for

j ) for the second eigenrnode of the system.

'[/2 (

m, [r2],
15%

mnp(0)R 2

We could also study the relative importance of the
compression character of any of these modes, just by us-

ing an operator of the form r'+ Y+ or, generally,

Ytp together with the appropriate sum rules, a
method already used in nuclear physics to determine the
location, concentration, and strength of compression
modes.

We have seen that for each multipolarity the energy of
the lowest eigenmode is rather close to E3 =6+m, Im „
due to the fact that this mode exhausts most of the two
sum rules. For this reason it is instructive to write the
expressions m3/m[ for the operators D(x)=r, which
suits a monopolar excitation, and which in the limit of
large clusters lead to the bulk volume plasmon, and
D(x)=r'Ytp, suiting a general multipolar excitation. We
have the ratios

and

/ [/2

E3(1%0)—:
m, I r'Ytp]

1 /2

3mR'
(l —1)(2l + 1)+ co

2I +1

(74)

If it were not for the cp term which appears in Eqs. (73)
and (74), the energies would be proportional to lV

and we would have the same results as in nuclear phys-
ics, with the energies exhibiting the same N dependence
characteristic of the nuclear giant resonances. In Eq. (74)
(t ) =Quip stands for the total kinetic energy in the equi-
librium state. Finally we note that in our formulation it
becomes explicit that the energy of the collective mono-
pole depends basically on the bulk modulus 8 of the sys-
tem, and on its size R (plus the bulk-plasmon term), and
that the other multipolar energies depend basically on the
kinetic-energy content of the system ( t ) and on its size R
(plus the Mie term).

VI. CONCLUSIONS
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FIG. 7. For a sodium cluster of 92 atoms, we show, for the
quadrupole, the transition density (dotted curve) and the j+
components of the current (solid curve for j+, and dashed curve
for j ) for the first (lowest) eigenmode of the system.

The fluid-dynamical model presented here is able to de-
scribe the main features of cluster excitations, giving a
good prediction of the excited energies, especially for
larger clusters, where microscopic calculations are nearly
impossible, and semiclassical aspects play a dominant
role. It has the advantage of being able to handle clusters
with an arbitrarily large number of atoms, not only yield-
ing the excitation energies and the exhausted fractions of
the main sum rules, but also providing a deeper insight
into the transitions, through the transition densities and
currents.

No doubt that sum-rule-based methods ' are useful
tools to investigate co11ective dynamical properties of
many-body systems, but a fluid-dynamical formulation,
such as the one presented here, allows us to access prob-
lems which are beyond the scope of a pure sum-rule ap-
proach.
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As shown above the present model satisfies the single-
energy-weighted sum rule m&, and the cubic-energy-
weighted sum rule m3. The fulfillment of the sum rules
acts as a further check of our results.

We have derived equations of motion for the collective
variables by means of a dynamical variation al
method, ' ' obtained from the quantum-mechanical ac-
tion principle. Our method involves the expansion of the
generator of S =Q +P in powers of the momentum, and
we have considered in such an expansion the simplest
scheme which is given by Eq. (18). In Refs. 18 and 19 a
static Rayleigh-Ritz-like variational principle was formu-
lated and applied to an expansion of the generator Q in
powers of the momentum. Both methods lead to similar
sets of equations. This is not surprising since the quantal
action principle and the quantal Rayleigh-Ritz variation-
al principle provide equivalent descriptions of static
states.

The present variational scheme is directly related to
the hierarchy of equations derived in Ref. 15 for an
homogeneous system, where a variational scheme was
considered in order to obtain approximate solutions to
the Vlasov equation. Such a scheme is based on the ex-
pansion of the generator S in powers of the momentum p.
Considering a finite number of terms in such an expan-
sion, a closed set of equations is obtained which leads to
approximate solutions of the Vlasov equation, and which
are in good agreement with the exact solution known for
a homogeneous system. The method which we have been
studying corresponds to the simplest scheme of Ref. 15,
where the generator S only has a term of order zero and a
linear term in the momentum p.

Effective 5 interactions have been introduced in order
to adjust physical properties of a semiclassical treatment.

We remark that Eq. (42), which expresses the eigenvalue
problem and therefore determines the vibrational modes
of the valence electrons, depends only on physical quanti-
ties such as the equilibrium density po, the kinetic-energy
density ~o, and the bulk compression modulus K

We have shown that the fluid-dynamical model
developed in this work can be extended easily to a large
class of systems such as metal clusters, in which the
Coulomb interaction plays a relevant role. Other fluid-
dynamical models ' have been considered previously
for finite systems. However, the present model, due to its
parametrization, provides a simpler description of the
collective dynamics when long-range forces are present.
In a forthcoming publication, in preparation, applica-
tions to other systems will be made.

The results presented here are in good agreement with
the available experimental data, in spite of referring to a
step-function density. This shortcoming means that we
are not able to take into account some of the surface
effects. In a further paper we shall extend the model, al-
lowing for a smooth ground-state density profile, which
will allow for the electronic "spill out. "
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