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We have previously used molecular dynamics to simulate the force oscillations experienced by a model
atomic-force-microscope tip brought near a surface under a Lennard-Jones liquid. Here we perform
these simulations for additional tip radii. We also apply an Ornstein-Zernicke-type integral equation
theory to this system, and obtain force-distance curves for several different state points, tip radii, and

surface-liquid potentials. We find this theory to be in good agreement with simulation results for tip-
wall separations greater than one molecular diameter. We conclude that the magnitude of the force os-
cillations experienced by an atomic-force-microscope tip is a linear function of the effective tip radius (at
constant temperature) and that measurement of these force curves with a standard solvent could provide
a method of estimating the relative radii of different tips.

I. INTRODUCTION

The atomic force microscope provides a technique for
imaging surfaces. A sharp tip is moved toward a surface,
and the force on the tip is measured. Images may then be
obtained by rastering the tip relative to the surface. In
such a system, the resolution of these images will be
determined by the size of the effective contact area of the
tip. Finer tips should yield higher resolutions, but would
be more fragile. In these experiments the tip size is not
known to any precision, so that the images obtained are
much harder to interpret. In this technique, the tip and
surface may be immersed in a liquid, in which case solva-
tion forces will contribute to the total measured force.
Since the magnitude of the solvation force between two
surfaces in a liquid should depend in some way on the
"area" of their interaction, measurements of these forces
would be very sensitive to tip size. Often a succession of
tips is used in the same apparatus, and measurement of
these solvation forces could give some indication of the
relative sizes of the tips.

O' Shea, Welland, and Rayment' have used the atomic
force microscope to probe the structure of the liquid-
graphite interface for several different liquids. With oc-
tamethyltetrasiloxane (OMCTS) they observed force-
distance oscillations qualitatively similar to those seen by
Horn and Israelachvili. 1-dodecanol showed a stepped
force curve, indicating a layered, liquid-crystal-like struc-
ture at the surface, and under water their microscope tip
jumped to contact the surface from a separation of about
6 nm. A liquid near a flat surface shows an oscillatory
density profile, and so two surfaces brought near to each
other should experience a solvation force that oscillates
with varying separation, as the oscillations in the density
profiles of the solvent around the surfaces move in and
out of phase with each other. Several computer simula-
tors have obtained this result for parallel walls enclosing
a Lennard-Jones fluid. Horn and Israelachvili have
used a surface force apparatus to measure the force oscil-

lations experienced by two crossed mica cylinders in
OMCTS, and see a force-distance curve that decays as a
simple exponential, with 6—8 visible oscillations. Simula-
tions show 4—5 oscillations in the density profile of a
dense liquid near a wall, so we should not expect to see
more than 8 —10 oscillations in the force curve, since the
layered liquid structure only extends that far away from
the wall.

It is less obvious what will happen when a curved or ir-
regular tip approaches a flat surface because the solvent
shells of the two surfaces will overlap constructively in
some places and destructively in others. In a previous pa-
per we performed molecular dynamics calculations on a
very simple model of the atomic-force-microscope sys-
tem: a smooth sphere 50. in diameter brought near a
smooth flat surface immersed in a Lennard-Jones fluid.
This yielded a force-distance curve qualitatively similar
to the experimental result for OMCTS. By looking at the
liquid density profiles at varying separations, we have
characterized the minima, maxima, and zeros in the
force-distance curve as arising from the packing behavior
of the liquid immediately under the tip. From these
simulations we concluded that, at least for the model
studied, the variation of solvation force with separation
showed oscillations similar to those seen between parallel
plates. The relevant separation is the distance between
the surface and the bottom of the tip. The main
differences between the results of the parallel surface
simulations and ours are that the oscillations decay faster
in our microscope model, and that structure is seen in the
density distribution in the crevices between the sphere
and the flat surface.

In this paper we have extended this work to investigate
the effects of tip size, liquid-surface potential, tempera-
ture, and liquid density on these force curves. The results
we present come from molecular dynamics simulations
and from the app&ication of Ornsein-Zernicke-type in-

tegral equation theory. This is accomplished via an ex-
tension of the method devised by Henderson and
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where r,~b„,is the radius of the large sphere, so that the
diameter of the sphere is 2r,&1,„,+u. The well depth of
this potential is comparable to that of the Steele poten-
tial.

Three different systems have been simulated, with
sphere diameters of 11m, 50, and 3cr. The simulation box
parameters are given in Table I. Only a few separations

Plischke to study colloidal suspensions in a simple
liquid; we regard the system as composed of two infinitely
dilute spherical colloidal particles, one of infinite size (the
wall) and one of finite radius (the sphere). We observe
force oscillations for a large range of tip curvatures, and
conclude that the magnitude of these oscillations varies
linearly with the tip radii. We also observe the effects of
changing the surface-liquid potential on these force
curves, as well as the effects of changing the state point of
the liquid.

II. METHODS

A. Molecular dynamics

In our molecular dynamics simulations, the system
consisted of a box bounded top and bottom by smooth
walls, with periodic boundary conditions in the x and y
directions. The box contained a dense Buid and a struc-
tureless immobile sphere representing the tip. The fluid
particles interact with each other via a cut-and-shifted
Lennard-Jones potential:

12

were done with the 110.-diameter sphere, as it is compu-
tationally much more expensive than the others.

In each simulation the density of liquid in the volume
at least 20. away from all surfaces was measured and tak-
en to be approximately the density of the bulk fluid with
the same chemical potential as our confined fluid. For all
three sets of simulations this value was p*=0.72; thus
these simulations were performed at comparable state
points. This was not an attempt at a precise characteri-
zation of the state point of the system (which would re-
quire a direct measurement of the chemical potential} but
a way to impose consistency on the different simulations.

The simulations were performed at T'=1.0 using a
Berendsen" thermostat during the equilibration periods.
The radial cutoff in the Lennard-Jones potential was tak-
en as 3.5cr. The Verlet' algorithm was used to integrate
the equations of motion with a time step of 10 reduced
time units. In the simulations, the sphere was moved
slowly between one separation and the next (0 25cr .over
250 time steps), equilibrated for at least 2000 steps, and
then data were gathered for at least 6000 steps. Errors in
the accumulated quantities were estimated by averaging
separately the first and second halves of each run.

B. Integral equations

To apply integral equation theory to this system, we
extend the method of Henderson and Plischke as follows.
We consider a ternary fluid mixture, in which the density
of two of the species approaches zero, and the size of one
of these becomes infinite (giving a wall). Specifically, we
would have a liquid with three species present: species 1

(the fluid) of mole fraction X, =1; species 2 (the sphere}
of finite radius R and mole fraction X2 ~0; and species 3
(the wall) of infinite radius, and mole fraction X&~0.
Since all three of these species are spherical, we see that
all pair correlation functions g; (r; —r } are functions of
r; only. Thus the numerical solution of this system will
only require discretization of one variable, and will be
quite tractable.

We apply the Ornstein-Zernike relations for an isotro-
pic ternary mixture. These are exact relations between
the total correlation function h; (r) =g,"(r)—1 [where g (r)
is the familiar pair distribution function] and c;j(r), the
direct correlation function By applyin. g approximate clo-
sure relations to the Ornstein-Zernike relations, we ob-
tain a closed system of integral equations, which are nu-
merically solvable. In general, for an isotropic mixture of
N different species, the Ornstein-Zernike relations are'

(4)
N

h, (r)=c, (r)+p g X"k fh;k(r')ckj(~r r'~)d r', —

Diameter of
sphere

(2r„„„+~)
Box height

(~)

Box width (cr)
inx andy
directions

Number
of particles

in box

TABLE I. Simulation box parameters for the molecular-
dynamics calculations. where i and j are indexes over the different species, Xk is

the mole fraction of species k, and p is the number densi-
ty of the mixture. For the system described above, this
reduces to

3.0
5.0

11.0

12.0
16.0
22.0

8.0
10.0
17.0

512
1024
4096

hii(r)=cii(r)+p fhii(r')cii(~r r'~~)d r', —

h i2(r) =ci2(r)+p fhii(r')cia( ~r r'~ )d r', —

(5)

(6)
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(There are, of course, relations for the 22 and 33 func-
tions, and equivalent relations for the 21, 31, and 32
functions, which are identical to the 12, 13 and 23 func-
tions, but they are of no interest at present. ) Our goal is
to obtain the 23 functions, since from h23(r) we may ob-
tain the force curve between the wall and the sphere from

p+'33(r)
g

ln[hz3(r)+ 1]
Br

To use these equations, we must apply (approximate) clo-
sures to each of the above relations. We have chosen to
use the soft-core mean-spherical approximation (SMSA)
for the liquid-liquid functions, which is

c (r) = 1 —exp[( V& (r) ][&(r)+ 1] PV2(r)—. (10)

This closure divides each potential function V(r) into a
short-ranged repulsive part V, (r) and a long-ranged at-
tractive part Vz(r), and is reputed to be fairly accurate
for long-tailed potentials such as the Lennard-Jcnes (see
Hansen and McDonald, Theory of Simple Liquids) For.
the 12, 13, and 23 functions we have applied the so-called
hypernetted chain (HNC) approximation, which is

c (r) = —13V(r)+h (r) —ln[h (r)+1] .

We use this closure for both the surface-liquid relations
because the density profiles n, 2(r) and n»(z) obtained
with the HNC closure better approximated the molecular
dynamics results than those obtained with the SMSA clo-
sure. Trials with the often-used Percus-Yevick closure
applied to the 12 functions resulted in h, 2(r) functions
with negative-valued first minima, which are unphysical,
so this closure was rejected. For the wall-sphere func-
tions, either the HNC or Percus-Yevick closure should be
appropriate, since the wall-sphere potential is a step func-
tion.

To solve these equations, we first obtain the 11 func-
tions (by solving the integral equations for the pure
Lennard-Jones fluid), which are then used as input into
the equations for the 12 and 23 functions. When we have
these, 23 functions can be obtained by a single numerical
integration, without the use of any iterative method. We
apply Zerah's method' to solve for the 11 and 12 func-
tions; this is essentially a Newton-Raphson iteration that
uses a conjugate gradient procedure (rather than direct
matrix inversion) to solve the linearized system at each
step, and is very efficient. To solve for the functions in-
volving the wall we must follow Henderson, Abraham,
and Barker' and move the coordinate origin to the sur-
face of the large sphere before allowing its radius to be-
come infinite. This results in the following expressions:

We solve for the 13 functions using Picard iteration and
numerical integration (trapezoid rule). This is much less
efficient than Newton-Raphson methods, but is computa-
tionally much simpler, and is suf5cient for our purposes.

In solving these equations, all functions were discre-
tized over a grid with spacing 0.0469o.. The 11 functions
were obtained between r=0 and 12o., the 12 functions
were obtained between r =0 and 24cr, and the 13 func-
tions were obtained between r= —120 and 120., in the
manner of Henderson and Plischke. Although we have
not used as fine a grid as they, we observed no quantita-
tive differences between using grids of size -0.10a and
0.04690., and so are confident that these solutions are ac-
curate.

III. RESULTS

A. Molecular dynamics
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In Fig. 1 we present curves of F/R vs separation from
the molecular dynamics simulations, where F is the force
on the tip, and R =r,zh„,+cr/2 is the effective radius of
the sphere. We have divided the data for each curve by
the corresponding sphere radius R, in the manner of
Horn and Israelachvili. The fact that these curves coin-
cide except at very small separations shows that the force
felt by the sphere (at separations greater than -2o ) is
proportional (at least over this range of tip sizes) to its ra-
dius, to within the precision of these simulations. In Fig.
2 we plot the amplitudes of the first two force oscillations
vs the radius of the tip. Linear regression gives a slope of
84.8+4.2 for the first oscillation, and 19.0+0.7 for the
second. This linear behavior is somewhat surprising; one
might expect the magnitude of the interaction to vary
with the surface area of the sphere, and thus R . Consid-
er the construction in Fig. 3, in which we measure the
"flat" part of the bottom of the sphere. It is trivial to
show that the width C of this "fat" part is proportional
to &R and so its area will vary with R:

co 2+2
h, 3(z)=c,3(z)+2trp f tc„(t)dtf h, 3(s)ds

0 z —
2

cc 2+2
h23(z)=c~3(z)+2trp tc2, (t)dt h, 3(s)ds .

0 z —
2

(12)

(13)

FIG. 1. Force-distance curves from molecular-dynamics
simulations of 11', 5o., and 3o.-diameter spheres. The data
have been normalized by sphere radius. A positive force indi-
cates repulsion. These are plots of the auerage total force on the
sphere; at large separations, they decay to zero as expected.
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FIG. 2. Molecular dynamics results for the amplitudes of the
first two force oscillations vs radius of the sphere. The first os-
cillation is defined as the first maximum value minus the first
minimum value, etc.

Below 2o separation, however, this linear behavior is
not observed; the larger tips experience much larger
repulsions at 1.750. separation. In Fig. 2, we see non-
linearity in the data for the first oscillation because the
largest tip size experiences a larger force than our con-
struction predicts. This effect is due to the packing of in-
dividual solvent molecules under the sphere. At these
separations the solvent is excluded from the volume im-
mediately under the sphere, and so our previous argu-
ment will not be valid. Instead, the large repulsive force
is due to molecules "wedged" into the crevice created by
the sphere and surface. Figure 4 shows representative
configurations from the three sets of simulations at a tip-
wall separation of 1.75o", the viewpoint is from the flat
surface in the z direction, along the central axis. We see
that molecules penetrate quite close to this axis, and only
a few are in the volume expected to give the strongest
repulsions. Under the largest sphere, two rings of single
atoms are observed: this may explain the particularly
large repulsive force observed, since there are many more
particles in this region than for the other spheres. The
ringed structures under the 110-diameter sphere and
close-packed behavior near it are interesting but not
surprising; we should expect such behavior from a dense
liquid in a deep potential well.

That is, to first order in the thickness 5z, the contact area
will be given by

C-=2m R. 5z .

By choosing 5z-0 we see that the magnitude of the in-
teraction between a single spherical solvation 1ayer and a
single planar solvation layer will vary linearly with the
radius of the spherical layer. Because the size of the os-
cillations in fluid density near the surfaces decay ex-
ponentially, the interaction of the layers far from the sur-
faces will not contribute much to the total force. Thus
the contribution of the liquid immediately under the tip
should dominate the total force, and so we see this linear
behavior. If we look at the limit of large sphere size this
becomes even clearer. As R ~DO we require that the
force per unit area go to a constant value, which is exact-
ly the behavior predicted by this simple construction.

B. Integral equations —comparison with simulations

The integral equation results for the 5o diameter
sphere system are shown with the previous simulation re-
sults in Fig. 5. In the integral equation theory, the sharp
peak at 1.75o is absent, and the first minimum is slightly
too deep. For larger separations, the agreement is good.
We see that the integral equations fail to give the right
behavior for separations where the efFects of individual
"trapped" molecules become important. One of the ap-
proximations inherent in our treatment of the system is
that the 12 (liquid-sphere) functions are not perturbed by
the presence of the wall, and that the 13 (liquid-wall)
functions are not perturbed by the presence of the sphere.
As we bring the sphere and wa11 closer together, then,
this becomes a more and more severe approximation, and
could explain the failure of the theory at very small sepa-
rations. In general, we can expect this theory to be quali-
tatively correct for all but the smallest separations, and to
be quantitatively correct for separations greater than
about 2.5cr.

C. Integral equations —other systems

2C

FIG. 3. Geometric construction of the "flat" part of the tip.

We use this theory to compare different size spheres.
Figure 6 shows the force curves generated by the integral
equation theory, for a much larger range of sphere sizes
that we were able to simulate by molecular dynamics
(MD). Again we see that the range of oscillations is rela-
tively unaffected by the size of the sphere. In Fig. 7 we
plot the axnplitudes of the first three force oscillations vs
the radius of the sphere; it is evident that the linear
behavior observed earlier holds for the approximate
theory as well. The slope of the line through the points
for the first oscillation is 10.45 +0.09, and through the
second and third data the slopes are 6.77+0.03 and
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4.17+0.03, respectively. These slopes are much lower
than the corresponding data from our MD simulations,
due to the failure of this integral equation theory at very
small separations.

Figure 8 shows the results of varying the temperature
of the system; the bulk Quid density is constant at
p*=0.73 for these curves. We see that decreasing the
temperature (at least over the range studied} increases the
magnitude of the force oscillations, but has no effect on
their periodicity, and only a very small effect on their ex-
tent away from the wall.

Figure 9 shows the results of varying the liquid density
at constant temperature. We see that increasing the den-

sity both increases the magnitude of the force oscillations
and also decreases the period; such behavior is to be ex-
pected considering our previous packing-oriented ex-
planation of the force oscillations. As we increase the
density, we increase the packing fraction and thus de-
crease the average interparticle distance, which would ac-
count for the decreased period of oscillations. This is a
situation where the approximate theory and MD calcula-
tions may very well show somewhat different trends; this
behavior should be very sensitive to the approximation
mentioned earlier, that the 12 functions are calculated in-

dependently of the presence of the wall, etc., but we have
not yet simulated different liquid densities by molecular

(bj

FIG. 4. Representative molecular-dynamics configurations from all three diameter sphere simulations, each at a tip-wall separa-

tion of 1.7So. (a) is from the 3o. diameter sphere run, (b) is from So. sphere run, and (c}is from the 11o sphere run. In each case, the

viewpoint is from the center of the bottom surface, looking up along the z axis. In other words, the topmost layer of visible atoms in

each configuration is the first solvation layer alongside the flat surface.
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FIG. 5. Force-distance-curves generated by both integral
equations and molecular-dynamics simulations for the So-
diameter sphere system.

FIG. 8. Effects of varying temperature on force curves at
constant liquid density of p*=0.73 and sphere diameter of Scr.
The curves shown are at T =0.60, 0.70, 0.80, 0.90, and 1.00.
These results were obtained by solving the integral equations.
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dynamics to see if this is true.
Figure 10 shows the decay with tip-wall separation of

the amplitude of the normalized oscillations of the force
curves for spheres of diameter Scr and 11o as predicted
by the integral equation theory. Figure 10 also shows
the (normalized) decay rate for the MD simulation of the
3cr-diameter sphere system. These data are not as clean
as that obtained from the integral equations, but within
errors it also decays exponentially. Horn and Israelach-
vili have observed this behavior as well, and it arises from
the well-known exponential decay of the h (r) functions.

D. Integral equations —hard-wall results

FIG. 6. Force curves for different size spheres, at a bulk
liquid reduced density of p*=0.73 and a reduced temperature
of T =1.0, obtained from solving the integral equations. The
curves shown are for sphere radii of 7.5o, 6.Scan, 5.5o., 4.5o.,
3.Sar, 2.5o, and 2.0cr.

We have also used the integral equation theory to ob-
tain force curves for a system composed of a Lennard-
Jones fluid, a hard wall, and a hard sphere. That is, the
potentials for the liquid-wall interaction and the liquid-
sphere interaction are
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FIG. 7. Amplitudes of the first three force oscillations vs ra-
dius of the sphere, for different spheres, at a bulk liquid density
of p*=0.73 and a reduced temperature of T*=1.0. The first
oscillation is defined as the first maximum value minus the first
minimum value, etc. These results were obtained by solving the
integral equations.
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FIG. 9. Effects of varying density on force curves, at a con-
stant temperature of T*=1.0 and sphere diameter of 5o. The
curves shown are at p*=0.60, 0.70, and 0.775. These results
were obtained from solving the integral equations.
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were obtained from molecular-dynamics simulations, while re-
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solving integral equations. The first oscillation is defined as the
first maximum value minus the first minimum value, etc. The
fifth oscillation was not studied during the molecular dynamics
runs.
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FIG. 11. Force-distance curves for the hard-wall-hard-
sphere system, for several different sizes of sphere at a bulk
liquid density of p*=0.73, and a reduced temperature T*= 1.O.

The sphere radii are 5.5o., 4.5o, 3.5o., and 2.5o.. These results
were obtained by solving the integral equations.

The same closures were used in these calculations as were
used above, although the discretization was not as fine
(-0.10o ). For purposes of comparison, these calcula-
tions were also done at conditions of T*=1.0 and
p* =0.73.

In Fig. 11 we show the force curves between hard
spheres of several different radii and the hard wall. The
most striking thing about these curves in comparison
with our previous results is that they are always (almost}

negative; the tip is pulled toward the wall by an oscillato-
ry but increasing (in magnitude) force as it is brought
nearer. This can be explained by considering the energet-
ics of a Lennard-Jones Auid near a hard surface. A mole-
cule very near the surface (within la of contact) has
fewer than its usual 12 nearest neighbors because the wall
excludes them (for a close-packed solid near a wall, it
would have exactly nine neighbors) and so pays an ener-
getic penalty for being near the wall. We can expect to
see "hydrophobic" behavior in the Auid because of this.
In this system, when we create a highly constrained envi-
ronment (under the tip) by moving the tip near the sur-
face, a low-density liquid should evacuate this region, and
the pressure of the liquid on the top of the sphere should
push it toward the surface. In a dense liquid the volume
under the tip will still be occupied, and the packing
behavior mentioned earlier will still be observed, but the
oscillations will be superimposed on a net attractive force
curve. As one might expect from the smaller density os-
cillations near the hard wall, not as many force oscilla-
tions are observed in the hard-wall —hard-sphere system as
in the Steele system.

This kind of behavior would be difficult to observe ex-
perimentally. If, in a physical system with similar poten-
tials, one tried slowly to lower the tip toward the surface,
it would be pulled toward contact as soon as it "sensed"
the surface, (with increasing force) and only a single jump
would be observed. The tip should jump from one force-
distance peak to the next (and we would see a stepped
curve), but if the noise in the system is of sufficient mag-
nitude, these individual jumps would not be detected.
Likewise, if one tried slowly to pull the tip away from
contact with the surface, by applying enough force to re-
move it a small distance, one would (without extremely
fine control} immediately pull it quite far away from the
surface. Thus one could measure the adhesion force in-
duced by the liquid between the two solids, but not the
oscillatory force at longer ranges. This may explain the
results of the atomic-force-microscope measurements on
water mentioned above. Since graphite and silicon ni-
tride (the tip material) are reasonably hydrophobic ma-
terials (at least, the water-water interactions are much
stronger than the water-surface interactions) the water
system is roughly similar to our hard-surface system, and
so the oscillatory force curve may still be there, but in-
visible to the kind of measurements being made.

In these simulations the tip and surface are structure-
less. In order to model the atomic force microscope
more realistically we should introduce structure into
these and also include the London forces acting between
the tip and surface. A more elaborate simulation of the
atomic-force-microscope system might model the tip with
a mobile (but heavy) sphere attached to a spring of some
fairly large force constant acting in the z direction. In-
stead of moving the sphere itself, one would move the po-
tential minimum of the spring up and down, allowing the
sphere to find its own equilibrium separation. This sys-
tem might reproduce the "jumps" seen in the experi-
ments of Horn and Israelachvili on OMCTS, and in the
measurements on water mentioned above. Our integral
equation theory would not be applicable to such a system,
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since (in our formulation) V23 (r) would vary with
sphere-wall separation, and so we would need to solve a
system of three equations, rather than two. Molecular
dynamics could certainly be used to study this system,
but would certainly require much longer equilibration
times than the simulations performed so far, and this
work has not yet been attempted. It will be worthwhile to
do such simulations, but we believe that the current mod-
el describes the essential physics of the solvation force
efFects.

Since hard walls are not physically realistic, except for
very large-scale systems, we repeated these calculations
for a "weak-walled" system where the wall potential and
sphere potential have the same form as in the MD simu-
lations and the first group of approximate theory calcula-
tions, but scaled down by a factor of 10. That is, the po-
tential well depth near the wall or sphere is only about
0.3e rather than 3.0e, so that in this system the liquid-
liquid interactions should dominate the liquid-wall in-
teractions. All calculations were performed using the
same state points as used in the hard-wall calculations.
The results for spheres with several different radii are
shown in Fig. 12. These curves are quite similar to those
of the hard-wall system; the force curve is principally
negative, and the same number of oscillations are visible.
Comparing Fig. 12 with Fig. 11 {the hard-wall force
curves) we see that the weak-wall curves are shifted up
from the hard-wall ones, and that the oscillations are of
similar magnitude. Essentially, the weak-wall force
curves interpolate between those from the hard-wall sys-
tem and those from our original system. Such compar-
isons allow us to resolve the force curve into a sum of two
parts; an oscillatory force that arises entirely from. the
liquid structure, and a monotonically increasing force
that arises from surface-liquid interactions. The stronger
the surface-liquid interactions, the more the force curve
is shifted up at small separations, since for a deeper po-
tential well the system should favor a larger tip-wall sepa-
ration because more liquid could occupy the well. A
continuum-liquid model should show a smooth force
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FIG. 12. Force-distance curves for the "weak-wall" system,
for several different sizes of sphere at a bulk liquid density of
p =0.73, and a reduced temperature of T*=1.0. The sphere
radii are 6.5o., 5.5o, 4.5o., 3.5o., and 2.5'. These results were
obtained by solving the integral equations.

curve that increases with decreasing separation (up to
some contact value), with magnitude dependent on the
surface-liquid interaction strength.

IV. CONCLUSIONS

By performing molecular dynamics simulations on a
very simple model of an atomic-force-microscope tip in a
liquid, we obtain force vs distance curves that are in good
qualitative agreement with experiment. Also, we may
generate such curves by the much less computationally
expensive route of applying the integral equation theory
to our model, and obtain reasonable agreement between
these two methods. We have previously explained these
oscillatory force curves in terms of the density profiles of
the solvent in the region under the tip, and have demon-
strated that the observed liquid structures at various tip-
wall separations correlate well with the features in the
force curve.

We may compare these results, both from molecular
dynamics simulations and the integral equation theory,
with experimental results. Looking at the atomic-force-
microscope data of O' Shea, Welland, and Rayment, we
see five or six oscillations superimposed on a net attrac-
tive force. We cannot really make judgments as to the
decay rate of these oscillations, since the spread in the
data is quite large, but the amplitude of the oscillations is
on the order of 0.3 nN. If we attempt to scale our re-
duced Lennard-Jones parameters to the OMCTS system,
from using the heat of vaporization of OMCTS
b H„,=48. 179 kJ/mol (Ref. 16) and taking
hH« /atom =8. 16m (the lattice energy for the perfect fcc
Lennard-Jones crystal)' we get @=673.3 K=9.29
X10 ' J and o.=8 A. From the molecular dynamics
simulation of the 50 sphere system, the amplitude of the
first oscillation (the difference between the second maxi-
ma and the first minima) is approximately 31.5 o/e,
which becomes 3.65X10 ' N or 0.365 nN. This of the
same order of magnitude as the experimental result.
Considering the approximations made in the choice of
the liquid-surface and liquid-liquid potentials, and the un-
known size of the experimental tip, any quantitative
agreement is probably coincidental.

Principally by using results of the integral equation
theory, but also corroborated by molecular dynamics
simulations, we have observed the effect that tip size has
on these force-distance curves. The amplitude of the
force oscillations is found to vary linearly with the sphere
radius, and the number of oscillations present in the force
curve is not particularly sensitive to tip size. This is be-
cause a larger tip would not be expected to have a much
longer-ranged effect on solvent structure than a smaller
one. This linearity is not entirely surprising; Horn and
Israelachvili have observed it in experiments with the
surface force apparatus. We have found that, although
the force-distance curves resulting from this integral
equation theory and molecular dynamics simulations are
very similar, the slopes they yield for the linear relation-
ship between the force on the sphere and radius of the
sphere are quite different (particularly for the first oscilla-
tion), due to the failure of the theory at very small separa-
tions.
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This relationship could be used to determine the rela-
tive sizes of atomic-force-microscope tips. By using
different tips to measure the force-distance curve of a sol-
vent such as OMCTS, one could obtain the contact area
of one tip relative to another, by comparing the ampli-
tudes of the second or third force oscillations. Since the
first oscillation has been shown to deviate from this
linearity, only later oscillations should be used for this
purpose. Furthermore, by comparing with the data ob-
tained by Horn and Israelachvili [who measured F(R) vs

Rj, one could estimate the absolute radius of the tip.
Real tips are irregular, but these results show that the
force curves are determined only by the part of the tip
which is nearest the Bat surface.

We have also used the integral equation theory to look
at the force-distance behavior for different state points of
the liquid. We find that increasing temperature causes a
decrease in the magnitude of the oscillations. Increasing
the liquid density is found to increase the magnitude of
the oscillations, as well as slightly to decrease their wave-
length.

Applying the integral equation theory to systems with
different surface-liquid potentials has allowed us to see
the way that liquid-surface interactions and liquid-liquid
interactions are separately related to the total force felt
by the tip. The oscillations arise from the liquid struc-
ture, and are not strongly affected by varying the liquid-
surface potential well depth, while the curve upon which
these oscillations are imposed is very dependent on the
liquid-surface potential. It may also be very dependent on
the liquid-liquid potential, but we have not yet studied
systems with liquid-liquid potentials other than the
Lennard-Jones, and the scaling properties of that poten-
tial make considerations of absolute well depth inconse-
quential.
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