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Theory of tunneling spectroscopy for semiconductors
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It is generally accepted that scanning tunneling microscopy and scanning tunneling spectroscopy
(STS) get their information from the sample local density of states. At present, however, there is little
theoretical ground on which to explore this assumption. We contribute here with a theory of STS for
semiconductors, treated within the tight-binding approach. In the context of this theory, we demon-

strate that the current-voltage (I-V), and the conductance-voltage (0.-V) curves are related to the density

of states. In particular, the current is a sum over tip states of semiconductor local density of states
modulated by tip-dependent coefficients. This result is consistent with those found in previous works.
The cr-V curve has nondifFerentiable points which are a direct manifestation of the Van Hove singulari-

ties in the global density of states of the semiconductor.

I. INTRODUCTION

Scanning tunneling spectroscopy (STS) is a technique
used to extract energy spectral information at a particu-
lar place on a sample surface from its current-voltage (I-
V) curve. This has been experimentally achieved on semi-
conductors, ' superconductors, and metals. Essential-
ly, in STS one locates a tip at a given xo-yo position on
top of a surface. Then the tunneling current between tip
and sample is measured as the tip-sample voltage is
varied. This curve has, in general, to be deconvoluted in
order to obtain the desired energy information. The
deconvolution itself depends on the system under study
and the model used to describe that system.

The way in which the local density of states (LDOS)
appears in the I-V curves has been the subject of exten-
sive theoretical study. ' Most theoretical calculations
have obtained results for imaging at low bias voltage,
such as the widely used theory of Tersoff and Hamann.
Some workers' ' have extended these results to finite
voltages. We have developed a theory that applies
specifically to semiconductors, since they need a special
treatment, different from the one for metals. ' Ma-
croscopically, we model the semiconductor as a cube
with a free surface. Microscopically we assume that the
semiconductor has a simple cubic unit cell. Its band
structure is obtained from the tight-binding (TB) ap-
proach. The STM tip is assumed to be formed by a single
atom (adatom) adsorbed on a surface. The energy struc-
ture of this system is also obtained within the TB frame-
work. By choosing appropriate TB parameters, we can
account for a metallic tip. We found that for certain
choices of TB parameters there exists the possibility of
tip states localized around the adsorbed atom. The
current between tip and sample is then calculated using

Bardeen's ' tunneling theory. When many tip states
(band states, localized states, or a combination of both)
contribute to the current, the current is a convolution of
the sample LDOS and the tip electron probability func-
tion. In the range of voltages for which only a discrete
tip state is involved in the tunneling, the current itself is
directly proportional to the sample LDOS. We also stud-
ied the cr-V curve and found that it followed the sample
DOS in some voltage regions.

The situation just described does not take into con-
sideration the tunneling barrier height. For that reason,
we also consider the effect that the electric field existing
in the tip-sample gap has on the shape of the adatom
wave function. Essentially, for positive bias voltage, the
wave function will distort so that the electron has a
greater probability of being in the gap than towards the
tip bulk. This distortion has the effect of increasing the
current, but overall the results described above also apply
in this case.

II. THEORY

Before calculating the current in the manner of Bar-
deen, we need to specify the electronic structure of both
the semiconducting sample under study and the metallic
tip. Consider the sample to be a semiconductor with sim-
ple cubic structure with N Wigner-Seitz cells on a side.
Its energy states are considered in the near-neighbor
tight-binding approach with an s-type basis function
(cubium model ). This type of approach has been exten-
sively used in the past to study chemisorption on sur-
faces and DOS of surface states. In this context,
the wave functions read

pe=+Co
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where 8; are the labels for the states, $8 are the Hamil-
tonian eigenstates to be found, 4 are s-type atomic or-
bitals, and C& are the expansion coefficients. The vec-
tor index (m „mz,m3) identifies the atomic sites, and can
take N different values.

The corresponding energies are

The adatom, labeled 1, is located at the origin of our
coordinates system as shown in Fig. 1. A generic atom
from the sample, labeled 2, is located a distance s away,
where (m„m2,m3) is the label for that sample site. We
take the corresponding wave functions to be

F. =a+2P(cos8, +cos82+cos83}, (2)
@I(r}= e

+~a,'

where a is the Coulomb integral and P the resonance in-

tegral.
The coefficients are given by

C8(m)=e ' ' ' 'sin[(N —m3)83],

where 83 is now one of the N roots of the equation

z+cos83+sin83cotan(N83) =0 .

(4)

For each root, there are N states since 8& and 02 can
take N different values each. The scanning tip is taken as
being an atom (adatom) adsorbed onto a surface. The
electronic structure of this system is obtained also in the
tight-binding context. The qualitative behavior of the
electron states has been studied elsewhere. We worked
out the problem numerically in order to obtain quantita-
tive results. The main features are described next. De-
pending on the relationship between the various Coulomb
and resonance integrals, the system may have two, one,
or no localized states around the adatom position. The
energy of these states may lie above or below the surface
and bulk bands. The existence of these states changes the
qualitative behavior of the STM in the spectroscopic
mode, as will be seen below.

Now that we have described the two systems between
which the tunneling occurs, we can use Bardeen's ap-
proach to calculate the current. Bardeen defined a right
and a left system and found that the transition probabili««

ty for an electron to tunnel between them is '

iA aq, ay,
MRL

2 J PR gg. 4L

where gR and gL are the right and left eigenfunctions of
the corresponding Hamiltonians, S is any surface that
completely separates the right from the left region, m is
the mass of the electron, and g is a coordinate normal to
S. In the tight-binding approach, both wave functions
are a sum of terms at the atomic sites. The total M&L,
better called MTs for tip-sample system, will then be the
sum of the individual M&2 of each tip-sample pair of
atoms —called 1 and 2. Let us begin by calculating M&2.

i(mI8I+m&8&+m&8&)Cem =e

where 8, =2k
l nlN et.c., in bulk, k, being an integer.

The presence of a surface perpendicular to the z axis
modifies the values that 83 can take. Furthermore, if a
and P are the Coulomb and resonance integrals of bulk
and a' is the Coulomb integral of the atoms on the sur-
face, then the parameter z = (a —a') /P controls the
behavior of the sample states. In this case, the tight-
binding coefficients are given by iB 2%2

Mrs= 3i2 J dy e
m(a, ar)

—B /a T
—r'/a,

1 1 B ~mcosp
siny,

QT Q P'

(l0)

where the surface S was considered to be a sphere of ra-
dius B around the adatom.

This integral is readily evaluated in closed form. Un-
der our assumptions, tip and sample are clearly separated
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FIG. 1. Sagittal cross section of the atomic arrangement for

the tight-binding and MTs calculations.

r'=Qr +s —2rs cosy,

where Q, and Q, are the decay lengths of the tip and sam-

ple wave-function basis, respectively, and, at the surfaces,
for the following numerical results, they will be taken to
be 0.4 and 0.35 A, to represent tungsten and silicon
wave-function decays, respectively ' (since we use
spherical wave functions, this can be considered as a fit to
the real wave functions and therefore has limitations).

The corresponding transition probability becomes
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objects. This can be accomplished if, for example, the
distance d between tip and sample is large compared with

a, and a, . In that case, the transition matrix element
takes the form

where 3 is a constant given by ih B(1+a,/aT)exp(B/
a. B/aT)/[m(aTa ) ~ ]

As we mentioned before, to calculate Mzs we have to
sum the M, 2's over the surface sites. The positions of the
atoms on the sample can be parametrized as (m, a+xo,
m2a+yo, —m3a) where a is the lattice parameter. The
coordinates (xo,yo} correspond to the place on the sur-
face above which the tip is placed. The wave function of
the tip will be truncated from the full tight-binding ex-
pansion as

~T adatom t(atomic( (12}

This means that we are considering for the calculation of
the current only the tip adatom and the sample atoms.
This is a reasonable assumption since M&2 decays very
fast with the distance between atom 1 and atom 2. One
can reasonably ask why the other electrons from the tip
surface do not contribute appreciably to the current since
there are so many of them. It has been argued ' that the
effective tip surface has about 20X20=400 atoms. Each
one of those atoms are about 10 A from the sample sur-
face. The adatom instead is about 2 A away. If the rate
of decay of the current with distance is assumed to be
about 63%/A (Ref. 32), then the current of all the tip
atoms would be 13% of the current via the single ada-
tom. This is a worst-case scenario. If a discrete state is
solely responsible for the tunneling current, its coeScient
will account for a very large percentage of the total elec-
tron probability.

The total current from tip to sample is then

'" f fdI, ,i,dv„,[8(EF~ E, ) —8(EF-—~" E„—)]
t&p

X5(E E„—V—)C„gC (m)e
&sample tip tip ) sample

(13)

where V is the voltage applied to the tip. The sample is
assumed to be grounded. The parameters iM and v are the
quantum numbers necessary to completely describe the
system, and C„andC„the TB coeScients for sample and
tip, respectively.

We solved the system numerically for finite N (it was
done for 3, 5, 7, 9, and 11 until the value of the current

converged) so the integral in v will be written as a sum.
The continuum sample energy spectrum is exactly
known, therefore the integral in sample states will
remain, and we make the change of variables from p to
E„,and isoenergy surface parameters.

After integration in E„,

2mea2 "+' dSHI= g C k [e(E ' —Ek ) B(E ' " E—
k

—V)] g—Ce(m)eTip ~p~ ~

F k~, F kr,
Tlp

(14)

where S is the isoenergy surface in 8 space at E, =Ek + V —a, .
Equation (14) will serve as the starting point to obtain I-V and o-V curves. Therefore, for consistency, we ask how

does this result fit with those obtained in the past by others. One sees that Eq. (14) is at once recognized as a sum of
sample LDOS at the energy E, =Ek't'+ V—a, weighted by the tip wave-function probability at the adatom center,

8 2 g2 %+1r Ck[e«F Ek "} e(EF -Ek" —V)lP«—k "+V—
k=1

where p is the sample LDOS. This is indeed in agree-
ment with work done on metals, ' and in general at low
voltage, and with the closely related work of Ferrer,
Martin-lodero, and Flores, "and Sacks and Nogera.

As we mentioned earlier, the model previously de-
scribed provides for the existence of tip states that have
energies outside the continuum band. For a range of
voltages, those states will contribute alone to the total
current and therefore will provide a direct measurement
of the LDOS of the semiconductor within the conduction
band. Whether an appropriate tip can be chosen and
made, so as to actually realize those discrete states, is an

open issue. However, it is not unreasonable to expect
discrete levels for the case in which the electron could be
somewhat confined around the adatom. These discrete
states may have a high degree of localization, but are not
completely localized around the adatom, and its wave
function extends into the bulk. This an electron in that
state has a nonzero probability of being in bulk, and its
"tail" provides for the existence of a nonzero current.

In Fig. 2, the I-V curve for the case in which a discrete
tip state exists below the tip continuum band is shown.
The zero-voltage energies of tip and sample correspond-
ing to that plot are shown in Fig. 3. This corresponds to
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FIG. 3. Energy-level diagrams for the tip and the sample for
zero applied voltage for the discrete case. The voltage conven-
tion is such that as the bias voltage increases, the tip energy lev-

els more upwards with respect to the sample energy levels. The
dark regions represent occupied states. The horizontal line at
the bottom of the tip diagram corresponds to the discrete level.
The continuum case energy diagram is obtained from this one
by just removing the discrete state.
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discrete state contributes to the tunneling with the largest
TB coe5cient, its existence makes the I-V curve a map-
ping of the sample LDOS as can be seen by comparing
the solid line of Fig. 2(a) with 2(b).

In Fig. 2 we also show the I-V curve for the continuum
case. We see that the current for this last case is about
three orders of magnitude smaller than the discrete case
current. This is due to the fact that the contribution of
the adatom atomic wave function in the sample-tip space
gap is much larger in the discrete case, when there exists
some localization.

Another issue we wish to address is the relationship be-
tween the dI/d V vs V curve, and density of states. This
is important since many authors have argued that this
plot, and not I-V, is proportional to the LDOS.

Using Eqs. (1) and (2), and transforming the last ex-
pression into an integral in Cartesian coordinates in 0
space,

FIG. 2. (a) Plot of current vs voltage for the continuum
(dashed line) and discrete (solid line) cases. (b) Sample LDOS.
The scales in (a) and (b) have been chosen appropriately so that
they can be easily compared.

a sample that has a band gap corresponding to that of sil-
icon.

As the voltage increases from zero, the current remains
zero until the tip Fermi level is raised to the bottom of
the sample conduction band. This happens when
EF+V=E, '"' . At this point the current starts to in-

crease monotonically up to the moment in which the top
of the tip continuum band occupied levels with the top of
the sample conduction band. Now the current decreases
because fewer and fewer tip states are available for tun-
neling. After all the states from the tip continuum have
gone out of the tunneling range, the discrete state is the
only one responsible for the current. Moreover, since the

I

ct 0)8|92
y f .

' ' [6(E —E '~) —e(E —E„'~—V)]
2P, „,sin 83

(16)

The integral of the previous expression is done in the
domain —~&0, &~, —m &02&~ for which

The sum over sample sites has been reduced to a sum
over the sample surface sites. This change shall not affect
the physics since the tunneling is due mainly to sample
atoms near the tip, and the 03 component of the TB sam-
ple coefficient, which, in general, is sin[(N —m3}83],

Ek'~+ V —e, —cosO, —cos02 ~ 1 . (17)
2P,

i(m
&
0&+m282) . —

( V' d +(am ~+xo) +(am&+yo) ]/a
XCk e ' ' ' ' sin(N83)e

m&m2
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reduces to a simple form due to the fact that m3 =0.
Notice in the expression for the current that we have

written explicitly the distance between the tip atom and a
generic atom. There, xo and yo are the in-plane coordi-
nates of the tip atom and thus the spectra vary with the
lateral position of the tip. In what follows, we show re-
sults for the tip positioned above a surface atom.

EI, '~+ V —u,
sin8 = 1—

3 2P 1 2
—cos0 —cos8

2 1/2

and from Eqs. (2) and (5) we can write explicitly sin(N83),

In order to obtain an explicit dependence of the
current on the voltage, we use Eq. (2} to get

sin(N83) = 1— Ek' +V—a, —cos8, —cos82
E '+V —a,

1+z +2z —cos8i —cos8z

The derivative of I with respect to V can be expressed in terms of two different contributions,

=sr i( V)+o.z( V),dI
dV

(20)

where a.
&

comes from the derivative of the integrand term with respect to voltage, keeping everything else constant, and
0 2 from the derivative of the electron statistical distribution term, keeping the other terms fixed. There could have been
an extra contribution to dI/d V coming from the derivative of the limits of integration with respect to voltage, but it
turns out to be zero. o 2 is the usual dI/d V term, in which the current increases with voltage due to the states at EF V—
that begin contributing to the tunneling. 0.

&
depends on the voltage dependence of the tunneling probability —usually

unknown. ' In our model we do know this function explicitly and were able to evaluate the corresponding derivative.
The first term has the form

2me2g 2 1

(2P )z

Xg c„fd8, d8 [B(E E„")B—(E E—„'"V)—]—
cotan83 2z sln83 f(~ Q +~ 8 )

—(Qp~+p~ )/p

1+z +2z cos8~ (1+z +2z cos8&)
(21)

The function cr i( V) is shown in Fig. 4. We see that this
function presents points at which the slope is discontinu-
ous. These discontinuities come from the Van Hove
singularities of the sample. It can be seen from that
figure that both curves resemble the sample DOS (see Fig.

5}for voltages between V, and Vb. We will now analyze
to what extent this resemblance can be taken as a real re-
lationship between o, and DOS. Let us first consider the
discrete case. For voltages close to V, the integration in
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FIG. 4. Conductance vs voltage curves. The solid line is the

discrete case and the dashed line is the continuum case.
FIG. 5. Sample DOS. The horizontal axis is labeled in eV

and adimensional units corresponding to e, .
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Eq. (21}is in the small region around the points for which
sinO& =0, and therefore this equation simplifies to

o = c [B(E E—'
) B—(E E—'"—V)i

2me A 1 2 TL TL

(2P )2
k F k F k

( —1) '( —1) '
1+z

1 2

(22)

where the sum reduced to the term k corresponding to
the discrete state, at which the electron has about 90%
probability of being. The integral in Eq. (21) is propor-
tional to the surface integral in 8 space of the inverse of
the gradient of the energy, that is, the global density of
states DOS.

cr &( V= V, }~ DOS(e = —3) .

Following a similar reasoning for voltages close to Vb,

a, ( V= V~ ) =C, +C2DOS(e, = —1),

(23)

(24)

where C& and C2 are constants.
A smooth, monotonically increasing function cr&(V)

that has an infinite slope at V, and Vb and satisfies Eqs.
(23) and (24) must closely follow the shape of DOS(e, ) for
—3~a, ~ —1. For voltages between Vb and V„corre-
sponding to —1 & e, & 1, there are no critical points in
the region of integration and the integrals of cotan(83)
and 1/sin(83) are different. At V„we can see that the
slope of the conductance is infinite, corresponding to
another Van Hove singularity. Since cr, (V, )=0, the
shape of o &( V) for V, & V & Vz cannot and does not fol-

low the corresponding DOS shape.
Let us next analyze the continuous case. Immediately

one can see that for the region of voltages with negative
conductances, there does not exist any straightforward
shape relationship between the conductance and DOS.

FIG. 7. Distortion of the tip adatom wave function as a re-
sult of an applied electric field.
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FIG. 6. Tip LDOS. The dark region corresponds to the oc-
cupied states below the Fermi energy.

FIG. 8. Current vs voltage. The dotted-dashed lines corre-
spond to the results in Fig. 2(a). The solid lines correspond to
the results calculated with the wave function from Fig. 7. (a)
Continuum case. (b) Discrete case.
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For V, & V& V„the shape of o,(V) seems to follow

DOS( —3 & e, & 1). For V, & V & Vb, an argument similar

to the discrete case holds, in which now the role played

by the discrete state is taken by levels close to the Fermi
energy of the tip, since they are the ones that have the
largest LDOS (see Fig. 6}. For Vb & V & V, we see a slow-

ly decreasing o,(V). This is roughly the product of the
I

maximum of the sample DOS (taken at e, = —1) times
the LDOS of the tip for the tip state whose energy is
aligned with e, = —1. The slow decreasing behavior of
cr

&
in this region is then an effect of the decrease of the tip

LDOS with decreasing energies. So in this region, o'(( V)
is a map of the tip states and not the sample states. The
second term in dI /d V is

2 stn (+{3) ((n, 8,
+n 8) —( 1 + )/n,

5(E~ E„—'~ V)—f dg, d8z . g e ' ' ' 'e
Ck I' 2 . e 8

17 2

Due to the presence of the 5 function, the sum in k is re-
stricted to those values for which Ek =E~—V. The in-

tegral in Eq. (25) at those energies is the sample LDOS
evaluated at e, corresponding to E, =Ez. Then o 2( V)
vanishes because there are no sample states in the band
gap.

crease in the current. This is due to the enhancement of
the tunneling probability as the effective barrier height
decreases with increasing voltage. Since within our sim-

ple assumption for a, (V) both currents are of the same

order of magnitude and have similar shapes, the argu-
ments presented in the previous sections hold true.

III. EFFECT OF THE FINITE BARRIER SIZE

a,
a, (V)= 1/2

2 rnev a,'1—
$2

(26)

In Fig. 8 we show a comparison of the I-V curves be-
tween the "zero-voltage wave function" case and the case
in which Eq. {26)was used. We observe that the effect of
the electric field in the wave function produces an in-

The results of the previous section provide a back-
ground relevant to interpret STS experimental data.
However we did not take into consideration the deforma-
tion of the wave function in the vacuum due to the
sample-tip electric field. The reason for this is that the
barrier was implicitly considered to be very tall, so that
variations in the voltage change the energy levels but do
not change the spatial shape of the wave functions. For
semiconductors the work function is a few eV, the same
order of magnitude of the tip-sample voltages (times e}
used in STS. Therefore, in practice the change of the
shape of the wave functions has to be considered. One
knows that the smaller the effective barrier, the more the
electron adatom wave function will elongate towards the
sample. In order to gauge the effect of this elongation we
work out the following simple model.

We consider the situation as in Fig. 7. There, it is
shown in a simple way how one can make the wave func-
tion decay less in the barrier region than in the tip-bulk
region. A simple calculation in the context of a hydro-
genic atom shows that the "decay length" as a function
of applied voltage, a, (V), is given in terms of a„the
zero-voltage decay length, as

IV. CONCLUSIONS

We have introduced a model that serves to understand
the relationship between I-V curves and densities of states
for semiconductor samples. This was done within the in-

trinsic constraints dictated by an s-wave band tight-
binding approach, and Bardeen's theory of tunneling.
The tip was considered to be a system of an atom ad-
sorbed on a solid surface. A feature of our results is the
introduction of results for a tip configuration in which a
discrete state exists below the continuum of the
conduction-band states.

We found that the I-V curve in the discrete case resem-
bles the sample LDOS. In the continuous case, the I-V
curve is a convolution of tip and sample LDOS. On the
other hand, dI( V)/d V follows the sample DOS for volt-

ages that scan sample states from the bottom of the band
to the first Van Hove singularity. From there to the next
singularity, dI( V) /d V for the continuous case follows the
shape of the tip LDOS.

Finally, we presented a simple way in which the ada-
tom wave-function barrier penetration affects the I-V
curves and we found that although it produces an in-

crease in the current, the effect is not large enough to
change our understanding of the underlying physics ex-
plained above.
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