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Scattering from a localized potential of arbitrary strength is found for weakly interacting elec-
trons. Poor man's renormalization group procedure allows us to calculate the renormalized transmis-
sion amplitudes at any energies. Simple formulas that describe the conductance at any temperature
are derived. In the presence of the electron-electron backscattering, the low-temperature conduc-
tance deviates from the results of Luttinger liquid theory. In particular, the temperature dependence
of the conductance may become nonmonotonic. In the presence of a magnetic Beld, backscattering
gives rise to a peak in the differential conductance at bias equal to the Zeeman splitting.

I. INTRODUCTION

Recent advances in semiconductor technology have
renewed interest in the transport properties of one-
dimensional (1D) electron systems. By conFining a high
mobility two-dimensional (2D) electron gas within a nar-
row channel, a quasi-1D electron system can be obtained.
It is one-dimensional in the sense that the motion of the
electrons is restricted to be along the channel. The trans-
verse degree of freedom is quantized as a standing wave.
The transverse energy levels are well separated due to
the quantization in the conflning potential well, while
the longitudinal motion along the channel has a continu-
ous spectrum. For a system with low Fermi energy, only
the lowest level is populated.

VVhen a clean short channel is connected to two exter-
nal leads, the two-terminal conductance is found to be
quantized in units of e jvrh. This is due to the fact
that the electron transport is ballistic and the transverse
mode number is conserved as electrons move through the
channel. A calculation of the conductance of a channel
smoothly connected to the 2D leads with variable width
shows that the adiabatic transport of electrons along the
channel is a very good approximation. Deviations of con-
ductance from the quantized values due to the tapered
ends are exponentially small.

In longer channels, however, ballistic transport is de-
stroyed by the impurities. Quantization of conductance
breaks down due to the backscattering caused by the ran-
dom potential. It is reasonable to expect that a long 1D
channel with a single impurity can be formed in a suf-
ficiently clean system. The transport properties of the
channel are then determined by electron scattering on
the impurity. For noninteracting electrons the conduc-
tance of such a system can be related to the correspond-
ing transmission coeKcient by the Landauer formula.

Electron-electron interaction alters the properties of
the 1D system qualitatively. To explain the properties
of some organic quasi-1D conductors, extensive studies
of transport properties of 1D electron systems were car-
ried out in the 1970s, and yielded a number of inter-

esting results. It was found that the Drude conductiv-
ity of a 1D metal varies as a power of temperature.
Recently, Kane and Fisher, and subsequently Furusaki
and Nagaosa, investigated the transport of a 1D inter-
acting electron gas in the presence of a single scatterer
within the framework of the Luttinger model. The limit
of strong interaction was considered in Ref. 12. It was
shown that the conductance varies as a power of temper-
ature at T ~ 0. The corresponding exponent is positive
for repulsive interaction. This implies perfect reflection
at zero temperature, no matter how strong or weak the
barrier is. Theory shows that tunneling into a ballis-
tic wire with an arbitrary number of transverse modes
is also characterized by power-law asymptotics of tunnel
density of states at low energies. The corresponding ex-
ponents were expressed explicitly in terms of microscopic
electron-electron interaction. All these and other results
(e.g. , Refs. 14 and 15) have provided further insight into
the understanding of the interacting 1D electron system.

The purpose of this paper is to study the transport
properties of 1D interacting electron gas in the presence
of a single scatterer at any temperature. Our approach
for studying the transport properties will be based on the
Landauer formula relating conductance and the trans-
mission coefBcient. We show that the scattering on the
impurity is renormalized by the electron-electron inter-
action due to the formation of a Friedel oscillation near
the barrier. These renormalizations are treated using
a simple renormalization-group (RG) method similar to
the poor man's scaling method proposed by Anderson
for the Kondo problem. This method is equivalent to
the summation of infinite subsequence of the most diver-
gent terms in the perturbation expansion in the electron-
electron coupling constants. This certainly restricts the
applicability of the method to the case of weak interac-
tion. However, in this limit, we are able to obtain a num-

ber of features that cannot be found in the framework of
Refs. 10 and 11. In the Luttinger-liquid theories, barriers
were treated only in two limiting cases: weak barrier and
strong barrier. The temperature dependence of conduc-
tance was found only near the fixed points corresponding
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to perfect transmission or perfect refiection. The tech-
nique does not allow us to describe the crossover between
these two limits. Also, electron-electron backscattering
which turns out to be responsible for qualitative mod-
ification of the system properties was neglected in the
Luttinger-liquid theory. In our theory, scattering on the
barrier is treated exactly for arbitrary barrier strength.
The crossover behavior of the conductance between the
fixed points is explicitly expressed in a simple formula.
The backscattering is taken into consideration. It renor-
malizes the electron-electron interaction, which results in
deviation from the Luttinger-liquid behavior and a pos-
sible noumonotonic temperature dependence of the con-
ductance. Backscattering is also responsible for a peak
in the difFerential conductance of the 1D system in the
presence of a magnetic field. This peak occurs at bias
equal to the Zeeman splitting.

In the following sections, we present in detail the afore-
mentioned results and techniques. In Sec. II we give an
illustrative derivation of RG equations for spinless elec-
trons that allow us to find the transmission amplitudes.
In Sec. III a rigorous derivation of RG equations is given
for spin-2 electrons. In Sec. IV the temperature de-

pendence of the linear conductance and the nonlinear
I-V characteristics at zero magnetic Beld are presented.
In Sec. V the singularities in I-V characteristics in the
presence of a magnetic Beld are predicted.

A(*) = 4.(*)+f &v&.(*,v)

x dz VHzby —z +V,„yz I z.

The Hartree and exchange potentials are defined as:

vs(z) = f dyv(z —y)n(y), (4)

V,„(z,l) = —V(z —&) ) gq(9)Qq(z),
)q)&aF

by other electrons in the Fermi sea. This potential and
the barrier potential U(z) act together as an eff'ective

barrier for electron scattering. The single-electron wave
function can be found as a solution of the Schrodinger
equation with this efFective barrier. Then the transmis-
sion coefficient can be calculated.

The extra potential consists of two parts: the Hartree
potential VH(x) determined by the electron density in
the system, and a nonlocal exchange potential V,„(z,y),
which is due to the identity of electrons. For a weak
interaction one can treat the additional potential as a
small perturbation. Its efFect on the single-electron wave
function can be found by the Green-function method.
The equation for a single-electron state Qi, is

II. TRANSMISSION AMPLITUDE
IN A SPINLESS 1D ELECTRON GAS

In this section, we consider a 1D gas of spinless elec-
trons scattering on a potential U(z) localized at the ori-
gin. In the absence of interactions, the Hamiltonian is

HD ——p /2m + U(z) and asymptotic wave function far
from the barrier U(z) has the form

e'"*+r e-'"* z & O
( ) =

m2- t.""* ' *)0

(2)

The wave vector k is defined to be positive. For a sym-
metric barrier we have ro ——ro and to ——to.

Scattering on the barrier is modified by the electron-
electron interaction. Below we treat these corrections
using perturbation theory.

A. Born approximation

In the lowest-order perturbation theory in the interac-
tion potential, we can neglect inelastic processes in which
electrons above the Fermi level lose coherence by excit-
ing electron-hole pairs. Within this approximation, the
many-body electron state can be described by the Slater
determinant of single-electron wave functions. Each elec-
tron is afFected by an extra average potential produced

where V(z —y) is the electron-electron interaction poten-
tia, n(y) = g~ ~&& ~g~(y)~ is the electron density.

In the first-order Born approximation, g~ in the right-
hand side of Eq. (3) and in Eqs. (4) and (5) is replaced
by the unperturbed wave function Ps. The unperturbed
electron density has the form

,

I
n, + .' f,

" d—IRe(.„"e '*".[,-»0. (6)

From Eq. (6), at large distances ~z~ )) k+ the distur-
bance of density Sn(z) = n(x) —no caused by a symmet-
ric barrier decays as

b'n(z) sin(2k' ~z~ + arg rp).
27r z

1
gg(z) = tge'", x m +oo,

27r

It follows from Eq. (4) that the oscillations of density
(6) produce an oscillating Hartree potential. It is com-
monly referred to as the Priedel oscillation; see Fig. 1. In
contrast to the three-dimensional case, where the density
oscillation around an impurity decays as 1/R (where R
is the distance from the impurity), in 1D it decays only
as 1/~z~. This asymptotics of the Hartree potential obvi-
ously leads to a logarithmic divergence of the reflection
amplitude at k ~ k~ found in the Born approximation.

To find the correction to to, we consider a wave incom-
ing &om the left with wave vector k. The modified wave
function @&(x) must have the following asymptotics:
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V(z) ~

FIG. 1. Total scattering potential. The central peak is the
bare potential of the barrier. The wings represent the Friedel
oscillation induced by the barrier.

] t ik(x —tI) y(0Gk(x, yl =(

The transmission amplitude resulting from Eq. (3) is
then

/e 1—(1 (Tprptp + tpr p rp) 1I1
2 k —kF d

(10)

where d is the characteristic spatial scale of the inter-
action potential V(z). We introduced a dimensionless
parameter o. that characterizes the strength of the inter-
action:

0! = 0,'2 —0!i,

where t I, is the modified transmission amplitude. Thus
to find the correction to the transmission amplitude, we

only need the asymptotic form of the Green function
Gy(z, y) at z ~ +oo. Calculating it with free wave func-
tions, we find

Friedel oscillation on the left-hand side with amplitude
—zo'&p»(1/lk —kFld). Finally the electron penetrates
the barrier with amplitude to. Similarly, the toro*ro term
is the product of the amplitudes of the following pro-
cesses: an electron first penetrates the barrier with am-
plitude to, then it is reHected back to the barrier by the
Friedel oscillation on the right-hand side with amplitude
—znrp*ln(1/lk —kFld), and eventually reflected by the
barrier to the right with amplitude ro. The total first-
order correction to the transmission amplitude is the sum
of the amplitudes of the two coherent first-order processes
described above.

Our first-order result (10) has a logarithmic divergence
at k —+ kF, no matter how small the coupling constants
(12) are. This is a typical infrared divergency in 1D. It
indicates the inadequacy of the first-order calculation at

11

We calculate the correction to the transmission ampli-
tude up to the second order in n, that is we use QI„.(z)
obtained in the first-order calculation (8) as our new wave
function in the right-hand side of Eq. (3) and repeat our
previous calculation. The result is

= tp —t pit pl o! 1I1
2

(k —kF)d 2
—-apl&pl (2ltpl —I«l )

1

(k —kF)d

In the above formula, we have only kept the most di-
vergent terms. In the second order the most divergent
term has the form [nln(1/lk —kFld)] . Calculation up
to this order does not remove the logarithmic divergence.
Moreover, we expect that the most divergent term in the
nth order has the form [n ln(1/lk —kF ld)]", which means
that a perturbative calculation to any finite order would
not solve the problem. Thus, we will sum up the most
divergent terms in all orders. This can be done by the
renormalization-group method developed below.

V(2kF)
0!i

2' hvF 2' hv F
(12)

Here V(q) is the Fourier transformation of the interaction
potential, and vF is the Fermi velocity.

The zero-momentum Fourier component V(0) origi-
nates from the exchange term, while V(2kF) arises from
the Hartree term. In the limiting case of a short-range in-
teraction, since the electrons with the same spin cannot
occupy the same position according to the Pauli prin-
ciple, the interaction should have no e8'ect. So in this
case, contributions from the Hartree and exchange terms
should exactly cancel. This agrees with our result, since
V(q) is constant for a short-range potential. We also no-
tice that repulsive interaction [positive V(q)] suppresses
transmission.

The first-order result (10) for the transmission ampli-
tude has a simple physical meaning. The term contain-
ing roroto can be interpreted as follows. A plane wave
coming from the left is reQected by the barrier with am-
plitude ro. It is then scattered back to the barrier by the

B. RC in real space

As found in Sec. II A, there is a logarithmic divergence
even in the first order correction to the transmission am-
plitude. Such a nonphysical divergence demonstrates the
inadequacy of a simple perturbative calculation, which
does not take into account the renormalization of the
effective barrier. Since the Hartree and exchange poten-
tials depend on the reHection amplitudes, they are modi-
fied along with these amplitudes. In a region (—l, l) close
to the origin, the electrons are scattered by the bare bar-
rier with transmission amplitude to and produce an extra
potential that is proportional to lrpl. Perturbative calcu-
lation for the transmission amplitude is carried out with
the bare amplitudes. Such a calculation is justifiable as
long as the correction from the perturbative calculation
is indeed small, which is true for not too large &, such
that n ln(l/d) (( l. Beyond this distance, the whole re-
gion (—l, l) enclosed should be considered as an effective
barrier to the electrons outside. This effective barrier
is characterized by the now renormalized amplitudes r
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ti = to —~to(1 ltol ) lnA

with A = l/d » 1.
We then go to a larger scale, taking the region (

—l, l)
as a composite scatterer. Using the renormalized trans-
mission amplitude and correspondingly renormalizing the
additional Hartree and exchange potentials, we can re-
peat the above calculation for this next scale Al. We
then go to the next larger scale, which is A l, and so on.
In general, the iterative renormalization of the transmis-
sion amplitude after n steps of scaling to larger distances
can be found from

t„„=t„—nt„(1 —~t„~') ln A. (15)

This iteration procedure should be stopped at length
scale 1/~k —kF ~, beyond which the scattered electron
loses phase coherence with the Friedel oscillation, and
the transmission amplitude is not renormalized any fur-
ther.

In the continuous limit, Eq. (15) becomes

and t. With these amplitudes, we can find the Hartree
and exchange potentials in the outer region. Then the
perturbative calculation can be carried out for a larger
spatial scale. In order to ensure that perturbation theory
is valid in every step, the above renormalization proce-
dure is done repeatedly for larger and larger scales.

This idea leads to the following formulation of the
problem. We start with a region of length 2l centered
around the barrier. The scale l is chosen in such a way
that it is much larger than d but not too large so that
1 (& ln(l/d) &( o. i. The modified transmission ampli-
tude due to the electron-electron interaction in the region

(—l, l) can then be found by perturbation theory,

tude to is caused by the interaction with the Fermi sea
electrons. Since the maximum momentum transfer in
a scattering event is determined by the spatial scale d
of the interaction, only electrons in the energy strip of
half-width Dp ——hv~/d near the Fermi level contribute
to the renormalization of t. In the finite energy range
(Ey' —Dp, Ep' +Dp), the electron dispersion relation can
be approximated to be linear:

e(k) = Ave (ski —kp),

States outside this range are unimportant and neglected.
The bandwidth cutoff Do defines the energy range for
relevant electron states.

We now transform our problem to a similar one with
smaller bandwidth cutoff, D = Dp/A, where A ))
The two problems are equivalent if we simultaneously
renormalize t in order to take into account the interaction
with the states excluded by this RG transformation. The
renormalization of 40 found in the Born approximation is

gt(, ) = ~t, (1 —~t, ~') in A, (19)

where e = E —E~ is the electron energy measured from
the Fermi level.

We apply the RG transformation again, reducing the
bandwidth D ~ D/A step by step until all the interme-
diate states outside the energy range (—~e~, (e~) are elimi-
nated. During each step of rescaling the cutoff, transmis-
sion amplitude t is renormalized according to (19) with
4p being substituted by the modified t Rom the previous
step. The accumulated effect of these small renormal-
izations may be found as a solution of the differential
equation

(L/d)
= ( I I )& (16)

dl„(D /D)
= -~t(1 —ltl ). (20)

where L is the current length scale. Integrating Eq. (16)
from L = d to L = 1/~k —ky

~

and using boundary con-
dition t~L, —g = tp, we find the renormalized transmission
amplitude

to i(k —k~)di
&I =

rpl + Itpl /(k —kg)d

The expansion of this formula up to the second order in
n coincides with formula (13).

The renormalization procedure should be stopped at
the scale D ~e~, because at lower energy scales the per-
turbative correction is no longer logarithmically large.
Thus we integrate this equation from D = Dp to D = je~

and use the boundary condition t(e)~~—~, = tp. We
obtain the renormalized t identical to (17). The trans-
mission coefficient 7 = ~t~ is then

+
I
~/Dp I"

Zp+ 7;[./Do[" '

III. ENERGY SPACE RENORMALIZATION
GROUP FOR SPINLESS

AND SPIN- —ELECTRONS

where jo ——1 —Ro ——~tp~ is the bare transmission coef-
ficien.

A. Spinless electrons B. Electrons with spin

In Sec. IIB, the RG is formulated as a scaling proce-
dure in real space. In this section, we will demonstrate an
equivalent RG procedure in energy space. This method
allows generalization to the case of spin-& electrons.

The renormalization of the bare transmission ampli-

In Sec. II we have considered a system of spinless elec-
trons; such a system can be realized by applying a large
magnetic field to lift the spin degeneracy. For systems
with spin degeneracy the above theory must be revised
to take into account the difference between forward and
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backward scattering processes. In the spinless case, since
all electrons are identical, there is no diff'erence between
the final states that result from the two processes. How-

ever, final states become distinguishable for real spin-2

electrons. This difference leads to the renormalizations
of the interaction constants in the spin-2 case; see, e.g. ,
Ref. 17. The related phenomena are studied within the
framework of the following model Hamiltonian:

1
Hint dkdpdq g g] GJ ~~ ~ Gp+2kp+q, cr'bk —2k~ —q,a + g2G&~6 ~l bp+q tr GA; —q

Crt'

+—g4 (a& a„,ap+q &~Q& q~—+ bi, ~bp&tbp+q ~& b& —q ~) (22)

g, = V(2kF), g2 = g4 = V(o). (23)

The renormalizations caused by the interaction may be
found by the RG method. The bandwidth cutoff D serves
as the scaling parameter in the problem. It is reduced to
D —bD at each step of the renormalization. By requiring
the invariance of the scattering matrix for the states in
the narrow band of half-width D —bD under this RG
transformation, we obtain the Hamiltonian

Here a& and b~& are the operators creating, respec-
tively, right- and left-moving electrons with momentum
k and spin o. The dispersion relation is taken to be linear
within a band of half-width Dp. Interaction constant gi
describes the backscattering, while g2 and g4 character-
ize the density-density interaction between the electrons
moving in the opposite directions and in the same di-
rection, respectively. Unrenormalized constants gi, g2,
and g4 are identified with the Fourier components of the
interaction potential,

ager = dq I Cqtr + Bg dqtr )

b Ic dq C&q dq + Bq& cq

(25)

I

sisting of the kinetic energy and the barrier potential is
diagonal. The effect of scattering on the barrier is in-
corporated exactly in the basis. This is the main reason
for using the scattered wave basis. The RG transforma-
tion is then performed for the interaction Hamiltonian
in this representation. We reduce the bandwidth cutoff'

step by step, each step accompanied by renormalizations
of the transmission amplitudes and interaction constants.
We will find the differential equations for these stepwise
renormalizations. The renormalized transmission ampli-
tudes are then calculated by integrating these equations.

To transform the Hamiltonian to this basis, we intro-
duce operators ct& and d~& that create electrons in states
(1) and (2), respectively. Operators (a, b) and (c, d) are
related by unitary transformation:

H „,(~) = PH;„,P + PH;„t(1 —P) H;„tP +
4) —Hp

(24)

which has the same scattering properties as the origi-
nal one in the narrow band. Here P is a projec-
tion operator into the subspace of the eigenstates of the
quadratic Hamiltonian Ho without any excitations in the
high-energy range (D —bD, D). As we will see, the first
term in Eq. (24) generates additional terms quadratic in
fermion operators in the transformed Hamiltonian, while

the second term gives rise to quartic terms leading to
renormalizations of the interaction constants.

We now calculate the renormalizations of the transmis-
sion amplitudes using the above model interaction (22).
The procedure is as follows. We first transform (22) to
the basis of the wave functions (1) and (2) by a unitary
transformation. In this basis the Hamiltonian Hp con-

I

where

q z

2m

C
qcr

k —q+ i0+
I
qa

k —q —i0+ '

1

k —q+ i0+

k —q —i0+

~qcr

k —q —z0+

(27)

(29)

~q~ z qtr

2' k —q
—io+

Here r, t, r', and t' are reQection and transmission ampli-
tudes defined in the way similar to the bare amplitudes
in Eqs. (1) and (2).

Under transformations (25) and (26), the interaction
Hamiltonian (22) becomes

i
H;„t —— ) dqi dq2dqsdq4 g,

2 qi + q4 —q2 —q3+ i0+

(t ct + r dt )dt, (tq cq + r dq )dq

qi + q4 —q2 —q3 —zO

+g2
qq + q3 —q2 —q4+ i0+

(t,' ct +r," dt )d,', dq, (tq, cq, +r,' d„)
qi + q3 —q2 —q4 —zo+
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The g4 term is not written explicitly, since it only contributes to the renormalization of the Fermi velocity and does
not affect the interaction constants nor the reHection and transmission amplitudes. Thus the renormalizations of the
transmission amplitudes are caused by the density-density interaction g2 and backscattering gz between the left- and
right-movers.

We now reduce the bandwidth to Do —bDo. The RG transformation of the Hamiltonian is given by Eq. (24).
The new Hamiltonian defined in the narrow band is obtained by eliminating the degrees of freedom in the energy
range (Do —8Do, Do). This is done by replacing any product of two fermion operators in II,„~ that do not belong
to the narrow band by its average value. The first term in H; t generates additional quadratic terms in the new
Hamiltonian. They correspond to the Hartree and exchange potentials created by the electrons in the eliminated
band. In the absence of a barrier these terms are diagonal and yield only a renormalization of the electron dispersion
relation. In the present case the quadratic part of the Hamiltonian contains also nondiagonal terms:

H~ =) f dkÃ(k)(c„ck +di da )

Z

2 ) (gi —ggb~~ ) dkdp (ti, r, —ti, r' )cs dp —H.c
8m2 D +ok +op'

COACT

(32)

where e(k) is the renormalized dispersion relation; q is
the wave vector of an electron with energy —Dp.

This part of the Hamitonian can be diagonalized by
slight changes of r, t, r', and t' in transformation (25)—
(30). These changes correspond to the renormalizations
of the reHection and transmission amplitudes under the
RG transformation. In the case of a symmetric barrier
(r = r'), all these renormalizations can be expressed in
terms of the corrections to t (e),

- 3/4 a2 —a1/2
tp 1+2aq ln ~

ll
- 3/2

&o + 7o 1+2c, ln ~
Do

)
2a2 —a1

(37)

the Hartree potential has an extra factor of 2. Taking
into account the ( dependence (35) of gi and g2 and
integrating Eq. (36) from ( = 0 to ( = 1n(Do/~e~), we
find

st. (~) = g' g't. (r.~'-
2vrhvF

g& . ~Do
t~f'~F

2xhvF Dp + e

(33)

where the parameters o.i and o.2 are defined by Eq. (12).
The above formula is different from the spinless case due
to the renormalization of interaction constants caused by
the backseat tering.

The second term in Eq. (24) generates the renormal-
izations of the interaction constants. A straightforward
calculation gives the differential RG-equations for these
constants, and yieldsi the cutofF dependences:

V (2kF)
1 + v(2k' )('

vrhv F

g2(() = V(0) ——V(2k') +—1 1 V(2k' )

gi(() = (34)

(35)

(~) 2 (~)
d( 2xh.v~

Due to the spin degeneracy, the gq term emerging from

where ( = ln(Do/D). In the presence of a single scatterer
the above results are still valid and do not depend on t
and r. For a finite system of length L, it is easy to show
that the correction to the interaction constants due to
the barrier is small as I/L and vanishes in the limit of
long channel.

In the leading logarithm approximation we take into
account only the corrections linear in gq 2. Thus we only
consider the Erst two terms in the right-hand side of
Eq. (24).

The next steps of the RG procedure are described by
the differential equations for the transmission amplitudes
t . In the spin-degenerate case, one finds from Eq. (33)
the RG equation:

IV. LINEAR CONDUCTANCE
AND NONLINEAR I-V CHARACTERISTICS

A. Spinless case

The renormalized transmission coefficient (21) allows
us to find the temperature dependence of the linear con-
ductance of a 1D spinless interacting electron system
with a single barrier. At high temperatures kIBT & Dp
the conductance is given by the Landauer formula for an
ideal Fermi gas, Go ——(e2/27rh)7o. At smaller temper-
atures the transmission coefBcient is renormalized. Be-
cause of the smearing of the Fermi surface, e in Eq. (21)
should be replaced by k~T, and the following tempera-
ture dependence of the linear conductance is found:

e' 7p(k gT/Do)'
2xh Ro + 7o(kg T/Do)'

Formula (38) gives the power-law dependence of G(T)
at small T. This asymptotics coincides with the result of
the Luttinger-liquid theory. In contrast with this the-
ory, our result (38) describes the behavior of linear con-
ductance at all temperatures. Besides, Eqs. (11)and (12)
give the microscopic definition of the exponent o. in terms
of the interaction potential. In the case of a smooth po-
tential Eq. (11)coincides with the exponent found in Ref.
13.
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define two different periods of Friedel oscillations in the
two spin subsystems. At low temperatures only the elec-
trons with energies close to the Fermi level contribute
to the linear conductance. The low-energy electrons are
scattered effectively only by the same-spin Friedel os-
cillation, therefore the renormalizations of transmission
coeKcients occur in each spin subsystem independently.
However, it is possible to make the electrons scatter ef-
fectively on Friedel oscillations produced by the opposite-
spin subsystem by applying a finite bias eV = 2p~B .
From Sec. IIA, the Hartree potential enhances trans-
mission, therefore we expect a peak in the differential
conductance at this bias.

At a finite bias V the current I(V) can be expressed
in terms of transmission coefficients 7 (e, V) that in turn
depend on voltage,

0

I(V) = ) 7 (e, V)de.
—,v (44)

Here o. = +1 characterizes the spin direction of tunneling
electron and e is its energy counted &om the Fermi level
at the left lead. To calculate the transmission coeKcients
7 (e, V) in the presence of bias and Zeeman splitting, one
has to generalize the RG equation (33). The renormal-
ization of the transmission amplitude occurs only if the
wave vector Ic of the scattering electron is close to at least
one of the four Fermi wave vectors of the four Friedel os-
cillations (corresponding to two spin directions and two
leads). Thus we will do the RG in momentum space,
cutting the electron bands at k + D/hk~, with D being
some cutoff parameter. The resulting RG equations have
the form:

t-lr I' ~(D —lel)+~(D —I'+'VI).
d ln(DO/D) 4vr hv F

t r r* 8(D —le —20tJ~BI) + &(D Ie+ eV —2opaBI) .
4' hv~

(45)

Each of the four Friedel oscillations contributes to
Eq. (45) only if the corresponding Fermi wave vector
belongs to the band of half-width D/hv~ These .con-
straints are represented by the four step-functions in the
right-hand side of Eq. (45). The terms proportional to
g2 —gq are due to the Friedel oscillations from the same-
spin electrons which contribute to both exchange and
Hartree potentials. The remaining terms are produced
by interaction with the opposite-spin electrons.

Equation (45) can be easily integrated. In the limit of
strong barrier, 7 (( 1, the solution of RG equation (45)
at D ~ 0 results in the transmission coeKcient

e + eV —2op,~B.
Dp

the singular energy dependence of the tunnel densities
of states. Apparently this method fails if the differential
conductance becomes of the order of e2/h. This does not
happen for a suKciently long-range interaction poten-
tial, g2 —2gq ) 0. In the case of a short-range potential,
gz —2gq ( 0, formula (47) is not applicable in a very
narrow vicinity of the point V = 2p~B/e.

Although transmission amplitudes can be calculated
exactly from Eq. (45) for any barrier strength, it is dif-
ficult to find the conductance at arbitrary aq and n2.
A surprisingly simple expression for the differential con-
ductance near the peak can be obtained, however, for the
short-range interaction when o.q

——n2. In this case the
peak shape has the form

~+ eV ' '
~ —2~pgB

X
Dp Dp

(46)
e 7Q

7l 5 7= + g eV —2PsB
0 0

(48)

2
bG= 7o 1— (47)

r7cA, o!2 —2o.'y

schematically shown in Fig. 3. The last result was ob-
tained in the linear 7 approximation that accounts for
the processes in which an electron crosses the tunnel
barrier only once. This approximation is equivalent to
the standard method of calculation of tunnel current in
terms of the transmission coefBcient and tunnel densities
of states in the leads. Indeed, the expression (46) may
be interpreted as the product of the bare transmission
coeKcient 7p and the power-law factors corresponding to

eV —21J~B
2p~B

Here, the renormalizations of the interaction constants
were neglected. ~s This result combined with Eq. (44) al-
lows us to calculate the I-V characteristic. As it is clearly
seen from Eq. (46), two singularities in 7 (e) merge at
eV = 2p~B. As a result a singularity appears in the
I-V characteristic. The latter manifests itself as a peak
in differential conductance,

2/lBB/e

Voltage

FIG. 3. The differential conductance G(V) = dI/dV of a
quantum wire with a strong barrier in the presence of mag-
netic field B. The power-law behavior at V ~ 0 is consistent
with the Luttinger-liquid theory (Ref. 10). The power-law
peak (47) at V = 2pnB/e is due to the scattering of elec-
trons on the Friedel oscillation produced by the opposite-spin
electrons. The curve was calculated for o.q = 1/16, o.s = 3/8.
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see the Appendix. The enhancement of tunneling due
to the scattering on the opposite-spin Friedel oscillation
gives rise to the perfect conductance e jvrh at eV
2pBB. In the limit of small transmission coeKcient,
Eq. (48) agrees with the asymptotic formula (47).

VI. CONCLUSION

In this paper, we solved the problem of scattering on
a single impurity for weakly interacting 1D electrons. A
simple renormalization-group method allows us to derive
the equations (20), (36), and (45) for transmission am-
plitudes. In these equations, scattering on the barrier is
incorporated exactly. The electron-electron backseat ter-
ing is also trivially included in Eq. (36). This enables
us to find the transmission amplitudes (37) for a spin-

electron system in the presence of a barrier of arbi-
trary strength. Conductance of the system is found at
any temperature, see Eqs. (38), (39), and (43). For a
real spin-& system, the backscattering gives rise to de-
viations from the power-law temperature dependence of
linear conductance at T -+ 0; see Eq. (40). In the pres-
ence of a magnetic field, the backscattering creates a peak
in the differential conductance at bias V = 2pI38, as de-
scribed by Eqs. (47) and (48). The found transmission
amplitudes can be used for investigating other properties
of interacting 1D electron systems.
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FIG. 4. Energy diagram of a biased junction in a magnetic
field. Horizontal solid lines correspond to the mechanical en-
ergies of Fermi electrons with different spins shown by arrows.
Dotted lines represent the Fermi levels of electrons on the two
sides of the barrier. By definition, A = eV —2p&B.

Friedel oscillations formed by spin-up electrons on the
left and spin-down electrons on the right, the remain-
ing two terms can be neglected. Similar arguments can
be applied to the tunneling of spin-down electrons. For
short-range interaction (ai ——a2) the contribution of the
Friedel oscillation formed by the same-spin electrons van-
ishes. Since renormalizations depend on the difference
between the wave vector k of a tunneling electron and the
closest Fermi wave vector characterizing a Friedel oscil-
lation, it is natural to write a closed system of equations
for tt and t~ in terms of the mechanical energy e rather
than the total energy e. It is convenient to count e from
the "mechanical" Fermi level e~ —p~B for the spin-up
electrons; see Fig. 4. Then RG equations (45) take the
form

APPENDIX A: DERIVATION
OF CONDUCTANCE PEAK SHAPE

FOR A SHORT-RANGE INTERACTION

dgt 1

d 1n(D0/D) 2
o, t~rtr„*8(—D —le+ 6 ),

dt's 1
nitgrgr~8(D ——lel).

din D0 D 2

(A1)

(A2)

In this appendix we outline the intermediate steps in
obtaining formula (48). Let us consider tunneling of a
spin-up electron incoming from the left with energy close
to the Fermi level. Since we are interested in the vicinity
of the singularity at eV = 2p~B, the most important
terms in Eq. (45) are the two terms corresponding to

I

Integrating over D, we can obtain the transmission coef-
ficients. At le + Al ) lel we have

(A3)

7g(e) = 1

n1Pg(e}
[1+S~(e)] .;& —[1 —~t(e)1

(A4)

Similarly, at le+ Al ( lel one finds

&~(e) =
+0+ +0

(A5)
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(A6)

Notice that 7j i(e) are also functions of b, = eV —2y~B. To calculate conductance, one differentiates the current
(44) over the voltage:

2p, ~B
G(V) = 7j (e)de+ 7g (s)de.

2 hBV )—eV+2p~B

e' ( o) l2psB

~ 7g( —eV) + — 7g(e)de+ 7g( —eV+ 2ppB) + — 7g(e)de ~.
2mb i e —v BV e,v+2„~ (9V )

(A7)

The limits of integration for the spin-down part in (A7) are shifted by 2p~B due to our choice of the reference level
for mechanical energy e. Substituting (AS)—(A6) into (A7) one finds the result (48).
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