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Exciton polaritons in double versus single quantum wells: Mechanism
for increased luminescence linewidths in double quantum wells
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Exciton radiative decay and polaritons in single and double quantum wells are compared and
contrasted. Two types of eigenmodes exist in double quantum wells, with the dipole moment in
the quantum wells parallel or antiparallel. Energy splittings b, (k~~) between the two types of modes
at small k~~ are on the order of 0.1 meV for GaAs/Al Gag ~As-based structures of well width

100 A, which accounts for part of the increased luminescence linewidth in double compared with
single quantum wells. Thus the polariton effect gives rise to an intrinsic source of inhomogeneous
broadening through b, (k~~) as well as homogeneous broadening through the radiative width, and
both effects are of the same magnitude.

In single quantum wells (SQW's) the interaction of
the vacuum electromagnetic (em) field with excitons
gives rise to a nonzero radiative width for the cou-
pled exciton —em-field states (polaritons) ~ with in-plane
center-of-mass wave vector k~~ (K,„=E,„(k~~)/(hc) [= &,
where A is the optical wavelength of the emitted pho-
ton, c = co/ge is the speed of light in the dielectric
medium excluding the exciton resonance, and E,„(k~~) is
the k~~-dependent exciton energy) and a radiative shift
for k~~ )~,„. Recent time-resolved photoluminescence
measurements show that the radiative lifetime of the
lowest-lying 1s heavy-hole exciton with k~~ 0 in high-

quality GaAs/AlAs SQW's is 10 ps, in agreement
with theoretical predictions, s compared with 1 ns in
bulk GaAs samples. The large decay rates for the small-

k~~ SQW excitons provide an example of super-radiances
while the vanishing rates associated with large-k~~ states
is termed subradiance.

The general concept of the polariton has also
proven fruitful in describing excitonic radiative decay
in low-dimensional semiconductor structures other than
SQW's. 4 ~ ~2 We have recently traced the radiative be-
havior of excitons in multiple QW's as the number N of
wells goes &om 1 to oo. This treatment fully includes
the effects of retardation in the framework of polaritons.
The eigenmodes of an exciton interacting with the em
Beld in such a structure can be characterized by the rel-
ative magnitude and phase of the dipole moment associ-
ated with the excitation in successive QW s. In addition,
each mode is associated with an upper and a lower polari-
ton branch, and are split one from another on an energy
scale of 0.1 meV in GaAs/Al Gaq As structures. As
N becomes large, these different modes form a "mini-
band" of polariton states which are characterized by a
wave vector k in the growth direction, as well as k~~.
It was also shown that the radiative decay rates (radia-
tive widths) of excitons not only depend strongly upon
kL~, but also on N, the relative phase of the dipole mo-
ment in successive QW's, and the center-to-center QW
spacing I. For N = oo, the resulting system possesses

full translational invariance and the polariton dispersion
displays a vanishing radiative width, as expected from
the theory of bulk polaritons. The theoretical treatment
used is a Green-function approach by which the interact-
ing modes composed of an exciton and the em field are
obtained nonperturbatively &om the poles of the dipole
correlation function (CF).s' ~ The polariton dispersion
then gives the radiative widths and shifts of the states.
The exciton-polariton problem in the DQW is thus an ex-
actly solvable model involving a finite number of discrete
modes interacting with a continuum.

Apart from its pedagogic value, such an investigation
is important in order to understand the fundamental ex-
citonic optical properties of structures with N g 1 due
to their prevalent use in experimental studies and for
applications. It has been known for quite some time
that SQW's have narrower inhomogeneous linewidths
than multiple QW's, in part because interwell fluctua-
tions simply do not exist for a SQW. ~s Inhomogeneous
linewidths in ultrahigh quality SQW's can be as small as
a few tenths of a meV. ~4 In very-high-quality samples, it
is thought that well-width fiuctuations show up primar-
ily in terms of a spatially dependent exciton energy as
the pump beam is moved between regions with different
local thicknesses varying on the scale of a monolayer.
In this paper we report explicit theoretical results for
the dispersion of exciton polaritons in the DQW, i.e.,
N = 2. We show that the k~~-dependent energy split-
ting A(k~~) between the two types of polariton modes in
the DQW —dipole moment in the individual QW s par-
allel and antiparallel —can be on the order of 0.1 meV
for GaAs/Al Gaq As-based structures with well widths

100 A. A(k~~) is of the same magnitude and more-
over shares a physical origin, i.e., the polariton effect,
as the radiative width which contributes to the homo-
geneous line. Thus, b, (k~~) contributes to the inhomo-
geneous line, and we suggest it may account for part of
the increased luminescence linewidths in DQW's corn-
pared with SQW's. The splitting E(k~~) near k~~ 0
represents a fundamental lower 1irnit to the inhomoge-
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neous linewidth, even in a structure that has no inho-
mogeneities. The present study thus constitutes a fully
retarded generalization of the work presented in Refs. 15
and 16 which considers the static dipole interaction in
multiple QW's. In Ref. 15 the exchange-interaction in-
duced splittings between modes in an infinite multiple
QW stack were considered and splittings in the range
of meV's were found for GaAs/Al Gai As-based struc-
tures. In Ref. 16 the splittings in a DQW were found to
give rise to an energy minimum away from kII

——0 thus
leading to long radiative decay times at very low tem-
perature. Both these treatments, however, neglect the
effects of retardation, which must be taken into consid-
eration in order to obtain the radiative decay rates.

We consider a structure consisting of two identical
QW's of width L, separated a distance L between
centers. The barrier between the QW's is assumed suf-

ficiently high and wide so that the interwell electronic
coupling can be neglected. Rather, the coupling between
QW's is solely via the retarded em field. We further
assume that L && A to avoid a proliferation of formu-
las. Using the method of Refs. 5 and 9, we find the po-
lariton dispersion relation &om the dipole CF. In order
that the dispersion relation be tractable without exten-
sive numerical computations, we assume a single exciton
spin state s coupled to a unique polarization e of the em
field. The directions e are chosen so that unit vectors n,
obey n~. kII ——nT i = 0, nI, ——kII, and nz ——z, where
z is the growth direction. The excitation in the DQW
is expressed as a superposition of SQW exciton states in
individual QW s l. We employ the tight-binding basis ll)
with l E (1,2}. The polariton dispersion relation is then
given by the solutions of

E,„(kii) +2E,„(kii)hZ. (k) —E(,) (k)
2E,„(kii)hZ, (k) e

is = E(,) (k),

2E (k(~ )AZ (k)e G (k)E,„(kii) +2E,„(kii)hZ. (k) —E(,) (k)

where hZ, (k) =hZ, (k)+hZ, (k~~) is the proper radiative self-energy (SE), hZ, (k) is the regular part of the SE,
and hZ, (k~~) is the singular part. The other parameters are defined as follows: k = (is, k~~), is is the complex energy,

n = [k2 —(iK)2] ~2, and iI = is/(hc). The SE describes the effects on the exciton due to its interaction with the
II

em field. The SE term hZ, (k) is nonlocal and accounts for the retarded interaction, i.e., the coherent emission

and reabsorption of photons. The term hZ, (k~~) is energy independent and purely local, and thus unrelated to

retardation effects. hZ, (k~~) is nonzero only for the Z mode and at k~~
= 0 is equal to the quasi-two-dimensional

analog of the longitudinal-transverse splitting. ii For the case of arbitrary N, Eq. (1) is replaced by an N x N matrix
equation where the diagonal components of the matrix are the same as in Eq. (1) and the ijth ofF-diagonal component

is 2E,„(k~~)hZ, (k) exp( —alL;~l) where L,~ is the center-to-center distance between QW's i and j. The expressions

for the SE terms hZ( (k) and hZ( )(k~~) for the difFerent modes are

ex(
27r (zs)'

&Z(')(k) = ~
—

E (k ), (,„),IC
2x (is)

E

hZ„(kii) = b.zlC, nzl 5
Kex

T mode

I mode

Z mode,

(2)

with 2 = Jdz
l f, (z) f„(z)

l

and S=fdz
l f, (z) f„(z)l. Here

f„(z) and f, (v) are the valence- and conduction-band
single-particle envelope functions, respectively. C, is
the coupling constant and is proportional to the (vec-
tor) dipole moment produced by the transition from ex-
citon state s to the crystal ground state. It is defined
as C, = K,„F,„(0)((«),leRlO), where P,„(r~~) is the ex-
citon envelope function, l(cv), ) is the electron-hole pair
of definite spin s formed &om a conduction and valence
subband, and l0) is the crystal ground state. The quan-
tity ((cv), leRlO& is the dipole matrix element between
the electron-hole pair and the crystal ground state; e is
the electron charge and R is the position vector. C, is

related to the oscillator strength per unit area f, via

).1((«).IR ~ Io)l'

where mo is the kee-electron mass. Detailed explanations
of all the symbols are given in Refs. 5 and 11. Because
hZ, (k~~) is energy-independent, its only role here is to
renormalize the exciton energy. The l component of the
ith eigenvector G(,) (k) gives the amplitude and phase of
the excitation in QW l in eigenstate i The exponentia. l
in the off-diagonal terms gives exponentially short-range
coupling for kII ) v. but infinite-range coupling for kII & K
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where r = E/(hc) E R+. Its energy dependence accounts
for the interwell retardation.

Note that the matrix in Eq. (1) is complex symmetric
rather than Hermitian due to the nonstationarity of the
problem at hand. The solution to the eigenvalue problem
for N =2 is trivial. One finds the two roots

E+(k) = E,„(kll) + 2E,„(kll)hZ, (kll)

+2E,„(kll)hZ( (k)(1 6 e ),
Ep(k) = is. (4)

The 6 eigenstates correspond to the dipole moments of
the two wells being parallel and antiparallel, respectively.
The set of coupled equations (4) is not susceptible to an
analytic solution due to its transcendental nature; how-

ever, for our purposes we can employ the exciton-pole
approximation (EPA) (Refs. 4 and 19) to obtain the ap-
proximate dispersion. The EPA here amounts to replac-
ing is by E,„(kll)+i0 in the SE terms of the dispersion
relation. The imaginary part i0+ of the energy ensures
that retarded temporal boundary conditions are selected
so that we obtain decaying solutions. We then have

Eg(kll) = E.„(kll) + hZ, ' (kll)

+hZ, ' [E.„(kll), kll](16 e x
) (5)

where real energy arguments in the SE are understood
to contain the term i0+ and

—i K2 —kex

g2 K2ex~

k// ( Kex

k
f/
) Kex.

hZ, [E,„(kll), kll] = —ihI', (kll)0(r, „—kll)

+hII, (kll) 8(kll —r.,„),
where

hI', (kll) = —1mhZ, [E,„(kll), kll],
hII, (kll) = RehZ, [E,„(k

(8)

If IhI', (kll)I « IE,„(kll) + hII, (kll)I, then hI', (kll) and
hII, (kll) are approximately the radiative width and shift,
respectively. The radiative decay rate of the exciton is
2I', (kll). Using Eq. (8), we can write Eq. (4) as

Eg(kll) = E,„(kll) + hZ. (kll)

+hl', (kll) i L

—hr. (k„) (t d o.T, k( .'„—k,', )

The quantity iy is the z component of the wave vector
of the em Geld associated with the polariton; for k~~ (K«
energy-momentum conservation dictates that it is real
(propagating), while for kll & I(;,„it is imaginary (evanes-

cent). Within the EPA, the dispersion for the SQW is2i

E(kll) = E,„(kll) + hE, (kll) + hZ, [E,„(kll), kll]. (7)

Thus, the DQW dispersion difFers from that of the SQW
through the regular SE term hZ, . From Refs. 5 and 11,(i)

the EPA SQW regular SE can be written as

Ey(kll) = E.„(kll)+hE, (kll)

+hII, (kll) 1 + exp L—kll— (10)

, /2vr) '
kll + (»)'

I

—I,
), L)

kll + (2n+ 1)2

+ mode

—mode
(12)

is satisfied. This means that radiative decay is favored if
the excitation wave vector

27r l
I kll (2~)—

I

l 2' l
I kll (2"+1)—

I

+ mode

mode

nearly matches the wave vector of an energy-conserving
photon (kll, )/a, —

kll). This is indicative oi the incipi-

ent stage of conservation of the z component of momen-
tum for multiple QW's with N &2.

Insight into Eqs. (9) and (10) can be gained by consid-
ering the long-wavelength limit defined as L((K,„,k~~

In this case, we can make the replacements sinL(K, „—

for kll & lr,,„.Thus, as in the SQW case, states for which

kll & v,„are nonradiative. The second line of Eq. (9) also
shows that the upper branch develops a real dispersion
for the DQW —a feature absent for the SQW in the EPA.
The resulting energy splittings at k~~

——0 between the T,
L, and Z modes are a manifestation of the development
of a bulklike longitudinal-transverse splitting, while the
+ splitting A(kll) = Re[E+(kll) —E (kll)] for fixed e in-
dicates the formation of a polariton "miniband. " These
splittings oscillate as functions of L. From Eqs. (9) and
(10) we have

sh(kll) 2hr (kll) (~k( kll) P( hll)

+2hll (kll) expI L kll K
I ~(kll & ).

(11)

For GaAs/Al Gai As-based structures with L, —100
A, I(',„-400 A. and hI', (0) is on the order of 0.1 meV.
Thus for L = (2n+ 1) 2rc,„ tIA(kll) I

reaches its maximum
value on the order of +0.1 meV with A(kll) changing
sign for even and odd integers n, respectively. These
splittings are not negligible compared with the homoge-
neous and inhomogeneous linewidths of state-of-the art
ultrahigh quality GaAs/A1As SQW's and may contribute
to the wider linewidths in multiple QW's. A(kll) thus
provides a source of inhomogeneous broadening for Gxed
polarization e in perfect DQW's not present in SQW's.
An important point to be made is that the same intrinsic
radiative mechanism gives rise to both the homogeneous
(radiative width) and inhomogeneous (splittings) contri-
butions to the linewidth and that these contributions are
of the same magnitude. Furthermore, note from Eq. (9)
that the radiative width also oscillates with L. We see
that the maxima in ImEy(kll) occur when there is an
integer n such that
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kz)'~ m L(r. —k )'~ and cosL(K' —k )'~2 m 1—
II II

ex

L-(,„—kt) i Eq. ( ) d p[—L(k —,„) ]

1 —L(k2 —K,„) ~ in Eq. (10). For the + solutions, the
dipole moments in the two QW's are in phase. The ra-
diative shift in kII & K,„ is essentially zero while the de-
cay rate is double the SQW value. This enhancement
of the decay rate, or cooperativity, is the super-radiance
effect; for a collection of N dipole oscillators in phase
within a region of dimensions small compared with the
A, the decay rate scales as ¹ In kII ) r.. . the polari-
ton dispersion is twice what it is in the SQW. Thus, the
system behaves approximately as a SQW with an effec-
tive oscillator strength two times the SQW value. Now
consider the —solution where the dipole moments in the
two QW's are z out of phase. In this case, we have

E (kll) E,„(kll) + hZ, (kll). The em fields associated
with the individual QW's cancel out. The singular SE
contribution hZ, (k~) remains for any L $0 since this
term is due to the interaction of the exciton with the
local field.

T'o conclude, we have compared exciton polaritons in
DQW's and SQW's and have given an exact dispersion
relation for the modes [cf. Eq. (4)]. It was shown that for
the DQW there are two types of modes; in the 9 mode
the dipole moments associated with the two individual
QW's are parallel or antiparallel, respectively. Depend-
ing upon the values of L and kII, the energy splitting
A(k~~) between the 6 modes is on the order of 0.1 meV

for the DQW. The theoretical treatment also applies for
X ) 2, although simple closed-form expressions for the
dispersion and radiative widths do not exist. The DQW
captures the salient features for multiple QW samples of
total thickness less than A and thus provides a paradig-
matic example for this class of structures. A(k~~) is of the
same order of magnitude as the observed luminescence

linewidths in ultrahigh quality SQW samples and there-
fore may account for part of the increased linewidths ob-
served in the best multiple QW's with respect to SQW's.
This contribution to the inhomogeneous line is shown to
have the same underlying physical origin as that which
gives rise to the radiative width, which contributes to
the homogeneous line, namely the polariton eÃect. We
have also shown that at fixed k~~, A(k~~) is periodic in L
For example, at kII

——0 the period is A. Thus we pre-
dict oscillations in the inhomogeneous linewidth with a
period in L of —" for ultrahigh quality DQW's for normal-
incidence photoluminescence spectroscopy at low tem-
perature where the radiative width is a substantial part
of the homogeneous linewidth. 4(k~~) is fundamentally
di%cult to observe directly since it intrinsically has the
same magnitude as the radiative width. If imperfections
in the structure giving rise to inhomogeneous linewidths
greater than A(k~~) exist, then the effects discussed here
may be obscured. Moreover, even if each well is morpho-
logically perfect but with the exciton energy in the two
wells diKering by energy 6;„, then if 6;„ is larger than
typical values of A(k~~), the polariton efFects associated
with the interwell coupling will be small. Using Eq. (1)
adapted to this case, it is easy to show that the inter-
well coupling introduces additional radiative shifts and
widths only on the order of A(k~~) /4;„. Thus in order
to minimize these problems, ultrahigh quality DQW's
rather than multiple QW's are the best candidates for a
controlled study of the effects discussed here.
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