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Electronic-structure determination of light-impurity —phonon interaction in solids
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A model is discussed in which a solid is simulated by a quantum-mechanical molecular cluster of
atoms embedded in a classical atomistic crystal. An effective crystal Hamiltonian is derived, based on

adiabatic and harmonic approximations. The relationship is demonstrated between the cluster state and

perfect crystal equilibrium configuration and force constants. Similarly, when an impurity is introduced,

the relationship is found between the cluster state and the linear and quadratic impurity-phonon cou-

pling coeScients. Also, the effective potential is found for the quantum-mechanical treatment of a light

impurity not subject to the harmonic approximation. The distortion field and force constants of the de-

fect crystal containing the impurity are discussed. The results are related to practical methods of com-

putation. The relationship of this work to the problem of quantum diffusion of muonium in alkali

halides is described.

I. INTRODUCTION

Theoretical analysis and computer simulation of a
point defect in a solid are commonly based on a model
consisting of a cluster of atoms, including the defect,
whose electrons are treated quantum mechanically, with
the cluster embedded in a crystal composed of classical
atoms. ' Attention is given to the problem of interfacing
the quantum and classical regions in a consistent way.
Usually the nuclei or atomic cores of cluster atoms and
the embedding classical atoms are treated statically.
Sometimes the entire system is relaxed to mechanical
equilibrium, allowing one to analyze defect processes at
absolute zero of temperature by comparing total energies
of different configurations of the defect. Examples are
optical transitions and classical diffusion activation.

For many systems and processes the static lattice ap-
proximation is inappropriate, but the harmonic approxi-
mation may be valid for the crystal vibrations, which are
described by quantum-mechanical phonons. For light
impurities, such as muonium, hydrogen, and possibly
others, the harmonic approximation may not apply to the
impurity itself, and its nucleus must be treated quantum
mechanically. The motivation for this work was a study
of diffusion of muonium in alkali halides, for which ex-
perimental results are available. The application of the
present results to muoniurn in the tight-binding approxi-
mation has been studied separately. However, because
of the variety of systems and processes to which the
method applies, and the different approximations that
may be considered, it is worthwhile to present the deriva-
tion in a general form.

In Sec. II we derive the effective phonon Hamiltonian
for a perfect crystal part of which is described by an em-
bedded quantum cluster, with the remainder, the embed-
ding region, based on point-mass atoms. This provides
explicit relationships between the state function of the

static embedded cluster and the lattice spacing and pho-
non dispersion relations. In Sec. III we derive the Harnil-
tonian for light-impurity-phonon interaction, explicitly
adapted to the embedded quantum cluster model. The
form of the derived results turns out to be relatively sim-
ple from the viewpoints of both physical interpretation
and numerical evaluation. The formalism will be seen to
apply to all classes of materials for which reliable atomis-
tic models exist. In this work an atomistic model consists
of point mass atoms interacting with pairwise potentials.
The atoms may be charged point ions. In the Appendix
we extend the results to include the shell mode1 for ionic
crystals. In Sec. IV we summarize our results.

II. THE PERFECT CRYSTAL

We first write down the Hamiltonian for the crystal in
the absence of the impurity. A superscript (0) will be
used to denote entities that relate to this perfect crystal,
which consists of a quantum cluster of atoms embedded
in an infinite crystal of point-mass ions. It is assumed
that the cluster and its embedding region are physically
consistent, so that combined they represent the experi-
mental properties of the material. The cluster will con-
tain the site at which an impurity will later be intro-
duced, and it will also contain all atoms whose electronic
structure will be significantly affected by the defect, and
all atoms which, in the presence of the defect, have equi-
libriurn displacements from perfect crystal positions that
are beyond the harmonic approximation. We now
proceed to derive the effective Hamiltonian for the per-
fect crystal, based on the adiabatic approximation for
electrons of the cluster, and the harmonic approximation
for ionic motions.

This perfect crystal Hamiltonian is

H' '=(H' '+HL ),
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where "=H +&0"'lH,'"lg"'&, (2.8)
X

H (0)—
j=1

f2
V, —e v(r, , R)

2m

+—e'g' /r,
—r, ,

/
(2.2)

where the matrix element implies integration over r with
P( ' normalized. This Hamiltonian must be expanded to
second order in u. It involves:

iV

V '(r, R)= g v(r R)
j=1

Hi = g — V(+ —g' W(((R) —R(
I

(2.3)
= V' (r, R0)+ V', '(r, RO) u

+ —,u V~ (r, R0) u,T (0) (2.9)

v(r, R)=gg(lr —R(I ',
I

(2.4)

where Q( is the charge in units hei of nucleus or ion l. In
this section, atoms will be treated as rigid. In the Appen-
dix, the shell model for ionic crystals will be introduced,
in which each ion consists of harmonically coupled
charged core and shell. The potential WI&. includes both
Coulomb and short-range interactions. The interaction
between cluster nuclei and embedding region atoms
should include short-range terms, and also Coulomb
terms if the embedding atoms are charged ions.

We first apply the adiabatic approximation to the
Schrodinger equation for H' '(r, R ) in Eq. (2.1):

In Eqs. (2.1) and (2.2), H,' ' is the energy of N electrons of
the cluster, including their interactions v (r, R ) with nu-
clei of the cluster and ions of the embedding region
~hose position vectors R& are collectively denoted R. In
Eqs. (2.1) and (2.3), HL is the energy of the classical point
masses, where W&I includes all pairwise interactions
amount cluster nuclei and embedding region ions. It can
be generalized to include higher-order (e.g. three-body)
interactions.

The interaction v (r, R ) will be of Coulomb type

where u and V&
' are column matrices whose elements

correspond to Cartesian components of all displacement
vectors uI, T indicates the transpose of the matrix, and
Vz

' is a square matrix in the same basis. Specifically,

and

V"' T, R)
BRIp 8 =Ro

(2. 10)

(0)
V2, tp, t'p'

a2 V"' r, R
BR)QR) p R=R—0

(2.11)

=W(R())+W, (R()) u+ —'u W2(R()) u . (2.12)

In Eq. (2.6), the electronic part 1(&(
' of the state func-

tion depends on the atomistic configuration R. Thus in
the harmonic approximation we should consider

g' '(L', R)=g' '(r, R )+P', '(r, R ) u

In Eqs. (2.10) and (2.11), P and P' label Cartesian com-
ponents. Similarly we expand

1W= —g' W((
/I'

H (0)q)(0) —E (0)g)(o) (2.5) + —,
' u Pz '( r, R 0 ) u, (2.13)

where

4' '(r, R ) =g' '(r, R ) g(R ) . (2.6)

In Eq. (2.6), r stands for the collective set of electronic
variables (r), r2, . . . , r)v). In general, rj should include
both the electron's position vector and its spin, but since
spin does not enter the rest of the formulation, we omit it
here. Next we introduce the harmonic approximation for
the atomic vibrations:

=
& V'"lV."'&+2&V."'le',"&'

+2u T. ( $(0)
i
y(0) ) .u +u T. ( $(0)Tip(0) ) .u (2.14)

in analogy to Eqs. (2.9)—(2.11). However, in Eq. (2.13) we

require normalization to be maintained. If we write
l(' '(r, RO)=lto ', then the normalization condition be-
comes:

1
—( y(0)

~

q(0) )

R =(R()+u ), (2.7) In Eq. (2 14) we have taken (ij to be real. Now
( $0 '~ $0 ') = 1, and, therefore,

where u is the set of small (harmonic) displacements of all
the nuclei and atoms. In this approximation, the effective
Hamiltonian Hl ' for the perfect crystal is found by tak-
ing the expectation value of H' ' with respect to the elec-
tronic part of the adiabatic state function, Eq. (2.6).
Thus.

( q(0) ~(21(( T&0u)+2u T y(0) u ) ) = u T ( y(0)T~ y(0) ) u

(2.15)

Now combining Eqs. (2.8)—(2.13), the effective perfect
crystal Hamiltonian to second order in u takes the form

H(0) —
I Z + W + WT. u + u T. W . + ( q(0) ~H(0) ~q(0) ) 2( q(0)i V(0)Tip(0) )

+2& qo"'~H,'0" ~qI") '.u+2u '
& qo"'iH"'

~
q',"&.u

Zu T. ( q(0)~(4V(o) ~q(o) ) + V(o& ~q(o) ) ). + .(q(o& ~H( ) ~q(o& ) .u ) (2.16)
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E(o) (~(0)lH(o) l~(0))+ W (2.18)

where W is defined in Eq. (2.12), and W0=W(R0).
Thus, within the limits of the variational principle,

(H'"+ w, )ly,'"&=E,'"ly,"'& .

Consider the following two terms from Eq. (2.16):

2( tP()" lH,'0' llew"'& u+2u ( $0"lH,'0'l ~/I'" & u

=
& y,'"lH,',"l(2y(0" u+2u ' 1i"'u ) &

(g(0) W )u T (y(0)Tly(0)). u

(2.19)

(2.20}

The last line of Eq. (2.20} follows from Eq. (2.19}and the
normalization condition, Eq. (2.15).

The condition that determines the perfect crystal equi-
librium configuration R o is

aH(0)
L

0 (2.21)
~lP u =0

By combining Eqs. (2.16) and (2.20), this reduces to:

[ W, (R0}—e (1(0 '(Ro}l VI '(Ro)lpo '(Ro)) ]=0 .

(2.22}

This result embodies the Hellman-Feynman theorem,
that the equilibrium configuration is not affected by the
dependence of the state function on u. The remaining
terms, quadratic in u in Eqs. (2.16) and (2.20), give the
force constant matrix E' '.

6"'=
I W -"&V"'l I'"'Ieo" &

—4"&Vo"IZ""lq)"&

+2( y(0)Tl (H(0) + W E(o) ) l

y(0) ) I (2.23)

This expression is worth comment. The first term 8'2
contains the force constants of classical atoms of the
embedding region plus the contribution from Coulomb
interactions of the bare nuclei of the cluster. The second
term dresses the nuclear Coulomb interaction with elec-
trons in state $0()=g( '(r, R0), and the remaining two
terms correct this for the fact that the electrons follow
the nuclear and atomic motions as expressed in Eq.
(2.13), subject to normalization.

The results obtained so far provide a sensitive test of
the method used to analyze the quantum molecular clus-
ter, and of its compatibility with the model used for the

Again, we use a subscript 0 to indicate a quantity evalu-
ated with R =Ra. However, the quantities V] V2
8'„and 8'2 are also functions only of Ro, as in Eqs.
(2.10) and (2.11). In Eq. (2.16), TL is the kinetic energy of
point masses from Eq. (2.3):

T~= X — ~( (2.17}
I

The state $0( )=p( '(r, R0) is determined variationally,
in our work, for the static embedded cluster in the perfect
crystal equilibrium configuration Ro. We introduce E', ',

the total energy of the perfect static crystal including
both quantum cluster and embedding region:

embedding region. Having calculated $0 ', Eq. (2.22) for
the equilibrium configuration can be used either by set-
ting Ro at the experimental value and comparing the cal-
culated value of the left-hand side with zero, or by allow-
ing the cluster to relax to equilibrium and comparing the
resultant configuration with the uniform experimental
lattice spacing. Beyond this, however, the model can be
used to evaluate the phonon dispersion relations of the
crystal, using Eq. (2.23) to calculate the normal mode an-
gular frequencies co (k). The comparison of these results
with experiment is a particularly good test of the model.
In practice, the curvature of the total energy as a func-
tion of atomic displacements in the quantum cluster can
be used to determine classical force constants. The elas-
tic properties of the corresponding classical model of the
crystal can then be compared with experiment. Once a
cluster method has been developed to the point of being
reliable at the level of lattice spacing and force constants,
Eq. (2.23), its use to derive anharmonic interatomic forces
may be undertaken with confidence.

The final form of the effective perfect crystal Hamil-
tonian is found from Eq. (2.16), using Eqs. (2.18), (2.20),
(2.22), and (2.23):

H' '=E' '+(T +-'u .K' 'u) (2.24)

Upon quantizing the vibration variables u, we will obtain
the perfect crystal phonon Hamiltonian. Following the
notation of Maradudin, Montroll, and Weiss we rewrite

u)i) as u&(„), which refers to the primitive unit cell I and
the basis atom n in the unit cell. We then introduce the
transformation

I
u& „=(N,M„) ' g s&i(k) exp(2nik 1)

kj
1/2

X (a+), +a), ) .
2(o, (k

(2.25)

III. THE DEFECT CRYSTAL

We now introduce the impurity into the molecular
cluster. I.et Qe and M be its nuclear charge and mass, re-
spectively, x its nuclear position, and n its number of
electrons. The Hamiltoman of the system is

H=(HL+H, +HI) . (3.1)

In Eq. (3.1}, HI is the kinetic and potential energy of

In Eq. (2.25), N) is the number of unit cells in a large
sample of the crystal subject to periodic (Born —von Kar-
man) boundary conditions, j= 1,2, 3 labels phonon
branches, a"(k) are polarization vectors, (o (k) are nor-
mal mode angular frequencies derived from the perfect
crystal vibration Hamiltonian (TL+ —,'u K' 'u), and

ak and ak are phonon creation and annihilation opera-
tors respectively. Then in Eq. (2.24):

(Ti+ —,'u K' 'u )= g Aa), (k)(a„+,a„,+—,') . (2.26)
kj
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classical atoms and nuclei of the host crystal already in-
troduced in Eq. (2.3), H, is the energy of the (X + n ) elec-
trons of the defect cluster, analogous to Eq. (2.2) for the
perfect crystal (which had only X electrons):

N+n 2

H, = g ~
— V —e u(r, ,R)+e g' lr, —r,'l

j=l

(3.2)

The remaining term in Eq. (3.1), HJ, contains the kinetic
energy of the impurity nucleus, its interaction with the
point-mass atoms and nuclei of the host crystal, and with
all the electrons of the quantum cluster. Specifically,

N+n
HI= — V~+Qe u(x, R)—Qe g Ir, —xl

j=l +[Fd(u) —F (u)] .

The notation V(r, x) means

(3.6)

perfect crystal to defect crystal. H, is given in Eq. (3.2)
and differs from H,' ' only in the number of electrons in-
volved in the cluster.

As in Sec. II, Eq. (2.7), we expand HL to second order
in small host-crystal atom displacements from perfect
crystal equilibrium Ro, as determined from Eqs. (2.21)
and (2.22). The second term in Eq. (3.5), referring to the
perfect crystal, gives HP' Eqs. (2.8) and (2.24). The
remaining terms, apart from impurity kinetic energy, are

Qe { V(x, RO)+ V, (x,RO) u+ —,'u V2(x, RO) u ],
—Qe [&gaol V(r, x)lpo)+2& t(oltV(r, x)ll(, ) u

+2u &1(ol V(r, x)l 1(2).u +u &1(, lV(r, x)lg, ).u l

For a light impurity, its position variable x will not be
limited to harmonic oscillation, in contrast to the other
nuclei and point-mass atoms of the system, Eq. (2.7).

We shall obtain the effective Hamiltonian for the
atoms and nuclei of the system. The impurity nucleus
will react only to the average electronic distribution, as
will the atoms and other nuclei. This is justified for
muonium, where (M/m) =207, and for hydrogen, where
(M/m)=1836, for example. The effective Hamiltonian
will be given in two forms. In the first perfect crystal
phonons will be featured. This will lead to analytical ex-
pressions for linear and quadratic impurity-phonon cou-
pling coeScients. In the second form, the normal modes
of the defect crystal will be featured. This will lead to ex-
pressions for the distortion field of the defect, and to the
perturbed phonon dispersion relation due to the defect.

We again adopt the adiabatic approximation, now in
the form:

4(r, x, R ) =P( r, x, R )g(x)i)(r ), (3.4)

an extension of Eq. (2.6) to include the impurity. This as-
sumes that the electrons follow the impurity adiabatical-
ly. In this work, we consider an interstitial impurity. If
it is substitutional, a trivial modification needs to be in-
troduced in the formalism. Now the collective set of
electron coordinates is r =rl, r2, . . . , rz+„. The effective
Hamiltonian for the defect crystal including the impurity
is

X+n
V(r, R )= g u(r~, R ),

j=1
(3.7)

where u is given in Eq. (2.4). The normalization condi-
tion for p' ', Eq. (2.14), applies also to g. Just as ll(0 ')
approximately satisfies Eq. (2.19), so

l $0) approximately
satisfies the eigenvalue equation:

[H, ()
—Qe V(r, x)+Qe V(x, RO)+ IVO] i/0) =El(x)ll(0),

(3.8)

where EI(x) is the total energy of the crystal containing
the impurity with its nucleus at x, undistorted from the
perfect crystal configuration Ro. Normalization and the
eigenvalue Eqs. (2.19) and (3.8) combine in a similar
manner as in the perfect crystal case. The final result for
HL, Eq. (3.5), when Eq. (3.6) is simplified, has the follow-

ing form:

H, = V„'+[E,(x—) —E,"']+H,"'

y lr, —xl
j= 1

In Eq. (3.6), the quantities Fd and F refer to the defect
and perfect crystals, respectively. I' consists of all the
terms in Eq. (2.16) that involve the perfect crystal cluster
electronic state function l(' '. Fd is identical to F in

form, but it involves the defect crystal state function i)r,

Eq. (3.4), and operators H„Eq. (3.2), and

HL

$2

2M
V„+Qe u(x, R )

+G(x) .u+ —,'u [(K(x)—K' ')+8(x)].u, (3.9)

Ã+n
Qe'(0 X lr, —*I

j=l

where HI ' is given in Eq. (2.24), and where K(x) has a
forin identical to K' ', Eq. (2.23), except that all super-

scripts (0} are removed. Thus,

+(H +&gl"lH'"lq"'))

+(& OlH, le& —
& e"'IH"'ly"'& } . (3.5}

HL

f2
v„'+z,(x)-

2M

In Eq. (3.5) we have written HL as the sum of three
terms: the impurity nucleus term, involving x, the per-
fect crystal term including electronic part as given in Eq.
(2.2), and a term that corrects the electronic part from

+
I g

I

1
V,2 + —uT.Z"'-u .

2M( 2

+G(x) u+ —'u [(K(x)—K' ')+&(x)] u .

(3.10)
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B(x)=2ge'[(y, l&(x,R )
—V(r, x)lg;)] . (3.12)

We note that in Eqs. (3.9) and (3.10) E is a function of x,
because it has EP ' of Eq. (2.23) replaced by Ez(x). This
expresses the fact that the normal mode spectrum of the
defect crystal depends on the impurity's position.

The expressions obtained in Eqs. (3.10}-(3.12) have rel-
atively simple physical interpretations and are in a practi-
cal form for numerical evaluation. In Eq. (3.10) the first
term is an impurity Hamiltonian, with effective potential
Ei(x), the energy of the undistorted crystal as a function
of impurity position. Given a solution for the electronic
state $0 from Eq (3.8. ) with impurity position x fixed, the
impurity state function g(x) may be solved for zeroth or-
der from the effective Hamiltonian:

In Eqs. (3.9) and (3.10) the linear and quadratic
impurity-host vibration coefficients G(x) and B(x) are

G(x}=[ge Vi(x, RO)

$2
V„+El(x)

As discussed below, this may, in principle, be augxnented
by the zero-point energy of the perturbed-phonon field,
Eq. (3.20). In Fig. 1 of Ref. 6, EI(x) is illustrated for the
case of muonium in NaF. Also in that reference, two
methods are described for estimating g(x). The second
term in Eq. (3.10) is the perfect lattice Hamiltonian. In
the third term, the linear coupling coefficient Gip(x) is the
force on the impurity due to atom or nucleus l. It has
two parts, from Eq. (3.11). From Eqs. (2.4) and (2.9)

Qe &i ip(x, RO)=ggie lx —Ril
Ip Rs="Io

(3.13)

This is the negative of the force on the nucleus or atom at
R& due to the impurity nucleus Q at x. The other term in
Eq. (3.11) has as its jP element:

N+n—e fdriv+„lg(r, x,R~)l Qi
&

g Irj Ril
lp j=1 RI =Rio

N—f d „rip"'(r,R, }l'Q i y lr, -ail-' . (3.14)
Ip j=i RI=Rio

Pi ip(r~xiRD ) = f(r, x, RD
IP g =go

(3.15)

The impurity-phonon Hamiltonian HI of Eq. (3.10)
can be reexpressed in terms of the normal modes of the
defect crystal, in which the impurity coordinate x is still
kept separate from those of the host crystal u. The well-
known procedure is to introduce new host variables:

u'(x) = [u+d(x)], (3.16)

In Eq. (3.14), the two terms represent a simple Coulomb
effect, giving the negative of the force on nucleus or atom
I of the host crystal undistorted, due to the difference in
electronic charge densities —elgol and —e lltoi 'l when

the impurity is present and when it is absent. %hen it is
absent, the crystal is in equilibrium in configuration Ro.
In practice, G(x} can be evaluated simply from the gra-
dient of the total energy with respect to atomic displace-
ments. Nevertheless, the integrals in Eq. (3.14) can be
evaluated numerically. In Ref. 6, the former method was

applied, to muonium in NaF, with x fixed at the intersti-
tial site, and the deformation potential parameter was es-
timated. In Eq. (3.10) there are two contributions to the
quadratic impurity-host coupling. One, [E(x}—E' '] is
the change of the force constants due to the introduction
of n electrons with the impurity, and the other, B(x), Eq.
(3.12), is due to the interaction of the impurity nucleus of
charge Q with its surroundings, mediated by the electron-
ic state function's gradient with respect to host atom or
nuclear positions:

which are still harmonic variables, but now oscillate
about displaced equilibrium positions [Rc+d(x)], where
d(x) represents the distortion of the crystal by the impur-
ity at x. To satisfy the equilibrium condition we choose d
so that the effective Hamiltonian HL has no linear terms
in u':

d(x)= —[&(x)+B(x)] ' G(x} . (3.17)

g2
Hi = — V„+[Ei(x;Ro+d )]2M

1
Vi +—u [K(x)+B(x)].u'

2MI 2

(3.18)

In Eq. (3.18), the effective potential seen by the impurity
when the crystal is distorted to configuration [Ro+d(x)]
1S

In practice, this distortion field is determined by minimiz-
ing the total energy of the crystal self-consistently with
respect to d(x) and P(r, x, R ) in static lattice approxima-
tion. In Ref. 6, the nearest-neighbor displacements due
to muonlum at thc interstitial sltc 1n NaF werc found to
be negligible. This would not be the case, however, if x
were fixed at the center of a face of the basic cube of the
crystal lattice. Then from Eqs. (3.10), (3.16), and (3.17),
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Ei(x,R0+d ) = [Ei(x;Ro)
—

—,'G(x) [E(x)+B(x)] '.G(x)] .

(3.19)

g -,'%co'k (x) .
kj

(3.20)

In Ref. 2, an example is given of estimating cu' for the
principal localized mode associated with a Cu+ impurity
in NaF.

Now, in Eq. (3.18), the normal-mode frequencies of the
crystal co'k (x), determined by the effective force constants
[IC(x)+B(x)],depend on the impurity position x. This
will apply mainly to the localized modes of the defect,
with the long-wave modes little affected. In general,
however, even at absolute zero, the phonon field's zero-
point energy will contribute to the effective potential for
the impurity. This contribution is

are needed to evaluate the linear impurity-phonon
coefficient G(x), Eqs. (3.11) and (3.14). However, an
easier procedure is to evaluate the energy gradient with
respect to atomic displacements from perfect crystal
sites. The quadratic coefficient, Eqs. (3.10), (2.23), and
(3.12), involve the gradients of the cluster state function
with respect to atomic positions Q„Eq. (2.13). These can
be evaluated explicitly from embedded cluster calcula-
tions also, although we have not done it yet.

From the above it is clear that practical methods exist,
which have been applied, to numerically implement the
analytical processes described in this work. %hen it
comes to determining the light impurity wave function
g(x), Eq. (3.4), from the effective potentials Ei(x, RO) or
Ez(x, RO+d ), Eqs. (3.8) and (3.19), one may consider an
analytical fit as a function of x, with or without the
tight-binding approximation.
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IV. SUMMARY

%e have considered a crystal, which is simulated by a
quantum molecular cluster of atoms embedded in a clas-
sical crystal. We have derived expressions that show ex-
plicitly, in terms of the state function, how the electronic
structure of the cluster contributes to computed physical
features of such a crystal.

For the perfect crystal, the role of the electrons in
dressing the nuclear contribution to the force constants is
shown in Eq. (2.23). The perfect crystal equilibrium con-
dition, Eq. (2.22) provides a test of the method used for
electronic structure analysis, and of its compatibility with
the classical model of the embedding region.

%hen an impurity is introduced into the crystal at po-
sition x, consisting of a nucleus and n electrons, the
effective potential which its nucleus sees, Ei(x), Eqs. (3.8)
and (3.10), depends on the self-consistent field of all the
electrons: its own and those of the cluster. This effective
potential can be used to determine the state function of
the impurity nucleus. The linear coeScient of impurity-
phonon interaction G(x), Eq. (3.11), includes the
Coulomb forces on surrounding atoms of the impurity
nucleus, Eq. (3.13), and of the modification Eq. (3.14), of
electronic charge density from its perfect crystal equilib-
rium state $0

' to its impurity state tf 0. For the quadratic
coef5cient of impurity-phonon interaction, there are two
contributions, Eq. (3.10). One, [E(x)—IC' '], is due to
the change of electronic state (including the increase of
number by n). The other, 8(x), is the impurity nuclear
contribution, mediated by the gradient of the cluster state
function with respect to atomic positions. The crystal
distortion d(x), Eq. (3.17), and its associated energy, Eq.
(3.19), emerge naturally from the transformation to de-
fect crystal phonons, Eq. (3.16).

In static crystal embedded cluster calculations, ' we
evaluate the impurity potentials, Ez(x, RO) for the undis-
torted defect crystal and Ez(x,Ro+d) for the relaxed
crystal Eqs. (3.8) and (3.19). We also evaluate the cluster
electronic densities if(r, x, Ro)i and i'' '(r, RO)i for un-
distorted defect and perfect crystals, respectively, that
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APPENDIX

1. The shell model

For ionic crystals, the shell model has been found to
correlate bulk harmonic and static properties quite well.
These properties include equilibrium lattice spacing,
high- and low-frequency dielectric constants, elastic con-
stants, and phonon dispersion relations. The shell model
is therefore suitable for simulating the embedding region
for the cluster method described in Secs. I and II.

In the shell model, each ion may be described by two
point charges, referred to as a shell of charge Y& ~ei and a
core of charge (Qi —Yi)hei, where Qiie~ is the total ionic
charge of ion 1. The core and shell of a given ion are as-
sumed to be harmonically coupled, with force constant
K&. In addition to Coulomb forces, short-range forces are
assumed to act between shells of pairs of ions. To de-
scribe harmonic bulk properties, these short-range forces
may be taken to be harmonic also. However, for defect
simulation it has been found to be effective to use anhar-
monic forms. The Coulomb force between the core and
the shell of a given ion is omitted.

In order to extend our formulation to the case of a
shell-model embedding region, we introduce, in place of
ionic charge Qi, Eq. (2.4), two charges, Q„and Qt„re-
spective1y, for core and shell:

(A 1)

Similarly there are now two sets of ionic coordinates
R =(R„R,). For the harmonic approximation, Eq. (2.7),
we introduce displacements u, and u„and write

u =(u„u, ), (A2)
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a column vector whose first set of elements is u„ followed
by u, . The harmonic expansion coeScients are similarly
generalized. For example, Eq. (2.10) is replaced by

For shells of zero mass, their kinetic energy in Eq. (A7)
becomes zero. When we substitute for u, from Eq. (A10)
into HL ', Eq. (A7), and simplify, we obtain

V1,1&P
(0) V( )(r,R )

Exp R =Ra
w=c, s . (A3)

H(0) (E(0) l g(0)T g (0)—l g(0))
L I 2 —$ —$$ —$

+I lp, .M,, ' p,
Similar generalizations apply to Eqs. (2.11) to (2.13).

2. The perfect crystal

+ l u T (~ (0) I( (0) ~ (0)—l It (0)).g2 —C —CC —CS —$$ —sc —c )

+(g(0)T g(0)T.g (0) 1.I(
—(0)). (Al 1)

%e write the effective perfect crystal Hamiltonian to
second order. From Eq. (2.16), with Eqs. (2.19) and
(2.20), we have

0' '=E' '+T +G' ' .u+-'u E' 'uL I L — u 2u — u

where

g(0) ( gr e2( q(0)i y(0) iy(0) ) )

(A4)

(A5}

(A6)

In Eq. (A6} we have attributed masses Ml, and Ml, to
cores and shells, respectively. Conventionally, the shell
masses are taken to be zero, and we shall introduce this
feature later. Since the shell model is classical, we have
used the canonical Hamiltonian formulation, in terms of
momenta p(, and pl„collectively denoted p =(p„p, },and
have introduced the diagonal inverse mass matrix M
expressed in terms of submatrices M, ' and M '. Now
with the shell model, G' ' decomposes into core and shell
parts, as in Eq. (A2), and K( ' decomposes into subma-
trices K',+, where both ~ and w' can take values c or s.
Thus,

as in Eq. (2.22}, and K( ' is given in Eq. (2.23). We now
write

E"'—K"'E"' .E"'.—CC CS —$$ —SC (A13)

The diff'erence between g' ', Eq. (A5), and g,' ', Eq.
(A12), is that in the latter Qi is replaced by

Q(, =(Ql —Y) ), and similarly for K' ', Eq. (2.23) and K,', ',

Eq. (A13}. When the equilibrium condition, Eq. (A12), is
applied, we obtain the effective crystal Hamiltonian for
the shell model, replacing Eq. (2.24):

H(0) (g(0) l g(0)T g (0) g(0))
L I 2 —s —ss —s

+[2Pe C PC

From Eq. (All) we see the following features arising
from the effects of the shells on the core dynamics. First,
the equilibrium crystal energy Ez' ', Eq. (2.24), is modified
by the shell self-energy term

1 G (0)T.g (0)—1.G (0)
2 —$ —$$ —S

Second, the crystal equilibrium condition, Eq. (2.22},
which is G' '=0 from the definition of Eq. (A5), is
modified to

G(0) g (0).g (0) .G(0) 0 (A12)

Third, the force constant matrix I(. (0), Eq. (2.23}, is
modified to

+(G'' u+6'' u)
+-'u'(rC") —Z"'I~") ' SC")) u )

C —CC —CS SS SC —C )

3. The defect crystal

(A14)

(A7}

Physically, each ion only has one vector degree of free-
dom, say ul, . The shell variables u, are merely an empiri-
cal representation of the polarizability of the electronic
cloud around the ions. We must therefore eliminate u,
from the formalism. We do this by solving the canonical
Hamiltonian equations of motion:

—(0) . ~ —(o)
pl op HL & u E&p HL

Uu E~P +P/~p

where ~=c or s, and the dot stands for time derivative.
For u, we obtain

(AS)

(A9)

If we now set M =0, so that all the mass of an ion is as-
sociated with its core, then, since the left-hand side of Eq.
(A9) is zero, the right-hand side gives

(A 10)

Consider the efFective Hamiltonian HL for light
impurity-crystal interaction, Eq. (3.10). We rewrite HL
to include the term G' ' u from Eq. (A4}, which comes
from expanding HL in powers of u in Eq. (3.5), before ap-

plying the perfect crystal equilibrium condition, Eq.
(2.21) in (All). Then, using Eq. (2.17), Eq. (3.10) be-
comes

2

H = — V +E (x} +T
2M L

+—'u [L(.(x)+8(x)].u+[G' '+G(x)] .u . (A15)

The perfect crystal derivation of HL
' for the shell model,

leading from Eq. (A4) to Eq. (Al 1), can now be followed,
with [G' '+G(x)] replacing G' ', and with
[E(x)+8(x)]replacing K( '. We then introduce the per-
fect crystal equilibrium condition by using Eq. (A12) to
substitute for [G,' ' u, ]. We also introduce the perfect
crystal force constant matrix, Eq. (A13), by adding and
subtracting the quadratic terms in u of Eq. (A11). The
resulting expression for HL has the form
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2

2M
V'„+E,(x)+Z,"(x) + [-,'I,'m;, 'L, +,'u, '(K,(," —K,(,"K'," .K,',").u, ]

+ [G, (x)—G,"(x)].u, +—,'u, [K„(x)—K,', '+B„(x)—B,", (x)].u, . (A16)

In Eq. (A16), the first term is the light impurity part, as in Eq. (3.10), but with an added shell self-energy term Et"(x)
analogous to that in Eq. (Al 1), where

Et"(x)=—,'[G,' '+G, (x)] .[K„(x)+B„(x)] '. [G,' '+G, (x)] . (A17)

The second term of Eq. (A16) is the perfect crystal Hamiltonian, precisely as in Eq. (All), where in Tt, Eq. (A15), we
have set the shell kinetic energy to zero. The third term of Eq. (A16) is the linear light impurity-crystal core interac-
tion, where the shell contribution G,"(x) to the coupling coefficient is

G(s)(x) —
I
[G(0)+G (x)]T [K (.x)+B (x) ]

—1 [K (x)+B (x)] G(0)T K (0) K(0)
] (A18)

The fourth and final term of Eq. (A16) is the quadratic impurity-crystal core interaction, where the shell contribution
B,", (x) to the coupling coefficient is

B(,'(x)= t[K„(x)+B„(x)][K„(x)+B„(x)] ' [K„(x)+B„(x)] K,', K—„' K,', '] . (A19)

Equations (A16)—(A19) could now be used to derive expressions analogous to Eqs. (3.17) and (3.19) for the distortion
field d(x) and the distortion energy, including the effect of shells. We shall not do this. We remark, however, that our
usual method of static lattice defect simulation is based on the shell model, and that it therefore evaluates the total
static potential [Et(x)+Et (x)] seen by the impurity, including the shell contribution. Likewise with respect to the
distortion field and the associated total static potential for the impurity, the method includes the shell effects.
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