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We present a theoretical investigation of weak localization in a two-dimensional electron gas
with unidirectional modulation by a cosine potential. By lowering the electron density the system
gradually turns from a weakly modulated electron gas into an array of almost isolated quantum
wires of finite width. A dimensional transition occurs in such a system due to the decreasing
widths of the resulting minibands. The reduction of the dimensionality of interference effects takes
place when coherent tunneling of electrons between adjacent wires is suppressed. In this case
we find a pronounced enhancement of the weak-localization correction to the conductivity. Its
functional dependence on the phase coherence length develops from a logarithmic behavior to a
linear one, typical for one dimension. Close to the transition to strong localization the correction
due to interference effects becomes additive in the resistance. The localization length deduced from
the calculations exhibits a continuous change from an exponential to a linear dependence on the
scattering length at the dimensional transition. Numerical results are discussed for GaAs structures
with difFerent electron densities.

I. INTRODUCTION

A two-dimensional electron gas (2DEG) laterally mod-
ulated by a periodic potential exhibits unusual features
in transport experiments. A prominent example is an ad-
ditional oscillatory behavior of the magnetoresistance at
weak fields if the potential amplitude is small compared
to the Fermi energy. ' These oscillations are now well ex-
plained by theory. ' Another interesting topic is carrier
transport in strongly modulated structures representing
an array of quantum wires for Fermi energies well below
the potential amplitude. Recently, the fabrication of
an atomically precise one-dimensional (1D) superlattice
within a 2DEG has been reported.

There exists a number of theoretical calculations on
the consequences of the electronic spectrum of lateral
surface superlattices on transport properties (see, e.g. ,
Refs. 11 and 12). The behavior of interference effects
such as weak localization has been investigated less for
these systems. Kearney and Butcher have analyzed the
2D-1D transition of weak localization in a single quan-
tum wire with many occupied subbands. This transition
takes place if the phase coherence length is comparable
to the wire width. Because their approach relies on the
diffusion approximation this implies that the elastic scat-
tering length has to be much smaller than the wire width.
In that case one expects that no subband effects will be
resolved. The influence of subband efFects on weak lo-
calization and the transition to strong localization in a
quantum wire has been studied in Refs. 14 and 15. I o-
calization in anisotropic systems has been discussed for
the case of anisotropic effective masses and mainly in
the context of coupled metallic wires. The latter au-
thors consider a one-band model in the tight binding ap-

proximation for the case of an open Fermi surface (Fermi
energy much larger than band width) and analyze the
Anderson transition as well as the dependence of weak lo-
calization on a perpendicular magnetic field which tunes
the dimensionality of the system. Szott et al. have ap-
plied a similar model to a system of coupled strictly 1D
strips in order to investigate weak localization in lateral
surface superlattices. This means that in their calcula-
tion only one subband exists in a quantum wire which is
very difBcult to realize in experiments.

The aim of the present paper is to investigate the 2D-
1D transition in weak localization in lateral surface su-
perlattices with a periodic potential which models the ex-
perimental conditions suKciently well. Typically, more
than one one-dimensional subband will be occupied by
charge carriers and their individual Fermi surfaces will
be either closed or open depending on the position of
Fermi energy in difference to the model analyzed in Refs.
17—19. In contrast to Ref. 13 we are interested in a situa-
tion where the total scattering length is much larger than
the potential period. This means that it is much larger
than the wire width in the 1D limit and, consequently,
the electrons move ballistically across a single wire. Un-
der these conditions the phase coherence length is much
larger than the potential period, too, and one expects a
transition &om 2D to 1D behavior of weak localization
if the Fermi energy is. reduced below the potential am-
plitude. Due to the coupling of the different wires via
tunneling there exists another mechanism of the 1D-2D
transition of weak localization in our case compared to a
single wire. When the phase coherence time of the elec-
trons becomes larger than the tunneling time they can
move coherently in two directions and the dimensional
crossover is expected to take place. In the 1D limit of
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isolated wires the system is expected to undergo a rapid
transition to strong localization with increasing phase co-
herence length. This will be incorporated into our calcu-
lations via a self-consistent treatment of the interference
effects and allows us to estimate the localization length in
dependence on Fermi energy. The results will be seen to
be similar to those for metallic wjres1v

—19 in the limiting
case investigated by these authors.

responds to short-ranged scatterers in real space, i.e.,

isotropic scattering in momentum space.
Inelastic scattering, which destroys interference effects

by limiting the phase coherence of electron waves, is as-
sumed here for simplicity to be short ranged, too. An ex-
ample is scattering by acoustic phonons via deformation
potential coupling in the usual approximations. Since
both scattering mechanisms have the same energy de-

pendence, the total coupling constant

II. MODEL OF THE SYSTEM g=g' +g'" =eh /m' p2D (2 5)

A. Structure

We describe the unidirectional modulation of the
2DEG located in the x-y plane by a cosine potential

is the sum of the elastic and inelastic ones and is given

by the mobility p,2D of the 2DEG. The inelastic coupling
constant can be related to the phase coherence length I@

via

V(y) = Vo cos(2n'y/a) (2 1)
(2.6)

of amplitude Vo and period a which is applied in the y
direction. The system is a weakly modulated 2DEG if the
Fermi energy Ez is much larger than the amplitude Vo.
It develops continuously to an array of almost decoupled
quantum wires if the Fermi energy becomes smaller than
the potential amplitude.

The solution of Schrodinger's equation in effective mass
approximation yields plane waves in the z direction and
Bloch functions in the y direction

Q„i,(r) = A ~ e*"' u„i,„(y) (2.2)

with the Bloch factors u„s (y). Here r = (z, y), k =
(k, k„) is the two-dimensional wave vector restricted to
the first Brillouin zone (—m/a, m/a) in the y direction, n
is the band index, and A is the normalization area. The
corresponding one-particle spectrum is given by

Here I';„and I' are the inelastic and total scattering rates,
respectively, and t is the total scattering length in the 2:

direction. The latter becomes l = liD (l„-+ 0) in the 1D
limit of isolated quantum wires and l = l„= l2D/~2 in
the limit of the unmodulated 2DEG. The phase coherence
length defined by Eq. (2.6) fulfills the correct relation

I@ = /AD/I'; in these cases with the d-dimensional
difFusion coefficient D

The equilibrium properties of the system are deter-
mined by the one-particle Green function. For weak
enough scattering (EJ: )) I') we can neglect interfer-
ence effects in the one-particle properties and restrict
ourselves to the self-consistent Born approximation. The
self-energy is averaged over the period a of the modula-
tion potential which makes it independent of the quan-

20
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@nk — + &nk )2m* y ) (2 3)

where the s„s„ follow from the solution of Mathieu's
equation and m' is the effective mass of the system
without modulation. The spectrum e„l,„ is shown in Fig.
1 for a modulation potential of amplitude Vo ——5 meV
and period of a = 200 nm which correspond to usual
experimental values.

15
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B. Scattering model

Investigating weak localization one has to distinguish
between elastic and inelastic scattering mechanisms, re-
spectively. Elastic scattering leads to localization due to
interference of electron waves. For the correlation func-
tion of the potential U(r) of randomly distributed scat-
tering centers we use the model of Gaussian white noise

0—

(2.4)

The symbol () denotes the configurational average and
g' is the elastic coupling constant. This model, which
is commonly used to describe disorder scattering, cor-

0.0
k„(vr/a)

FIG. 1. Spectrum c I,„ for a modulation potential of am-
plitude Vo ——5 meV and period a = 200 nm.
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I'(E) = vrgg(E) = g) A„g(E), (2.7a)

turn numbers n and k for short-range scattering. Fur-
thermore, we omit the real part of the self-energy which
leads only to a shift of the energy zero. The resulting
self-consistent equations for the imaginary part of the
self-energy I are

ready shows dispersion in the y direction, but the bands
are still well separated by gaps. This leads to a step-
like onset of the density of states at the lower band edge
and a logarithmic divergency at the upper band edge for
negligible scattering as usual for a band of finite width in
two dimensions. The energy dependence of the scattering
rate is identical to that of the density of states because
both differ only by a constant factor.

A„g(E) = 2 Im [E —E„t, —iI'(E)/2) (2.7b) III. CONDUCTIVITY
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FIG. 2. Density of states in units of its value gq~ of a
two-dimensional system in dependence on energy for the pa-
rameters of Fig. 1. Two di8'erent scattering strengths are
shown corresponding to mobilities of the 2D reference system

y2o = 5 x 10 cm /V s (solid line) and p2o = 5 x 10 cm /V s

(dashed line).

where A i, (E) is the spectral function, i.e. , the imaginary
part of the one-particle Green function and g(E) is the
density of states.

Numerical results for the density of states in depen-
dence on energy are shown in Fig. 2 for the parameters
of Fig. 1 and for two different scattering strengths. Here
and in the following figures the arrow indicates the max-
imum of the modulation potential at 5 meV. For ener-
gies well below the maximum, g(E) behaves essentially
as in one dimension. In that case one recognizes inverse-
square-root-like singularities at the subband bottoms if
scattering is weak enough. For stronger scattering they
are broadened by lifetime effects included here in self-
consistent Born approximation. The lowest subbands
have approximately equal spacing in energy as expected if
the cosine potential can be approximated by a parabolic
one. Above the potential maximum the density of states
approaches quickly its two-dimensional value which is en-

ergy independent. Just at the threshold the spectrum al-

In this section we turn to the calculation of transport
properties of the system under consideration which are
determined by the two-particle Green function. In con-
trast to the equilibrium properties, interference of elec-
tron waves is now no longer negligible, leading to weak
localization even for E~ )) I'. ' In terms of Green
function perturbation theory this means that in addition
to diagrams with noncrossed interaction lines correspond-
ing to the self-consistent Born approximation, those with
maximally crossed impurity lines (cooperon) have to be
taken into account. We have done this by use of the
nonequilibrium Green function technique. The princi-
ples of the calculation have been published elsewhere.
Note that it is convenient to perform the calculations in
a real space representation (compare also Ref. 25) and to
change then to a representation in the basis of the wave
functions of the modulated system without scattering.

A. Self-consistent Born approximation

As a first step, we evaluate the conductivity of the
system in self-consistent Born approximation. Without
magnetic field and at zero temperature the diagonal ten-
sor of band conductivities is given by

2

0,, (Ep) = —) 5 v, A„i,(Ey), v, = (3.1)
nk

with the group velocity v; and i = z, y. Here we have
omitted the nondiagonal elements of the velocity matrix
element in the y direction which correspond to scattering-
induced intersubband transitions. They are small in the
parameter I'/AE in the 1D limit where DE is the sub-
band spacing and in the parameter Vp/E~ in the 2D
limit. The result for finite temperature can be obtained
from Eq. (3.1) by simply convolving it with the derivative
of the Fermi function. It is obvious that the anisotropy
of the system enters via the differing group velocities if
the modulation potential becomes important. In partic-
ular, the group velocity in the y direction vanishes in the
1D limit if the spectrum shows no dispersion in this di-

rection. The components of the conductivity tensor are
shown in Fig. 3 for two different scattering strengths.
The oscillations of decreasing amplitude for energies be-
low the potential maximum arise &om the population of
1D subbands. With increasing scattering strength they
become broadened by lifetime effects. The conductivity
across the wires is much smaller in the 1D region than
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FIG. 3. Band conductivities o (upper curves) and o„„
(lower curves) in units of the conductivity of a 2DEG,
o'zn(Ep), in dependence on Fermi energy. The parameters
are the same as in Fig. 1 and the scattering strengths corre-
spond to @AD = 5 x 10 cm /V s (solid line) and p2D = 5 x 10
cm /Vs (dashed line).

FIG. 4. Scattering lengths l (upper curve) and l„(lower
curve) in units of o/s in dependence on Fermi energy. The
scattering strength corresponds to p2D = 5 x 10 cm /V s and
otherwise the same parameters as in Fig. 1 have been used.

that along the wires, but it is finite due to the possi-
bility of tunneling. Its energy dependence becomes two
dimensional for E» & Vo as that of n, but it is smaller
in amplitude due to the lower density of electrons which
can move freely into this direction.

Prom the conductivity tensor one can obtain the ten-
sor of difFusion coefBcients with the help of the Einstein
relation

D" (EF) = &;;(Es)/e p(Es). (3.2)

The diffusion coefficients are related to the scattering
lengths l;(Es) by

The latter are shown in Fig. 4 in dependence on Fermi
energy for a scattering strength corresponding to p2D =
5 x 104 cm2/Vs and otherwise the same parameters as in
Fig. 1. The scattering length l along the equipotential
lines is seen to be much larger than the potential period
and subband egects are weH resolved. This results in the
pronounced oscillations of l in the one-dimensional re-
gion (E» ( Vo) where it increases almost linearly with
Fermi energy followed by abrupt drops at the subband
bottoms. Above the threshold it behaves as in two dimen-
sions: l QEs. The scattering length l„ in direction of
the potential modulation becomes very small in the 1D
region as expected from the small group velocity in this

direction. For E~ ) Vo it shows a 2D energy dependence
as l but has a smaller absolute value as discussed for
the conductivity. Close to the threshold one recognizes
the infiuence of the finite bandwidth due to the enhanced
tunneling between different potential wells.

B. Weak-1ocalization correction to conductivity

with

+ k(EF) = 9 +(EF)'4 k(EF)/I (EF) . (3.5)

In Eq. (3.5) C(Es ) represents the cooperon averaged over
the potential period as it has been done for the one-
particle self-energy. Note that the cooperon terxn appears
in the denominator of the relation for the conductivity as
a result of the above mentioned self-consistency.

In real space, the cooperon is given by the integral

The method to incorporate weak localization into cal-
culations of the conductivity of low-dixnensional systems
is described in detail in Ref. 15 where it has been applied
to a single quantum wire. Within this method a self-
consistent treatment of the cooperon allows one to in-
vestigate the transition from weak to strong localization
and to estimate the localization length. For a modulated
2DEG the result for the conductivity is

2

o'ii(EF) = ) h 'o; A~k(EF) [1 + Fnk(EF) j (3.4)
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equation

C(r, r'; E~) = 8(r —r')

d r" I r, r";E~ C r", r';Ep

I(r, r'; E~) = g' G (r, r'; EF)G (r, r'; E~), (3.6)

C(Ep)—:C(r, r; E~) = ) [1 —I (q)]
m, q

I-(q) = g' ). I o..(qw k. ) I'
n, n', k

x G„(q —k) G„,(k) (3.7)

with the coefficients

(3.8)

where the G / (r, r'; E~) denote the retarded and ad-
vanced Green functions, respectively, in self-consistent
Born approximation. After averaging over the period a
the approximate solution for the cooperon can be written
as

AE = vr h2/2m*a2. For the case of open Fermi sur-
faces our results are in qualitative agreement with those
found in Refs. 17—19 in a diH'erent context. According
to Eq. (3.10) the cooperon acquires its one-dimensional
form for l„+ 0 and behaves as in two dimensions for
l„ l » a. This means that the 1D-2D transition
in weak localization efFects takes place in coupled wires
when the electrons become able to tunnel between dif-
ferent wires without losing phase coherence, i.e. , if L+
becomes larger than the modulation period. This has to
be distinguished from the usual 1D-2D transition in an
isolated wire discussed, e.g. , in Ref. 13, which takes place
if the phase coherence length becomes smaller than the
wire width. The latter transition would be caused by
terms with m g 0 in Eq. (3.7). Note that the transversal
diffusion coefficient introduced in Ref. 13 should not be
interchanged with D» because the former does not fulfi11
an Einstein relation due to the vanishing conductivity in
the y direction for an isolated wire.

If interference eEects are neglected the quantity
F„i,(Ep) is zero and Eq. (3.4) reduces to the Born ap-
proximation Eq. (3.1). For weak interference effects, i.e. ,
not too large phase coherence length, one can expand the
denominator in Eq. (3.4) which yields the usual pertur-
bational relation

It reduces to the expressions derived in Ref. 15 in the
limit of an isolated quantum wire if the spectrum shows
no dispersion in the y direction and to the usual expres-
sions for a 2D system for vanishing modulation potential.
For L@ » a the term with m = 0 dominates the sum in
Eq. (3.7) which results in

o,;(EF) = o;, (E~) —Ao;, (E~),
2

Ao,;(E~) = —. g' ) 5 v; A„i,(Ey).
h I' Ep

(3.1i)

Using Ask(E~) = 3A„i,(E~)/r(EF) for weak scattering
this can be rewritten as

C(E~) = ) 6@+l q + l„q„
q

Ao;; (EF) = 3 l, (Ep—)C(EJ;) . (3.12)

OO

f v (t/ )
1/2 t/Te (3 9—

)
4vrl ly t a

after an expansion for small q (Ag, (( 1). Here Ac, is
given by Eq. (2.6), w@ = 5/r;„ is the phase coherence
time, l and l& are the scattering lengths defined in Eq.
(3.3), and t has the dimension of a time. The integration
over q in the first line of Eq. (3.9) is restricted to the
first Brillouin zone in the y direction due to L@ » a. In
the second line the solution for the cooperon has been
rewritten slightly to introduce the total scattering time
w = h/r as the necessary short-time cutoK24 It enters
there in an isotropic manner rather than a cutoK length
would do in the first line. The limiting cases of Eq. (3.9)
are

C(E~) = L@/2l a,
C(E~) = (1/2+i l„) ln(L@/l ),

Lu
(3.10)

L~+ && a

where we have introduced the phase coherence length in
the y direction, L~@ ——JD»7@. An estimate for the sim-

ple model of a cosine band gives Lv@ (m*/m„')L@D

(Uo/b. E)LP. Here L@ is the phase coherence length
of the 2D system, m„* is the band mass in the y di-
rection, which is inversly proportional to the bandwidth
Uo and increases exponentially with the period a, and

This gives the well known expressions

3e2 L3e
2vrh a

Ao (E~) = — ln(Lg, /1 )2 +2' (3.i3)

in the 1D and 2D limits, respectively. The factor 3/2 in
Eqs. (3.13) arises from the full self-consistency of the cal-
culations. The small parameter for the above expansion
is15

S = g'C(E )/r2(E ) =—
3 ag (EF)

(3.14)

It has the limits biD = L@/Nl and b2D

(4/vrk~l ) 1n(L@/l ) where N is the number of occupied
subbands in the 1D limit and k~ is the Fermi wave vector.
Since b becomes larger with increasing phase coherence
length and decreasing electron density the conductivity
approaches

o,, = (1+b) 'o, ; m 0, (3.15)

which describes the transition to strong localization.
The correction due to interference effects is now no
longer additive in the conductivity but in the resistiv-
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ity. The application of Eq. (3.11) would result in a neg-

ative conductivity in that case. The relative correction
6o;;(E. ~)/o;; (EJ.) is shown in Fig. 5 in dependence on
Fermi energy for two different ratios of inelastic to total
scattering strength. They correspond to phase coherence
lengths of about 1 pm (lower curve) and 3 pm (upper
curve). One recognizes a steplike increase with decreas-

ing Fermi energy in the 1D regime due to the depopu-
lation of 1D subbands. For low electron densities and
weak inelastic scattering interference effects contribute
considerably to the total conductivity and the pertur-
bative result Eq. (3.11) is not applicable. If the Fermi

energy becomes larger than the potential amplitude the
conductivity correction is much smaller and only weakly
dependent on energy as expected for a 2DEG. The min-

ima close to the threshold are due to the finite widths of
the minibands leading to 2D behavior of weak localiza-
tion. They become more pronounced for larger L@ when

1D behavior is preserved to larger Fermi energies.
The expansion parameter 6 can be used to estimate the

localization length l~, in our system &om the assump-
tion that the interference effects begin to dominate the
conductivity if L@, becomes larger than l~ „

300

250—

200

—I 150
C0

.N 100
U
U0

50

0 —4 0 2

E~ (meV)

I

4

6(l,g —li.,) = 1. (3.16)

The localization length obtained from Eq. (3.16) fulfills

the correct relations in the limiting cases

FIG. 6. Localization length l~„ in units of a/s in depen-
dence on Fermi energy. The parameters are the same as those
of Fig. 4.
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l„, = l, exp(alkyl /4). (3.17) In Fig. 6, we have depicted the dependence of /~, on
Fermi energy. By inspection, we find three distinct
regimes. For Fermi energies below 3.5 meV the local-
ization length behaves as in one dimension, i.e., it fulfills
approximately the first relation in Eq. (3.17). For E~ ~ 4
meV the result clearly deviates &om the 1D behavior. It
is just in this energy range that the highest miniband
below the potential maximum which already shows weak
dispersion in the y direction is populated. The corre-
sponding scattering length l„becomes comparable with
the period a. Hence L~@, ) a, and the electrons are al-
lowed to tunnel coherently between neighboring wires.
Close to the potential maximum the system reaches the
third regime: l~, rises exponentially with Fermi energy
as characteristic for a two-dimensional system. It is in-
teresting to note that the different localization regimes
are well resolved even for the relatively low mobility yzD
of 5 x 104 cmz/Vs due to the strongly difFering energy
dependences of the localization length in one and two
dimensions, respectively.

IV. CONCLUSIONS

0.0 I I

5 10
E~ (meV)

15 20

FIG. 5. Relative correction Err;;(Ep)/a, , (Es) in depen-
dence on Fermi energy for E+ = 0.1 (lower curve) and
b@ = 0.01 (upper curve). The other parameters are the same
as in Fig. 4.

We have studied the conductivity of a 2DEG subject
to a periodic potential of cosine shape in one direction
with emphasis on the properties of interference effects in
dependence on electron density. With decreasing density
the system develops from a weakly modulated 2DEG to
an array of quantum wires. A transition from 2D to 1D
behavior of the weak localization correction to conduc-
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tivity takes place if coherent tunneling of the electrons
between adjacent wires is no longer possible. This occurs
when the transversal phase coherence length related to
the diffusion coeKcient in the direction perpendicular to
the wires becomes smaller than the potential period. We
have presented numerical results for the conductivity in
dependence on Fermi energy showing the gradual change
&om the 2D to the 1D limit and have analyzed the region
in between where the Fermi energy is comparable to the
potential amplitude. In the 1D limit the system rapidly
undergoes a transition from weak to strong localization
with decreasing electron density and increasing phase co-
herence length. It has been incorporated into our calcu-

lations via a self-consistent treatment of the interference
effects. This allows us to estimate the localization length
of the system which changes from an exponential to a lin-

ear dependence on scattering length. The conductivity
correction due to interference effects becomes additive in
the resistance in this case.
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