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Edge electrostatics of a mesa-etched sample and edge-state-to-bulk scattering rate
in the fractional quantum Hall regime
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To study the effects of Coulomb interactions on the properties of fractional quantum Hall edge states,
we introduce a realistic model of a two-dimensional electron gas at a mesa-etched sample edge and solve

it within electrostatic and Hartree-Pock approximations. We discuss the physics of the fractional quan-

turn Hall strips separating the conducting edge channels and ways of estimating the widths of these

strips. We relate our results to the measurements of nonlocal resistance by estimating the quasiparticle
scattering rate and the corresponding equilibration length between the edge states and the conducting
bulk.

I. INTRODUCTION II. DENSITY PROFILE OF 2DEG AT THE EDGE

In recent years considerable effort has been devoted to
extending the treatment of quantum Hall edge states' to
include the effects of electron-electron interactions, in the
context of integer edge states ' and fractional edge
states. ' ' In particular, it is important for any quantita-
tive treatment of edge states to include the Coulomb in-
teractions self-consistently. In the present work, we in-
troduce a realistic model of sample edge, appropriate for
mesa-etched samples, and solve for the self-consistent
two-dimensional electron gas (2DEG) density profile
analytically, within classical electrostatics. This model is
useful for studying the spin-polarizing transition in in-

teger edge states. Here we give another application: a
quantitative treatment of fractional edge states in the re-
gime of slowly varying electron density. In this regime
the edge-state structure may be described as a sequence
of conducting channels sandwiched between strips of
fractional quantum Hall (FQHE) liquid. The positions
and the widths of these alternating regions depend on the
2DEG density profile at the edge. To determine to what
extent the effects of kinetic energy and exchange modify
the electrostatic density profile we perform a numerical
Hartree-Fock calculation in the lowest Landau level. We
consider several approaches to estimating the widths of
the FQHE strips that separate the edge channels. We
discuss the incompressible strip approximation used by
Chklovskii, Shklovskii, and Glazman and introduce an
alternative approximation, appropriate in the presence of
disorder, that takes into account nonzero compressibility
of the FQHE strips due to localized quasiparticle states.
The conducting channels are equilibrated through quasi-
particle scattering across the separating FQHE strips,
with the scattering rates determined by the strip widths.
A particularly interesting experiment that is relevant in
this context is the measurement of nonlocal resistance in
the FQHE regime by Wang and Goldman. s 9 In the last
part of our paper we discuss this experiment and com-
pare our estimates of quasiparticle scattering rate with
the experimental results.

A. Classical electrostatics
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FIG. 1. Our model of a mesa-etched sample edge, with a thin

donor layer spaced at distance S from the 2DEG and the sur-

face charge n, (z) on the mesa wall, depleting the 2DEG out to
distance 8'~ from the wall.

Our model of the charge distribution at an edge of a
mesa-etched sample is shown in Fig. 1. The 2DEG is
confined at the heterojunction and approaches sheet den-
sity no away from the mesa wall. We take z to be in the
growth direction and take the heterojunction to be in the
x-y plane, with y parallel to the edge. The neutralizing
donor layer is spaced at distance S from the heterojunc-
tion, and has constant sheet density no On th. e mesa wall
there is a certain surface-charge density n, (z), due to the
occupation of the electronic surface states. This surface
charge will deplete the 2DEG up to some distance 8'D
from the mesa wall. Weak localization measurements in
wide wires give WD =3000—5000 A. ' Note that the de-
pletion width is much larger than the magnetic length lo.
Within classical electrostatics the 2DEG density n(x) is
zero in the depletion region (x (0), and past the de-
pletion region (x )0) the 2DEG screens the external po-
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where g is the complex coordinate g=x+iz, the line
charge is located at go=Re'~, and e is the dielectric con-
stant of the bulk semiconductor. The corresponding
charge density induced on the metal plane is given by the
discontinuity of the electric field at z =0:

e dG dG
(2)

Thus for an arbitrary external charge distribution N(x, z)
the charge density of the 2DEG is given by

n„(x)=f dX dZ N(X, Z)n;„d(x, X+iZ)

dXdZN X,Z
m &2x (x —X) +Z

with R =+x +y .
In our model of mesa edge N (x,z }

=np8(x + WD)5(z S)+—n, (z)5(x + WD ), where the
first term corresponds to the sheet of donors (neglecting
its thickness}, the second term to the surface charge, and
8(x) is the unit step function. We can write the 2DEG
density as n„(x)=n, (x)+n2(x), where n, (x) is the con-
tribution from the sheet of donors and n2(x } is the contri-
bution from the surface charge. The charge density in-
duced by the sheet of donors is

tential perfectly, i.e., it acts like a semi-infinite metal
plane.

The electrostatic problem of a line charge parallel to a
metal half-plane can be solved by conformal mapping.
The complex Green's function is"

3/ReI' P /2

G(g, gp) = ——ln
Re

W
—3/2 d {

i [(W2+ 2)l/2+W ])I/2
n, (z)

no

2 +2p2

It follows that any external-charge distribution that is lo-
calized to a finite region near the edge induces a
screening-charge density in the 2DEG that falls off as
x at large distances. The slow power-law healing is
characteristic of two-dimensional systems with three-
dimensional Coulomb interactions. However, if the
external charge is not localized then we may get a
different exponent for the power law. For example,
Chklovskii, Shklovskii, and Glazman obtain 1/x power-
law healing, instead of 1/x . They use a model in
which the 2DEG is confined by a negatively charged
semi-infinite metal gate on top of the sample, instead of
an etched mesa edge. In this case the net external charge
seen by the 2DEG and the screening charge induced in
the 2DEG both go as I/~x

~
at large ~x~.

To obtain the entire density profile of the 2DEG, we
model the surface-charge distribution by a line charge in
the same plane as the electron gas, n, (z)=A, 5(z) , Thi.s
should be a good approximation if the actual surface-
charge distribution is confined to ~z~ && W23. The bound-
ary condition on n„(x) gives us A,, =2np(WW23)'/. In
particular, for S =0 we have A,, =2npW23, i.e., the de-
pletion region screens out exactly half of the surface
charge. The density profile of the 2DEG, for arbitrary S,
1S

np 2+(n„(x)= 2
+tan '(3/g —P)(+1—P

+tan '(v g+p)

no
n, (x}=

7r
+tan '(V'g —p)+tan '(3/g+p)

The long-distance behavior is given by (5), with g=4/3n.
(Fig. 2}. Note that, since W&&lp, the electron-density

1.0

where W= —,'[WD+(WD+S )'/ ), the scaled distance is

g=x/W, and P=S/2W(0&P& 1). Given n, (z), we can
similarly integrate (3) to obtain n2(x). The depletion
width Wn is determined by the condition n„(0+}=0 that
ensures equilibrium of the 2DEG boundary. Naturally,
8'D and the 2DEG density profile will depend on the de-
tails of the surface-charge distribution.

For a localized external-charge distribution, such as
n, (z), the integrand in (3) can be expanded in powers of
1/x. The charge density (4) due to the donor sheet can
be similarly expanded. Assuming that n, (z) is localized
to a region R &Rp (where we expect Rp —W) we get that
for x ))8,

' 3/2

n(x}=np 1 —g
8'

where the dimension1ess constant g is given by
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FIG. 2. Electrostatic density profile of the 2DEG given by
Eq. (7) (solid line) and large distance approximation given by
Eq. (5) (dot-dashed line). Inset: comparison of electrostatic den-

sity profile (solid) and Hartree-Fock calculation (dashed). Pa-
rameters used for Hartree-Fock are vb„» =0.5 and kb T
=0.05e /elo.
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changes slowly on the scale of magnetic length every-
where, except near the edge (x -10), where n„(x)-x '

and the density gradient becomes large.

B. Hartree-Fock

form a finite-temperature Hartree-Pock calculation re-
stricted to the lowest, spin-polarized, Landau level. In
Landau gauge ( A=Bxy ) the lowest-Landau-level eigen-
states are

Quantum-mechanical effects will change the screening
properties of the 2DEG and will cause the electron-
density profile at the edge to deviate from the electrostat-
ic density n„(x). For x » lo the actual electron density
should be close to n„(x), since at long wavelengths elec-
trostatics will always dominate. However, for x -Io de-
viations from electrostatics could become appreciable, as
the electron density no longer changes slowly on the scale
of Io.

To see to what extent kinetic energy and exchange
effects modify the charge density near the edge, we per-

The direct and the exchange terms in the Hartree-Fock
Hamiltonian are diagonal in X. Hence the problem
reduces to finding the Landau-level filling v(X) and the
corresponding single-particle Hartree-Fock energies s(X)
that satisfy the self-consistency condition v(X) =f(e(X)},
where f(s) is the Fermi function. Up to a constant
( ,'fico, ),—the single-particle energy is the sum of the corre-
sponding Hartree and exchange contributions,
e(X)=Eir (X)+E,„(X). The Hartree contribution is given

by

s~(X)= — f dx e
1

halo

2

V„(x)—2 f dx'[n (x') —n„(x')] ln~x —x'~

where the electron density n (x) is related to the Landau-
level filling via

n(x)=
3 fdXe 'v(X) .2~'"I,' (10)

Also in Eq. (9), n„(x) is the charge density for the classi-
cal electrostatic problem given by Eq. (7), and V„(x) is

the corresponding electrostatic potential. For slowly
varying v(X) the density is, of course, proportional to the
filling, n(x)=v(x)/2irlio. The exchange energy is given

by

—(1/4)X' /ID X
4ir 4lo

III. SPATIAL STRUCTURE OF FQHE EDGE STATES

Two conducting edge channels will be separated by a
strip of FQHE liquid when the Landau-level filling v(x)
reaches an appropriate FQHE value vf =p/q, i.e., the
position xf of the strip is given by v(xf ) =vf. If xf » lo,
then we will be in the regime of slowly varying electron
density, where the picture of edge states as conducting
channels sandwiched between strips of FQHE liquid is

X v(X+X'),

where Ko(x) is a modified Bessel function. ' The calcula-
tion reduces to determining v(X) self-consistently, which
has to be done numerically. A homogeneous 2DEG in
the 1owest Landau level is unstable in Hartree-Fock
against forming a charge-density wave at low tempera-
ture. ' In our calculation we keep the temperature
suSciently high to avoid this instability. A comparison
of a Hartree-Fock solution with the electrostatic solution
is shown in Fig. 2 (inset). It can be seen that classical
electrostatics gives a good approximation to the Hartree-
Fock density profile down to x as small as =4lo.

I

indeed applicable and where electrostatics should give a
good approximation for the Landau-level filling profile,
v„(x)=2m.lan„(x). However, to estimate the widths of
the separating FQHE strips we need to consider more
closely the response of a microscopically narrow band of
FQHE liquid to external potential.

One possible approximation is to take the FQHE strip
to be incompressible. ' Then the electron density within
the strip will be pinned at 2irlovf, deviating from n„(x)
and thereby creating an electric field perpendicular to the
edge. The resulting voltage drop across the FQHE strip
is set equal to the discontinuity in chemical potential,
given by qb, f, where b,f is the FQHE quasiparticle ener-

gy gap. If the rest of the 2DEG is assumed to be perfectly
screening then the problem reduces to one of classical
electrostatics. Approximating n„(x) by a linear function
about xf, Chklovskii, Shklovskii, and Glazman obtain

4y qd:=, (12)
n. lo(dn„/dx)„ f

where df is the width of the v=vf FQHE strip and

}f Af /(e /elo ).
However, the inevitable presence of disorder makes the

situation somewhat more complicated. Disorder poten-
tial will give rise to some density of quasiparticle states in
the gap. Due to the presence of these states, FQHE
liquid will be compressible and the FQHE strips at the
edge will now be able to partially screen the external po-
tential. The resulting change in the filling factor across a
v vf FQHE strip (5vf ) will depend on the density of
states in the gap. Since FQHE will not screen perfectly,
the electron density will still deviate from electrostatics
and there will still be a voltage drop across the FQHE
strip. However, its compressibility may be sufficiently
high (given enough disorder) that it would be sensible to
make an alternative estimate of df by assuming perfect
screening for all fillings, i.e., neglecting any deviations
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froin n„(x) near xf. This approach gives us

df —~x(vf+5vf) x(vf 5vf)~, (13)

where x(v) is the inverse of v„(x) and vb„ik vf+5vf.
Of course, the appropriate 5vf wi11 depend on the na-

ture and the strength of the disorder potential, as well as
on the temperature (since localized states can conduct
current at finite temperature). We can obtain a simple
phenomenological estimate for 5vf by introducing local
diagonal conductivity o„„(x},given by the bulk conduc-
tivity at corresponding fillings: o „„(x,T)=o „"„'"(v(x),T).
At low temperatures, o„"„'"(v,T) is extremely small at
v=vf and increases very rapidly if v moves sufBciently
far away from vf. Correspondingly, o„„(x}will be very
small at x =xf and will increase as x moves away from

xf. Thus there will be a band about x =xf in which tun-
neling rather than diffusive transport will be the dom-
inant mechanism for interchannel charge fiow. Hence in
a disordered system at finite temperature it is sensible to
define the transition between "conducting channel" and
"FQHE strip" by the means of an appropriate conduc-
tivity cutoff o „„'" The. condition cr„"„'"(v,T) & o „„'"will be
satisfied for fillings in some range

~
v —vf ~

& 5vf, giving us
an estimate of 5vf that we can use in Eq. (13) to estimate
df. We would like to caution here that bulk conductivity
can probably give us only a fairly crude estimate of the
desired edge-state properties. For example, long-range
disorder that may be important in determining diagonal
conductivity and other properties of the bulk 2DEG (Ref.
13}will have a rather different effect on a microscopically
narrow FQHE strip at the edge than it does on the bulk.

We also note that even in the absence of disorder, the
FQHE liquid will be compressible at finite wave vector
due to collective excitations. Thus the static linear sus-
ceptibility in the FQHE state has a sharp peak at the
magnetoroton minimum. For example, for the v= —,

' state
the inagnetoroton minimum is at k „=1.4lv ', and the
susceptibility maximum is y(k, ) = 10 in units of
nvl(e lulu). '

the equilibration length will increase more slowly as a
function of df rather than as an inverse Gaussian.

When bulk Landau-level filling lies between successive
FQHE plateaus, vf & vb„,i, & vf, then (in addition to edge
states) the bulk itself forms a (dissipative) conducting
channel, characterized by a local conductivity tensor.
The filling profile v„(x) decreases monotonically towards
the edge, hence as vb„&k approaches vf from above the
v=vf FQHE strip moves into the bulk and its width df
increases. The equilibration length between the edge
states and the bulk (L, } should become macro-
scopically large when 6 ' —10 . Then current injected
at a contact will fiow through the bulk and through the
edge states in parallel, with only small leakage between
the two. This has been observed by Wang and Gold-
man ' using four-terminal nonlocal resistance measure-
ments of mesa-etched samples in the regime of a fraction-
ally filled Landau level. Note that if particle-hole symme-
try with respect to the lowest Landau level were present
then the same would happen as vb„~k approached 1 —vf
from below. This is not seen in the experiment because at
the edge the particle-hole symmetry is broken by the
confining potential.

To illustrate these ideas, we have computed the Gauss-
ian enhancement factor G ' as a function of the bulk
filling vb~ for vf =

—,
' and —'„ for representative values of

the parameters 5vf and yf, using both Eq. (13) and the
incompressible strip approximation (12) to compute the
strip width. The results are plotted on a logarithmic
scale in Fig. 3. Note that Eq. (13) gives larger df than
the incompressible strip approximation [Eq. (12}]—in a
real system we should be somewhere between the two
limits. Also, deviations from a Gaussian suppression dis-

10

10

IV. EQUILIBRATION BETWEEN CONDUCTING
CHANNELS

1 ()6
', Vf=2/3

At low temperatures, two conducting channels separat-
ed by a FQHE strip will equilibrate mainly through the
scattering of fractionally charged quasiparticles across
the strip. The FQHE strip suppresses scattering by re-
ducing the overlap between the initial- and final-state
quasiparticle wave functions. In Born approximation
(neglecting multiple scattering), at T=O, the scattering
rate is reduced by a Gaussian factor, G (df ) =
exp( —df I21f }, where lf =q' i is the quasiparticle mag-
netic length. This is the same as the result for scattering
between integer edge states, ' except that the magnetic
length is replaced by the quasiparticle magnetic length.
The assumption of a Gaussian suppression of the scatter-
ing rate will break down at large values of df due to one
or another competing process, e.g., multiple (virtual)
scattering processes at T =0, or variable range hopping
at T&0. In either case, at large df the enhancement of

10~4
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(vt,~, vt)I/YJ, -
0.4 0.5

FIG. 3. Gaussian enhancement factor in the equilibration
length as a function of bulk filling for vf =—' and vf =

&
FQHE

0
strips for parameters WD =4000 A, no =8.74 X 10' cm
5vf =0.017, and yf =0.03. Solid lines give the disordered sam-
ple estimates [Eq. (13)]and broken lines the incompressible strip
estimates [Eq. (12)]. Above the long-dashed line the equilibra-
tion length L,q is macroscopically large. Solid square indicates
a transition to macroscopic L,q

inferred from the nonlocal resis-
tance measurements of Ref. 8 (vf =—'), and the arrow indicates
lower bound on similar transition for vf = —.

3
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cussed above will tend to decrease the steepness of the
curves plotted in Fig. 3.

In Figs. 3 and 4 of Ref. 9, Wang and Goldman ' have
plotted the four-terminal nonlocal resistance R NL, as well

as the ordinary resistance R „for a single sample at low
temperature (T =20 mK), as a function of magnetic-field
strength B, for the two opposite directions of the magnet-
ic field (labeled B + and B —). The edge currents are in
the opposite directions for the two signs of B, and for a
given set of current and voltage contacts, we find that
RNL is most sensitive to the equilibration length at only
one of the two sample edges, depending on the direction
of the applied magnetic field. (This conclusion is sup-
ported by a numerical calculation in which we have
represented the system by an extended network model,
similar to that employed by Richter, Wheeler, and
Sacks. '

)

It is interesting to examine the data of Ref. 9 in light of
the results of the present paper. As noted by Wang and
Goldman, the necessary conditions for a measurable R N~
are that 0„"'"& 0 (i.e., that vb„ik lies in an interplateau re-

gion vf & v»ik & vf ), and that there exist a high conduc-
tivity edge state, well isolated from the bulk (i.e., L,
must be very large). When L, is very large, according to
the analysis of Sec. II of Ref. 9, the value of RN„should
qualitatively follow the value of o.„",'")0. Thus the ob-
servation of a magnetic-field interval where R„, is appre-
ciable but R NL appears to be zero could indicate a region
where L, is microscopic for the edge in question. The
field regions where these effects of edge scattering are
most likely to be observable, because of relatively large
values of vb„~k

—vf, are the regions —', &vb„,„&1 and

v»&k- —,'. If we examine the curve corresponding to B—
in Fig. 4(b) of Ref. 9, we see that for the region
—', & vb„~k & l, &Ni is nonzero (and hence L,q

is large) over
the entire interplateau region, 4.2 & B & 5.2 T. Hence the
lower value of the magnetic field (B =4.2) only gives us a

lower bound on the value of vb„&& at which the equilibra-
tion length due to the v= —', strip should become macro-
scopically large (shown by a solid arrow in our Fig. 3).
We note that, unlike the other nonlocal resistance peaks
in the interplateau regions, the one between 4.2 & B & 5.2
T is actually a double peak. In this field range Lpq de-
creases, while 0. "'" increases sharply with decreasing B.
Since RNi increases with increasing o.""'" and decreases
with decreasing L, the combination of the two effects
may create a local minimum in R Ni and may be responsi-
ble for the double peak. Similarly, careful examination of
B —in Fig. 4(b) of Ref. 9 shows that in the vb„~k- —,

' re-

gion R NI becomes nonzero at B=7.5 T. The correspond-
ing value of vb„)k

—vf at which L,q
becomes macroscopi-

cally large is represented by a solid square in Fig. 3, as-
suming that the v= —,

' FQHE strip is more important than

the v= —', strip.
By contrast, the curve corresponding to B+ in Fig.

4(b) of Ref. 9 (which also appears in Fig. 3 of Ref. 9)
shows larger intervals of B, viz. , 4.2 &B ~ 5 T for

3 bQ/k 1 and B ~ 8 . 1 T near vb„&k
=

—,', where R &L =0
but R„„AO. This suggests that for the edge that is impor-
tant for this field direction L, may be considerably
shorter than for the other edge and therefore consider-
ably smaller than estimated from our theory. A possible
interpretation is that the value of L,q

is reduced in the
case of B + because of one or more defective regions
someplace along the corresponding edge.
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