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Quantum magnetotransport of a periodically modulated two-dimensional electron gas

Yong Tan
Department ofPhysics FM 15,-University of Washington, Seattle, Washington 98I95

(Received 19 July 1993)

The magnetoresistance of two-dimensional electrons in a periodic potential is studied. The Landau
levels are broadened by one-dimensional modulation, and are further split into a Hofstadter-like spec-
trum by two-dimensional modulation. The recently observed Weiss oscillation manifests the oscillatory
bandwidth of broadened Landau levels, where the minima appear at the flat-band condition (zero band-

width) for one-dimensional modulation. However the flat bands seem to give the maxima for two-

dimensional modulation. In this paper, the conductivity for both one- and two-dimensional modulations
has been obtained analytically. It is sho~n that the decrease of the scattering conductivity is enhanced

by the band splitting, while the band conductivity is reduced significantly. Consequently, the scattering
conductivity decreases faster than the increase of the baad conductivity as the Landau level is broadened
from the flat band. Therefore the total conductivity shows maximum at flat bands, in contrast to the
one-dimensional case. Moreover a numerical study has been made by using the Thouless number
method. A dramatic difference is observed between one- and two-dimensional modulations. This can be
explained in the same way as the result of band splitting.

I. INTRODUCTION

The motion of two-dimensional electrons subject simul-
taneously to a magnetic field and a periodic potential
gives rise to many interesting problems, such as the com-
mensurability problem. The commensurability revealed
in this system results from the interplay among several
competing length scales, for instance the magnetic length
1=(Ac/eB)'r, the lattice constant a, and the Fermi
wavelength 2trlkF =(2tr/E, )'~, where X, is the electron
density. In the limit of strong magnetic field perturbed
by a weak periodic potential, or in the limit of tight-
binding electrons in a weak magnetic field, this system is
well known to be described by the Hofstadter-type spec-
trum. ' Recently there has been a renewal of theoretical
interest, partly because of its important applications in
the quantum Hall effect and Aux phase of high-
temperature superconductivity.

The modern technology of the fabrication of superlat-
tices has made the experimental realization of the Hofs-
tadter spectrum accessible. The superlattices are generat-
ed in the high mobility GaAs/Al„Ga& „As heterostruc-
ture samples where a two-dimensional electron gas is em-
bedded. The magnetoresistance is often used as an in-
direct probe to study the structures of energy spectrum;
for example, the Shubnikov —de Haas oscillations indicate
the Landau quantization. In addition to the usual
Shubnikov —de Haas oscillations in the high fields, an
unusual type of magnetoresistance oscillation, the Weiss
oscillation, was observed in the low magnetic fields
8 &0.5 T in the presence of a one-dimensional periodic
modulation. This oscillation is periodic in the inverse
of the magnetic field. ' The periodicity is proportional
to the square root of the electron density. The ampli-
tude of the oscillation has almost no temperature depen-
dence in the range where te Shubnikov —de Haas oscilla-
tion is smeared out by the temperature. The maxima

and minima of the oscillation are given by '

2R, =(A, +y)a, A, =1,2, 3, . . . , (1.1)

where R, is the cyclotron radius R, =I k~, and y is the
phase determining the maxima and minima of the oscilla-
tion. The experiments give y=0. 17 for the maxima, and
y= —0.25 for the minima. The latter is often called the
Aat-band condition.

Various theories are given for the explanation of the
experimental results. It was pointed out by Beenakker
that the oscillation is classical in nature. The periodic
modulation acts as an electric field which gives a nonzero
drift velocity if Eq. (1.1) is satisfied. Therefore there is an
additional contribution to the conductivity. Similarly,
StFeda and MacDonald have explained that this periodic
modulation makes it possible for electrons to hop from
one cyclotron orbit to another with the guiding center
2@i /a apart. This of course results in a diffusive con-
ductivity. However, the classical theories cannot explain
the weak antiphase oscillation in the perpendicular direc-
tion of the one-dimensional modulation. ' It has been
argued quantum mechanically' ' that Landau levels are
broadened because of the periodic modulation. The
width of these broadened bands oscillates as a function of
the Landau-level index. The Weiss oscillation stems from
the oscillatory bandwidths. This is also evident from
measurements of the magnetocapacitance, ' ' which is
directly related to the density of states. The contributions
to the conductivity have been distinguished into the band
conductivity, which is the result of band broadening, and
the scattering conductivity between the Landau levels.
The scattering rate is also modified due to the nonzero
width of the Landau levels. This yields a reasonable ex-
planation of the weak oscillation in the perpendicular
direction, where there is no band conductivity. The
theory was further generalized to an anharmonic modula-
tion, ' which has been previously assumed to be the

0163-1829/94/49(3)/1827(9)/$06. 00 49 1827 1994 The American Physical Society



1828 YONG TAN 49

lowest harmonic. Similar results have been obtained
when the system is modulated by a periodic magnetic
field '

The experiments for a grid potential has also been re-
ported. Gerhardts, Weiss, and Wulf have measured the
magnetoresistance of a two-dimensional electron gas
modulated by a square periodic potential. ' Magne-
toresistance oscillations were also observed. However,
dramatic differences of the measurements appear between
two- and one-dimensional modulations. The magne-
toresistance measured in the two-dimensional modulation
is much weaker and has an antiphase, as observed in the
perpendicular direction of the one-dimensional modula-
tion. Fang and Stiles' used a hexagonal lateral periodic
potential generated by latex sphere masks. The magne-
toresistance measured in the deep-etched sample has an

antiphase with that in the sallow-etched sample, which
exhibits usual features of one-dimensional modulation.
The measurement of magnetocapacitance in the grid-gate
samples' seemed to give some fine structures, which
were explained possibly to be the manifestation of the
Hofstadter spectrum.

It was pointed out by Gerhardts and co-workers' '
that band splitting due to two-dimensional modulations
plays an important role in the calculation of the conduc-
tivity. If the band splitting is quite effective for the weak
disorder, the overlap between subbands can be neglected.
This reduces significantly the band conductivity. Recent-
ly the switching of dominance from band to scattering
conductivities has been observed experimentally by Weiss
et al. Lorke, Kotthaus, and Ploog ' have numerically
calculated the two-dimensional classical diffusion con-
stant. They claimed that the oscillation in the two-
dimensional modulation is still of classical origin. How-
ever, unlike the one-dimensional modulation, the phase in

Eq. (1.1) depends on the specific modulation potential.
Basically, the above theories for two-dimensional

modulations are based on numerical calculations. The
calculations' ' have focused on the case where band
splitting dominates. It is not clear how one- and two-
dimensional modulations differ from each other around
Hat bands. In this paper, an analytical formulation of this

problem is derived, which is consistent for both one- and
two-dimensional modulations. In Sec. II, the calculations
are carefully repeated for one-dimensional modulations,
by using the Kubo formula and the self-consistent Born
approximation; however, no further assumptions have
been made. In Sec. III, the conductivity for a two-
dimensional modulation is carried out analytically. The
results are valid whether or not the band splitting is
resolved. It is shown that the decrease of the scattering
conductivity is enhanced by the band splitting, whereas
the band conductivity is reduced significantly. As the
band is broadened from the Hat band, the band conduc-
tivity increases more slowly than the decrease of the
scattering conductivity. Therefore, the total conductivity
shows a maximum at Aat bands.

In Sec. IV, a numerical study has been made by using
the Thouless number method. The conductivity is
obtained as a function of periodic modulation strength
for a fixed disorder broadening factor. For one-

dimensional modulation, the conductivity increases rap-
idly with increasing modulation strength. On the con-
trary, the conductivity for two-dimensional modulation
decreases very slowly with the increasing modulation
strength. As the modulation becomes sufficiently strong,
the conductivity starts to grow. This supports the analyt-
ical calculations.

II. MAGNETORESISTANCE OSCILLATIONS

The resistance of a two-dimensional electron gas in a
magnetic field exhibits the Shubnikov-de Haas oscilla-
tions. This is well known to result from the oscillatory
density of states which rejects the Landau quantization.
In response to the applied external electric field, the elec-
trons hop to the nearest Landau levels. However, this
needs to be assisted by the impurity scatterers. The dis-
orders in the system broaden the discrete Landau levels
into bands, and more importantly cause the overlap be-
tween the Landau levels.

A. General formulation

In the self-consistent Born approximation, for the
short-range scatterers, the Green function is given by

E E~ —X —(E)
(2.1)

where Ez =(N + ,' )fico with —the cyclotron frequency co.

The self-energy X (E) is independent of the Landau-level
index N, and can be determined self-consistently by

(E)= y G/(E),
r,'

N

(2.2)

where I 0 characterizes the level broadening and is given

by

(2.3)

and ~f is the relaxation time in the absence of magnetic
fields. ~f is determined by the mobility of the sample,
namely p =erI /m ', and the effective mass

m *=0.067m, .
The conductivity can be calculated by the Kubo-

Greenwood formula

e Ao»(E)= z g (N~v„~N')
~

ImG+ImG& .
PP ~2l 2

N, V
(2.4)

uk k (x,y)=exp(ik, x+ik~y)fk k (x,y) . (2.5)

For the function f„„(x,y) the Hamiltonian becomes k
1 2

dependent. Therefore the velocity operators can be ex-
pressed as I /A' times the partial derivative of this effective
Hamiltonian with respect to the wave number. The ex-
pectation values can be obtained explicitly in terms of the
eigenfunctions,

To calculate the velocity, the eigenfunctions are writ-
ten in the form
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N N' = 6~~.+ E~.—E~ N N'
Bk) Bk~

B. Shubnikov-de Haas oscillation

In the high mobility samples where I o« fun, the
Green function can be solved in terms of the semielliptic
function, explicitly for the energy range—r, &E —s &r,,

2 (E E~)—
ImGN(E) = 1—

r, r,2 (2.7)

Moreover, the overlap of the densities between neighbor-
ing Landau levels is given by a factor of I 0/4(A'co) in this
limit.

The velocity operator connects the Landau levels with
their nearest neighbors. This yields the conductivity

2

cr„„(E)= g (N + —,
'

) [ImG~(E)]
4

(2.8)

(2.6)
The second term gives rise to the nonzero velocity be-
tween nearest Landau levels, which results in the scatter-
ing conductivity. If the energy is k dependent in the
presence of periodic potentials, the first term does not
vanish and the band conductivity can be expected.

self-consistent equation for the self-energy:

p2
X (E)=

4 w '1/ [E E—~ —X (E)] —4V~2
(2.12)

For weak disorder, this gives two peaks at the band edges
reflecting the Van Hove singularity for one-dimensional
periodic systems.

Similarly the conductivity can be calculated by Eq.
(2.4), where the average over k2 should be included. The
analytical results for both scattering and band conduc-
tivities as a function of energy can be obtained explicitly.
Since the Landau levels are broadened by the periodic
modulation, the correction to the scattering conductivity
needs to be taken into account. For wide bands, the con-
ductivity remains a constant in a quite wide region of en-

ergy around the band center. There are two peaks close
to band edges E,dg, =2V&. As the bandwidth decreases,
the conductivity at central region will increase according
to Eq. (2.14), and the width of this region will shrink.
Therefore two peaks at the edges move toward the center.
At the center of the band, the calculation is simple and il-
luminating. It describes exactly the envelope of
Shubnikov —de Haas oscillations, and consequently the
Weiss oscillations. The real part of the Green function
vanishes, while the imaginary part is given by Eq. (2.12),
which can be solved explicitly:

At the band center, the conductivity is quantized as half
integers, namely

ImX (Eg ) = 1

2

4 1/2r,'16V4+
4

1/2

2

o (E~)=
2

(N+ —,') .
fin.

C. One-dimensional modulation

(2.9)

Let us then switch on a weak one-dimensional periodic
modulation given by

(2.13)

The conductivity is given by Eq. (2.9), modified by a fac-
tor y, ,

2Io 1 z. 1
V1 4 2~ o icos k+ Imp.

—E
V(x) = Vocos(2nx/a) . (2.10)

The first-order perturbation gives the correction to the
energy 10 1 2

X [ImX (E~)j dk

64V i 64V 8V~1+ 1+r', r', r,' (2.14)

E~(k2 ) =EJv+2 icos(2nl ki/a), (2.11)

where V&=0.5Voexp( m I /a )I.z(2n—.l /a ), and L~ is
the Laguerre polynomial. One needs to replace Ez in Eq.
(2.1) by Ez(k2 ), and correspondingly an average over the
wave number k2 in Eqs. (2.2) and (2.4) is necessary.
Equation (2.2) can be evaluated explicitly, and it gives a

I

For a given degree of disorder I 0, as the bandwidth Vz is
increased y, decreases rapidly but saturates at a value of
0.5 for wide bands.

The results for the band conductivity shows a peak at
the band center, which spans the whole band. The peak
value of the conductivity is given by

2
4V&sin k2

{4V~cos k2+[ImX (E )]2]2

e2 812 4VN' e2 Vo'rf 8
cos 27K

g I h g ~ ckz
R,

4 (2.15)

where, in the last step, VN is expanded for high Landau
levels. R, is the classical radius of cyclotron orbits. The
minima of her„are certainly given by Eq. (1.1). This is
in agreement with those obtained previously by other au-

thors. ' Furthermore, this band conductivity varies
quadratically with respect to the ratio VN/I o. Though
the factor l /a is a considerably small parameter for ex-
periments, Eq. (2.15) contributes significantly for wide
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bands where Vz/I o is large. For lower Landau levels,
this band conductivity increases faster than the decrease
of the scattering conductivity for small VN. Therefore
the total conductivity shows a minimum at the flat-band
condition V~ =0.

III. EFFECT OF BAND SPLITTING

A. Properties of Hofstadter spectrum

The two-dimensional periodic modulation is described

by

V(x,y) = V, cos(2nx /a)+ V2cos(2ny /b), (3.1)

where a and b are the periods in each direction. The flux

through each unit cell play an important role, which we

write as

In this section, the magnetoresistance in a two-
dimensional periodic potential is considered. There have
been two experiments reported. Though the geometry of
the lattices, the square' and hexagonal' lattices, respec-
tively, is different, similar patterns have been measured.
For simplicity, only the square lattice is studied, and the
possible generalization to others such as rectangular and
hexagonal lattices will be discussed. The main results are
contained in Sec. III D, where it is shown that the Weiss
oscillation in the two-dimensional modulation has an an-
tiphase with that in the one-dimensional modulation.

where P(x) is a pth-order polynomial independent of the
wave numbers k, and k2. This gives a Hofstadter spec-
trum where there are p subbands separated by gaps. The
integrated density of states for each subband is equal,
therefore is 1/p. In general, the explicit form of the
dispersion formula for each subband, Eg, (k„k2), is

difficult to obtain. It is possible to expand P(x) around
some special energies, such as the critical energies
where the real part of the Green function vanishes.
Specifically, the critical energy is defined when the right
side of Eq. (3.7) is zero, explicitly, when k, and k2 satisfy

2nl (k, +k2)/a =+m. /p, +n/p . (3.8)

V exp( —
iqak& /p)d„&+2V'cos(qbkz/p +27rnq /p)d„

+ V exp(iqak
& /p)d„+ &

=Ed„. (3.6)

This is well known as the Harper equation. For the
square lattices, we have V&=V2 Vp and Q b thus
V = V'= VN, whose explicit form can be found in Sec. II.
The coeScient d„does not depend on the Landau-level
index, since the energy can properly be scaled and is pro-
portional to V~.

It has been shown the eigenvalues of Eq. (3.6) can be
obtained by solving

P(E/V~)=2cos(2ml pk, /a)+2cos(2ml pk2/a),

(3.7)

p =Bah = —$0, (3.2)

where Po
=h /e is the flux quantum, and p and q are mu-

tually primed integers. The relation between the period
and the magnetic length is shown as

One can show that at these energies, the density of states
diverges logarithmically. When Eq. (3.7) is expanded
around the critical energy E, , this yields

2ml q
ab p

(3.3)
Eg(k&, kz)=E, +2g Vz[cos(2ml pk&/a)

+cos(2~i pk~/a)], (3.9)

When the modulation is weak compared to the Landau-
level spacing, the perturbation theory is applicable. The
basis wave function is constructed as the superposition of
those describing the Landau level with different guiding

centers, explicitly

where the coefBcient g is

g =[P'(E, )] '=b~ (3.10)

u„„=exp(ik,x+ik,y) gd„(k, , k, )f„„

where

(3.4) The constant b is determined by the structure of the po-
lynomial P(x), and ~b~ ~

is less than 1, as is evident from
the sum rule,

fz k
= g yz x —I kz tqa ——nqa

t = —oo

(3.11)

nqa
X exp —ik

&
x —tqa—

(tp +n)+2&if (3.5)

B. Self-energy and density overlap

As disorder is introduced, the self-consistent Born ap-
proximation is used. The Green function can be ex-
pressed Rs

and a is the subband index. The function fk k is in-

dependent of the subband index a. y&(x) is the usual

wave function of Landau levels. In the absence of disor-

der, the coefBcient d„satisfies

1 1
G~ (E,k)=-

p E —EN(k, ,k2) —X (E)
(3.12)

The self-energy X (E), independent of X, a, and k, is
given self-consistently by
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p2
X (E)= g f dk, f dk2GN (E,k) . (3.13)

4p xa4
For the two-dimensional modulations, the conductivity

appears to be maximum at the critical energies. There-
I

fore the approximation in Eq. (3.9) gives accurate
descriptions of the Weiss oscillation. Assume that the
Fermi energy resides at the critical energy E, . Equation
(3.8) can be approximated as

rp 1 ImX (E, ) Iou —
~ ImX (E, )

4p 4m o o 4g Vz[cos(k&)+cos(kz)] +[ImX (E, )] 4p;=I [C;Vz] +[ImX (E, }]

(3.14)

where C; is a constant of order unity determined by the
band structure, and C; Vz measures the distance between

E, and the critical energy at the ith subband. The first
term on the right side can be evaluated explicitly:

r,' 2

4P n.+[4g, V~] +[ImX (E, )]

I

it is in term of the elliptic integral modified by E ', as E
moves far away from the edge, the elliptic integral goes to
a constant. This allows expansion of GN ~+, (E) in powers
of E ' when E is in subband a. For suSciently weak
disorder, Eq. (3.18) reduces to

Dw, +i(E)=
p2

(3.19)
4C V

IO 2Z 2V
ImX (E )= 1 ——gC;p, , 'r,'

8g V~

p p2

(3.16)

The last term is much smaller than the second one, which
represents the effect of band splitting. Thus the decrease
is dominated by the band splitting, while, for the wide
band, the second term on the right side of Eq. (3.14}can
be neglected because the overlap between subbands is
small. This yields

Io 1 ImX (E, )
ImX (E, )=- ln

4p 2mg~V~ 16g~V

8&mpg V~

r,
r,'

ln
4mpg V~

(3.17}

This differs from that in the one-dimensional modulation
by a logarithmic factor.

The overlap between subbands can be obtained readily
when the band is split. The density of states of subband
a+ 1 in the energy range of subband a is

DN, +I(E)=
p2

(3.18)G~ +, (E) D~ (E),d p

where GN +, (E) is [E—EN '(k, , k2)] ' averaged over
k. For the energy outside the subband a+ 1, there is only
the real part left for GN +, (E), which is divergent loga-
rithmically at the band edge of subband a+1. Actually

xK (3.15)
Q[4g Vz] +[ImX (E, )]

where E(x) is the elliptic integral of the first kind. For
the narrow band where disorder dominates, each subband
contributes equally. The self-energy is given, to leading
order, by ( Nal U&l N'g& = LE&~ E)5,&A—(f—z ), ,

~J
(3.20)

with ( ), denoting the spatial integration. The velocity
between Landau levels is diagonal in subband index a,
and is independent of the wave number k. This gives the
scattering conductivity. Similarly the correction factor to
Eq. (2.9) can be found to be

y2= x&+ ImX (E, )xi+ —,
'+-o 2 2 ~ 1, 1 E(x}

4p2 p2 ' p2 ' 2 K(x)

(3.21)

where E(x) is the elliptic integral of the second kind. x
and xl are given by

and

4g Vx

Q[4g V~] +[ImX (E, )]

ImX (E, )

;=, [C, VN ] + [ImX (E, ) ]

p —I

(3.22a)

(3.22b)

This factor y2 decreases very rapidly with increasing Vz.
For intra-Landau-levels, the nonzero velocity gives the

band conductivity, which can also be estimated. The ve-
locity within the same subband is given by

(Na~ U~ ~Na ) =—1 BE

J

= —2g V~ sin(2n. l pk /a) . (3.23)
2vrE

Therefore the band conductivity ho.
2 can be found in the

C. Velocity operator and conductivity

The velocities can be calculated by using Eq. (2.6),
where for inter-Landau-levels, explicitly,
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e 41 zz z
2 2

2X 1g V~+X1
a

4g V~ —ImX (E, )

[ImX (E, )] E (x) 4g V~+,(3.24)r2 ImX (E, )

For wide bands where Vz/ro is large, the intersubband
coupling also contributes to the band conductivity. It is
difficult to obtain an explicit form of Eq. (3.25). Howev-
er, the upper bound of this contribution ean be estimated,
roughly, as

e' 41' ~-' ro
boo g [g'C Vw]

where x and x, are given by Eq. (3.22}.
The velocity between subbands can be written explicit-

ly in terms of solutions of Eq. (3.6}:
e 4l p —1

a 2p
(3.30)

1 ad~
(Na~v, ~xp) =(Eg E)—y (d„)*—

J

(3.25)

D. Phase of Weiss oscillation

4(p +2p —1)y2=1-
p

' r,'

16(p —3p+1) 2
V~+ g2

p Io
(3.26)

where only the leading term in the power of Vz/I 0 is

kept. The last term is much smaller than the second one,
so it can be ignored. It can be shown that
gf:&'C; ~4p. Therefore the scattering conductivity is

reduced more rapidly than that in the one-dimensional
modulation given by Eq. (2.14). For the band conductivi-
ty, the asymptotic expansion of Eq. (3.24) gives

e' 41', Vx
oz=

2 28ga z
(3.27)

Compared with Eq. (3.26), this term grows much more
slowly, and can be ignored. Therefore the total conduc-
tivity decrease as Vz is increased, in sharp contrast to the
one-dimensional case.

As V~/ro is considerably large, yz is dominated by the
last term of Eq. (3.21), and can be approximated by

—1

8&op g V~

r,
1 1

yz= + ln
2 4p

(3.28)

It converges rather slowly to its limit. The approxima-
tion of Eq. (3.24} gives the band conductivity

8&rrp g. Viv Vi'v
(3.29)

ro r02

e 41ho.
z = Spg lna'

It continues to grow and becomes dominant with increas-
ing V~/ro, though the coefficient of the quadratic term
decreases 1ogarithmically. Since pg -p ', the conduc-
tivity is smaller than that in one-dimensional modula-

17, 19

As mentioned in Sec. III C for one-dimensional modu-
lation flat bands give the minima of the Weiss oscillation,
while the maxima appear for wide bands. Let us consider
two-dimensional modulation. Close to the flat bands
where V~/I 0 is small, Eq. (3.21) varies in the following
manner:

IV. NUMERICAL RESULTS

It has been shown that a small change in boundary
conditions can be related directly to the conductivity.
This provides a very useful way to calculate the conduc-
tivity numerically. This method was later generalized to
the system in a magnetic field where the velocity opera-
tors can be replaced by derivatives of the guiding center
coordinates. Explicitly, for a sample of size 1.XI. the
conductivity can be written in the form

e2
o. = — g (E,I.),

4
(4.1)

where the constant g' is of the same order as g . This
may be overestimated, since some subbands may contrib-
ute a term proportional to [1nV&] '. In general, for
large V~/I 0, Eq. (3.30) is negligible.

It seems that the flat band always produces a max-
imum. This is certainly true for high magnetic fields.
However, as the rnagnetie field is lowered, V~ decreases
much more slowly than I o. Therefore the maxima are
described by Eq. (3.29) instead. The fiat bands provide
only some local maxima which may be smeared out by
other factors. This explains the experimental results of
Weiss et al.

In summary, it is shown that the conductivity appears
to be at a maximum at the flat-band condition, in con-
trast to the one-dimensional modulation. This results
from the band splitting, which reduces the scattering con-
ductivity faster than the band conductivity can compen-
sate. Though this calculation is carried out for the
square lattice, it does not rely on this geometry. Rather,
it is valid for any two-dimensional lattices whenever the
band is split. It is plausible that Eq. (3.7) holds for any
two-dimensional lattices, though the dependence of its
right side on wave numbers is different. At least, this has
been shown to be true for rectangular, triangular, and
hexagonal lattices. The existence of critical energies and
the corresponding logarithmic divergence in the density
of states reflect the Van Hove singularities in two dirnen-

sions. The modulation given by Eq. (3.1) is the simplest,
where only one parameter (V~) determines the band-
width. However, for other types of lattices, even the
square lattice with some cross terms or higher-order har-
monics, there may be more than one parameter which
controls the bandwidth. This may change the phase fac-
tor significantly. ' Therefore, in order to observe the
effect of band splitting, there must be the corresponding
one-dimensional modulation to compare with. ' '
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where the Thouless number g (E,L) is defined as

g(E,L)=L D(E)hE. (4.2)

uk k (x+L„y)=exp(iyLi /12+iktLt )uz k (x,y),

"k k (x,y+L&)=exp(&k2L2) ukk (x,y) .
(4.3)

D(E} is the density of states normalized to 1/2m. l for
each Landau level. [L D(E)] ' measures the level spac-
ing, and hE is the shift of a specific energy level due to
the change in boundary conditions. The localization
length can be estimated from Eq. (4.2), because it decays
exponentially with the sample size in the localization re-
gime. For extended states, it is independent of the sam-

ple size for two-dimensional systems. Therefore small
samples are suitable to obtaining some reasonable results.

The generalized boundary conditions can be obtained
by magnetic translation operators. In particular, from
the wave function Eqs. (3.4) and (3.5},we have

Therefore k& =0 keeps the periodic boundary condition
in the x direction, while k&=0 and m/L2 give periodic
and antiperiodic boundary conditions, respectively, in the
y direction.

Numerical calculations are made by direct diagonaliza-
tion of the Hamiltonian, which is represented by a finite
matrix. In the limit of strong magnetic fields, the Hamil-
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two-dimensional periodic modulation are plotted against energy
in (a) and (1), respectively.
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tonian can be projected onto the Landau levels.
Specifically, for a fixed degree of disorder, the conductivi-
ty is obtained to show how it changes with the strength of
the periodic modulation, namely Vz. In this calculation,
the disorder is introduced by randomly placed short-
range scatterers. For simplicity, scatterers of 5 poten-
tial have been chosen, whose strengths are +V, . There
are equal number of positive and negative scatterers. The
broadening factor has shown to be given by

(4.4}

where x; is the concentration of the scatterer, and x, is
set to be 5 in order to be effective.

The finite size of the sample needs to be taken into ac-
count; the construction of the basis wave function can be
found elsewhere. Moreover, the sample average is
necessary to reduce the fluctuation. Normally this is
done by calculating the geometric average of the energy
shift b,E. The sample size we have calculated is 6a X6a,
while the magnetic Seld is characterized by
p/q =a /2ml =3. V& =0.2VO gives a broadening factor
I 0=1.55VO. Typically, 100 samples have been averaged.

Figure 1 shows the results of one-dimensional modula-
tion for four values of Vz/Vo, namely 0, 0.1, 0.3, and 0.5.
The density of states is plotted in Fig. 1(a}. There seems
to be a singularity at the band center when the modula-
tion is absent. The Thouless number is shown in Fig.
1(b}. The conductivity increases very rapidly as the band
becomes wider. However, for two-dimensional modula-
tion, the conductivity barely changes with Vz when the
modulation is weak. The Thouless number is calculated
for V~/Vo =0, 0.1, 0.3, 0.5, and 1.0. As shown in Fig.
2(b}, the peak values of the conductivity decrease very
slightly as V~/Vo varies from 0.1 to 0.5. But these
values are slightly higher than that with V~/VO=O,
which is strongly affected by the singularity in the density
of states. When the modulation is further increased, the
conductivity starts to grow, though very slowly. As
V~/Vo is as large as 1.0 when the Hofstadter spectrum is
resolved, the peak is increased by only about 20%%uo.

Though a rapid decrease in conductivity is not observed
as a two-dimensional modulation is introduced, the
dramatic difference between one- and two-dimensional
modulations certainly exists. The two-dimensional modu-
lation gives some extra off-diagonal matrix elements in
addition to the matrix of the one-dimensional modula-
tion. From the energy spectrum point of view, this
causes the band to split. The difference in conductivity is
certainly attributed to the band splitting.

V. CONCLUSIONS

In this paper the magnetoresistance of two-dimensional
electrons in a periodic potential is studied. In Sec. II, the

general formulation of the problem is given, based mainly
on the Kubo formula and the self-consistent Born ap-
proximation. This has been used to give the well-known
results of Shubnikov —de Haas oscillations. In the limit of
weak periodic modulations, perturbation theory is ap-
plied to modify the energy spectrum. When a weak one-
dimensional periodic modulation is introduced, each
Landau level is broadened into an energy band whose
bandwidth is an oscillatory function of the Landau-level
index. This level broadening gives rise to the band con-
ductivity which dominates the scattering conductivity.
The Weiss oscillation can be explained to result from the
oscillatory bandwidth. The minima of the oscillation
occur at the fiat bands whose widths are zero. It is also
shown that the scattering conductivity is reduced due to
the level broadening. This effect is refiected in a weaker
oscillation in the direction perpendicular to the periodic
modulation. In this case, flat bands give the maxima of
the oscillation.

In Sec. III the conductivity for a two-dimensional
periodic modulation is carried out analytically. This is
usually known as the Hofstadter spectrum, where the
broadened Landau band is further split into subbands. It
is found that the decrease of the scattering conductivity is
enhanced by the band splitting, whereas the band con-
ductivity is reduced significantly. As a result, the band
conductivity grows more slowly than the decrease of the
scattering conductivity as the band is broadened from the
Aat band. Therefore, the total conductivity shows a max-
imum at fiat bands. This is in sharp contrast to one-
dimensional modulations. There is also a discussion of
the recent experimental observation of the switching in
dominance between band and scattering conductivities as
a function of magnetic fields.

In Sec. IV a numerical study has been made by using
the Thouless number method. The conductivity is calcu-
lated as a function of periodic modulation strength for
fixed disorder broadening factor. For one-dimensional
modulation, the conductivity increases rather rapidly
with increasing modulation strength. However, a
dramatic difference is observed for two-dimensional
modulation. The conductivity decreases very slowly with
increasing modulation strength. As the modulation be-
comes sufficiently strong, the conductivity starts to grow
slowly. This can be explained similarly as the result of
band splitting.
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