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Effects of interface and bulk optical phonons on poiarons in a quantum well
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The properties of a confined electron interacting with both the confined longitudinal optical (LO) and

interface optical (IO) phonons in a quantum well (QW) are investigated. By using a modified Lee-Low-

Pines variational method, an analytical expression for the polaron ground-state energy is obtained. Nu-

merical calculation is performed for a GaAs/A1As QW as a typical case. The results show that only two

symmetric IO-phonon modes as well as the confined LO-phonon mode contribute to the energies of the

polaron. It is also found that one of the symmetric IO-phonon modes is more important, its contribution
to the energies is much larger than the others when the QW width is smaller than the polaron radius.

I. INTRODUCTION

The properties of an electron confined in a quantum
well (QW) have attracted much attention in recent
years. Some usual QW structures, such as
GaAs/Ga, „Al„As structure, are composed of polar
compounds, therefore the coupling of the electrons with
polar-optical vibrations is in general important for deter-
mining the electron dynamics and has been studied a
great deal. ' The quasi-two-dimensional (Q2D) polaron
problem has become a reference problem for testing vari-
ous theoretical models and approximation methods be-
cause it presents a comparatively simple and physically
realistic example for the interaction of a confined particle
with quantized field.

By using the so-called bulk-phonon approximation,
many authors have studied the properties of the Q2D po-
larons via the Frohlich Hamiltonian, ' and showed
that the Q2D polaron effect becomes significant in the
case of strong confinement. These works have qualita-
tively predicted the correct results for the self-energy and
mass corrections of the polaron both in the three-
dimensional (3D) and two-dimensional (2D) cases. "'
However they did not mention the contribution of the in-

terface phonons, which have proved to be important in
heterostructures.

Recently, Lin, Chen, and Gorge, ' using standard per-
turbation theory, calculated the ground-state energy and
eff'ective mass of a polaron confined in a GaAs/A1As QW
as functions of the QW width. In considering the
electron-phonon interaction, they included the confined
longitudinal-optical (LO)- as well as the interface-optical
(IO)-phonon modes, and gave some qualitative results.
Unfortunately, interband transitions were ignored in
their calculation for simplicity, and as a result the correct

limiting values could not be guaranteed. Hai, Peeters,
and Devreese' reported a detailed investigation of the
binding energy and effective mass of an electron in a QW
by using second-order perturbation theory. IO- and LO-
phonon modes were incorporated in the calculations, and
a comparison of the results for different phonon modes
was made. For the infinite-barrier QW, the transitions
from the 2D to 3D limit were correctly obtained in their
work. But for the finite-barrier QW, it is practically im-
possible to sum over all intermediate states, so that the
so-called leading-term approximation had to be used in
the calculations. As concluded by the authors, the finite-
barrier QW model with the leading-term approximation
is only adequate to study the polaron states in the wells

that are neither too narrow nor too wide. Therefore it is
not possible to obtain correct limits from this approxima-
tion. Based on intuitive arguments, they proposed an ap-
proximation that can lead to correct limits.

The purpose of the present paper is to investigate the
properties of the Q2D polaron system by using a modified
Lee-Low-Pines (LLP) variation method. " In order to
provide insight into the problem, we perform an analyti-
cal calculation as far as possible. The analytical expres-
sion of the ground-state energy of the polaron is ob-
tained. Numerical calculation is also performed for the
GaAs/AIAs QW as a typical case to compare numerical
results with other papers.

The paper is organized as following: in Sec. II the
Hamiltonian of an electron in a QW interacting with the
confined LO and IO phonons is given. In Sec. III, a
modified LLP variational technique is presented, and the
expressions for the ground-state and binding energies of
the polaron are given. The numerical results are shown

graphically in Sec. IV. Finally, the discussion and a brief
conclusion are given in Sec. IV.
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II. HAMILTONIAN

We consider a QW of polar dielectrics for which the
well material is in the region 1, —d ~ z + d, and the bar-
riers are in the region 2, ~z ~

)d. Let us focus our atten-
tion on the interaction of a confined electron with the
confined LO and IO phonons, and assume that the
efective-mass approximation and the infinite-square-well
approximation are valid. These approximations simplify
the problems mathematically without losing the essential
features of the Q2D polaron. Thus the total Hamiltonian
of the electron-lattice system can be written as

s„&(eai) are, respectively, the Frohlich electron-phonon
coupling constant and the high-frequency (static} dielec-
tric constant for the well material labeled 1. Q is the
volume, S the interface area, and m0 the effective mass of
the electron.

The Hamiltonian of the IO-phonon modes (indexes
o,p =+,—label the four branches of these modes) is
represented by the fourth term in (1), which is given by

H&o= g fico «ai, ai, «, (11)
kap

where

H =H& +Hgo +He IQ+Hg0+He gp

Here the first term includes the electron kinetic energy
and the well potential experienced by the electron, and is
given by

with

B (k)k[B (k) —4A (k)C (k)j'i*«2A (k)
(12)

2 2

I,= P~~ + ' +V(.),
2m

(f
2mz

with

V(z}= '0 (3)

A (k)=a«i+a[,

B«(k) =a
&
(cor &+cor2)+ a«i(co&2+mB&, ),

C«(k)=a icol. icor2+a)co12cori,

a+ =(1ye 2kd)s

( lee —2kd)e

(13)

(14)

(15)

(16)

{17)

where P=(pi, p, ) and m'=(in', m, ) are the momentum
and band mass of the electron, respectively. The second
and third terms in (1) describe respectively the confined
LO-phonon field and the interaction between the electron
and the LO phonons, and are given by'

Bio = g fKoc ia i «ai (4)
kmp

H, lo= g [Vi, (z)e'"'«ai, +H. c.],
kmp

The last term in (1) is the Hamiltonian of the interac-
tion between the electron and the IO phonons, and is
given by

H, ,o= g [Wi, (z)e'"'«ai, +H. c.],
kcrp

where
' 1/2

Wk +(z)= iD +(kd)—2Me cosh(kz )

Skco + cosh d

with

1/4

fKo+ i

4ma,B= 2 0 2m 0L1

Vi, «(z)= 2, csn(k z),iB
(k2+k )'i

' 1/2

(6)

(7)

1/2

Wk (z) = iD (kd )—2mke sinh( kz )

Skco sinh k

D (+kd)=[2/ +tanh(kd)+2' +]
D (kd )= [2/i coth(kd )+2(z ]

(20)

(21)

(22)

mK
2d

40'« iyg
(k= 1,2)

~rd s0~ s.~)— (23)

0=S2d,
cos(k z), m =1,3, 5, . . .

csn(k z)=
sin(k z), m=2, 4, 6, . . . ,

(10)

where a&~«(ai, ) is the creation (annihilation) operator
for the confined LO phonon with frequency co&1, wave
vector {k,k ), and parity p. r=(p, z) is the position vector
of the electron. The parity p refers to the mirror symme-
try with respect to the plane z=0, and the positive in-
teger m refers to the discrete values of the z component
of the wave vector in units of n /2d. For even (odd) pari-
ty, p is positive (negative} and m odd (even). The wave
vector k is limited by the Brillouin-zone boundary, that
is, rn n/2d ~ n/a (a is .the . lattice constant of
the well material). a&=(e„&—eai')(mae /2A co@ i)' and

2 2

ei =s„i (A, =1,2),
N Zg N~p

where ai, (a„)is the creation (annihilation) operator
for the IO phonon with frequency cu and wave vector k.
co&

& (col@) and co@& (cor2) are the longitudinal and trans-
verse optical phonon frequencies, respectively, for materi-
al 1 (2). e„z(s02) is the high-frequency (static) dielectric
constant for the barrier material labeled 2.

III. CALCULATION

Because the Hamiltonian in Sec. II appears exceedingly
complicated, some methods of approximation must be
used. In this paper we adopt a modified LLP variational
method. ' First, for the Hamiltonian (1) we perform a
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in which

+ X [Gi,()a)ai', —G«, (p)ai.p] '

kap

Fk (p, z)=f„csn(k z)exp( —ik p),

Gi, (p) =gi, exp( —ik p),

unitary transformation with
T

U=exp —g [Fi,~~(p, z)a& ~
F—i', ~(p, z)ai, ~]

kmp

(25)

(26)

(27)

U P, U=P, —i g iiik [fi, scn(k z)
kmp

(30)

(31)

Xe '" i'a „—H. c. ] ',

p~,
—X&«F„.,a„'.,+ .c. ) —X«~ „., ~'

kmp kmp

—g Rk(Gi, ~ai, +H. c. ) —g Ak~Gi,
kop kep

U akmp U=akmp+Fkmp

U ak U=ak p+Gk p,

(28)

(29)

where f& and g& z are the variational parameters
which will subsequently be determined by minimizing the
energy of the system. The following relations holds for
the transformation:

where, for convenience, the function scn(k z) is defined
as

(32)

—sin(k z) for odd m
scnk z ='

m cos(k z) for even m .

Then the transformed Hamiltonian H* = UtHU can be
obtained, of which the part related to the zero-phonon
state is given by

Ho = — g iiiklfi, ~
csn (k z)+ g Rk~gi,

ll Il kmp kap

2 Rk
+ + V(z)+ g ifi, i scn (k z)+ g Sieur, ifi, i

csn (k z)+ g fico hagi,
2 kmp z kmp kop

+ g [Vi, (z)fi, „csn(k z)+c.c. ]+ g[Wi, (z)gi, +c.c. ] .
kmp kop

(33)

Since we are interested only in the ground state of the confined polaron, and assume that the momentum of the elec-
tron in x-y plane is zero, the first two terms in (33) related to the kinetic energy of the confined polaron can be assumed
to be zero. The third term describes the interaction between the virtual phonons emitted and reabsorbed by the recoiled
electron, and is generally very small in the case of weak coupling. ' It can be neglected in the following calculations
since the electron-phonon coupling is rather weak for the real materials such as GaAs/AIAs etc.

The expectation value of the transformed Hamiltonian is evaluated by choosing the wave function ~1() as a product
of an electron wave function and a phonon vacuum state,

~g& =4„(z)10&, (34)

where ~0) is the phonon vacuum state, and 4„(z) is the electron subband wave function for the motion along the z

direction in an infinite square well potential, which is given by

1/2

sin{k„(z+d ) I, [z [
~ d

1

4„(z)= '

(35)

with

k„= (n=1,2, 3, . . . ) .
2d

Then we obtain the expectation value of the transformed Hamiltonian of the confined polaron system:

(36)
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E=&QIH ly&=&ylUtHUlg&

Hfi n ir2k2+ y fico + lg„„l + y [&y„lW„.,(z)ly„&g„+C.C. ]

A k A' k
+ g fuoz, + &P„lcsn (k z)lP„&+ &P„lscn (k z)lP„& If'~~2m

II

" 2m,

+ g . , &P„lcsn (k z)lg„&fz +c.c.(k+k )'
(37)

The variational conditions, 5E/5F& =0 and 5E/5gz =0 can be used to determine the forms of fz and gz
which are

and

f~, =
fi k

quoi i+
2m

II

&P„lcsn (k z)lg„&(kz+kz )'~

fink
&P„lcsn (k z)lg„&+ &{t„lscn (k z)lg„&

2mz

(38)

S) ~p=
—&{(„IW„'.,(z}lg„&

A' kL) p+
2m

II

(39)

By substituting equations (38) and (39) into (37), we finally obtain

HAn
ELO EIO8md

(40)

with

Ero= XEro«»»
o'p

where

g2

(k+k )
, l&y„[csn'(k. z}ly„&l'

(41)

ELO
i}i'k' 22

e „+ &y„lcsn'(k. z)ly„&+ &y„lscn'(k. z)ly„&
2m

II
2mz

(42)

and

Ero(~ S )= & A'k

2m
II

Since

W~ ( —z) = —W~ (z)
(43)

and

leg„( —z)l = lg„{z}l

ELo+E&o represents physically the self-energy of the po-
laron due to the electron-phonon interaction. ELo comes
from the interaction of the electron with the confined LO
phonon, and E&o from the electron —IO-phonon interac-
tion.

Before giving further calculations, from equation (43}
we note the interesting fact that two antisymmetric
branches of the IO phonons labeled p =—do not con-
tribute to the electron-phonon interaction energy under
the approximations used in this paper. That is to say,
E,o(+, —) and E,o( —,—) are equal to zero. This fact
can be proved as the following:

thus

&p„lW„( )zip„=&f' W„. (z)ly„(z)l'dz=0.

To simplify the subsequent calculations, we set
m 0

=m =m„and take AcoL, as the unit of the energy,
and ~~™ocoz,) as the unit of the length. In order to

II ]/2

obtain the ground-state energy we evaluate expressions
(40)—(43) for the lowest subband state (n =1). Now by
using the relation

y —(S/4&) fdk,
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the sum over k becomes an integral which can be evalu-
ated. We finally obtain

E=
~
—ELo —Eio

4d

with

(44)

3(x )
LO 4g

1

2 7r
1 ——

3 2d

1 2d
-~ln —+

3 7T

2

+ g ln 1+Q) 2d

m=2 3

Eio(o +)
2Q)Z) oo D~+ tanh (q)dq

p co~+Mr ) CO

q 1+" +k
COL )

(45)

IV. RESULT AND DISCUSSION

In order to understand the change of the polaron prop-
erties with reducing dimensionality in graphical form, we
evaluate the energies given by equations (44)—(46) over
the entire range of the well width. For the sake of com-
parison we choose the GaAs/A1As QW as a typical ex-
ample and adopt the same parameters used in Ref. 13,
which are listed in Table I. The results we obtain as
functions of the QW width d are plotted in Fig. 1.
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FIG. 1. Calculated polaron energies (in units of a&RcoL, ) as
functions of the well width d (in units of the polaron radius R~).
Ez&&+ Ez& represents the self-energy of the Q2D polaron
confined in a GaAs/AIAs QW, and Ezc and E,&& are the contri-
butions from confined LO and IO phonons, respectively.
E&o(+, +) and E&o( —,+) correspond to the contributions
from the two IO-phonon modes labeled (+,+) and (—,+), re-
spectively.

(46)

In Eq. (46), we have defined the variables q =kd, and
s) =(s

) sp) )

TABLE I. Parameters used for the present calculation (m, is
the rest mass of a free electron). The electron-phonon coupling
constant a is taken from Ref. 16, the other parameters from
Ref. 13.

mo/m, mL (cm ') coT (cm ')

GaAs 0.067 12.5 10.06
AlAs 10.6 8.16

297
403.7

273
361.7

0.068
0.126

From Fig. 1 we can see that our result is almost the
same as one of the results obtained by Hai, Peeters, and
Devreese' with the infinite-barrier square well, although
we use a different theoretical method. We also find that
only two symmetric modes in the four IO-phonon modes
contribute to the binding energy of the polaron. The en-
ergy E&o(+, +) is always much larger than E,o( —,+).
Furthermore, it is dominant in all phonon modes when
the QW width is smaller than the polaron radius R [for
GaAs, R =39.5 A (Ref. 13)j. This interesting result in-
dicates that the IO-phonon mode labeled (+,+) is more
important, and should be paid more attention.

In Fig. 1, it is very clear that ELO, the energy of the
electron interacting with the confined LO phonons, in-
creases monotonically with increasing QW width d, until
it reaches the limiting value of the bulk case. As noted
by Licari, it is somewhat surprising that the energy ELO
rises to a,kcoL

&
very slowly when the well width is much

greater than the polaron radius R, however, this is due
simply to the neglect of the contribution of the
interface/surface phonons. Our result here strongly sup-
ports this opinion, and gives a clear picture of the way in
which the energies change with the QW width d. There
are two effects when d becomes large: (1) the energy ELo
rises slowly to that of the bulk Frohlich polaron, and (2)
the energy E&0 reduces slowly to zero. These two effects
combat each other, and make the self-energy E„o+E,o
close very fast to the value expected for the bulk polaron.
When d is larger than 8R, our result indicates that the
self-energy of the Q2D polaron is almost exactly equal to
Q ]flQ)L ] e

We note that the self-energy of the Q2D polaron is
qualitatively similar to that obtained by the bulk-phonon
approximation. ' This fact indicates that the bulk-
phonon approximation can give some reasonable results
for a Q2D polaron system with a not too narrow well
width in spite of its simplicity. But, as Hai, Peeters, and
Devreese have noted, ' we also point out that there is an
obvious quantitative deference between the self-energy
given by the present paper and the result obtained by the
bulk-phonon approximation in the narrow QW case. In
the 2D limiting case, our result approaches (~/2)uzAcoL z,
which is the self-energy of a polaron on the surface of
half-space barrier material. In contrast, the bulk-phonon
approximation gives a limiting result of (n/2)a&RcoL, ,

which is the self-energy of a 2D polaron in the well ma-
terial layer. Our result is in keeping with the physical
analysis on the problem. The quantitative difference indi-
cates that the property of confined phonons in the QW is
not the same as that of the ideal 2D or 3D phonons. The
effects of the confined phonons, especially the interface
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OQt y0

2m( Vo E„—)
d+1

If the probability I',„t is much smaller than 1, one can
say that the perfect carrier confinement approximation is
valid. We believe that this is a reasonable quantitative
criterion. In the case of a GaAsiA1As QW with
Vo=0. 57 eV, ' when the QW width is d =R, one can
obtain P,„,=0.02 for an electron at the bottom of the
lowest subband energy level. Thus we can say that the
infinite-square-well approximation is valid at least in the
range of d &R .

In conclusion, we have investigated the properties of a

phonons, should not be neglected.
In this paper we also wish to discuss the range of valid-

ity of the infinite-barrier QW approximation. From
quantum-mechanical theory, one can obtain the probabil-
ity of finding a particle with energy eigenvalue E„ in the
barrier region of a finite-barrier square well (the barrier
height is Vo); that is,

Q2D polaron confined in a QW by including the efFects of
LO and IO phonons, and given a clear picture of the way
in which the energies of the Q2D polaron change with
the QW width. Based on the approaches used in this pa-
per, we have found that the following: (I) Only two sym-
metric IO-phonon modes and the confined LO-phonon
mode contribute to the energies of the polaron in a sym-
metric QW. (2) The symmetric IO-phonon mode labeled
(+, +) is inore important in the four branches of the IO
phonons. Its contribution to the energies is always much
larger than the others. Furthermore, it will be in the
dominant position in all phonon modes when the QW
width is smaller than the polaron radius. (3) By incor-
porating the contributions of the IO and LO phonons,
the behavior of the Q2D polaron is qualitatively similar
to that of the so-called bulk-phonon approximation, but
there obviously is a quantitative difference between them.
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