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Ballistic electron transmission in coupled parallel waveguides
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Four-terminal resistances in parallel electron-waveguide structures coupled by a window region are
calculated using classical- and quantum-mechanical methods. An electron incident through one of the
waveguides can travel into the other in the quantum ballistic regime. The transmission coefBcients into
the ends of the second waveguide oscillate as one of the sample parameters, such as the separation be-
tween the waveguides or the Fermi energy, is varied, leading to quasiregular modulations in the transfer
resistance. Several diferent mechanisms are responsible for the oscillations including (i) classical specu-
lar rejections from the side wall of the window region, (ii) depopulation of quasi-one-dimensional sub-
bands in the waveguides, and (iii) Fabry-Perot-type quantum interference in the window region. We pro-
pose that these scenarios of the oscillations can be distinguished experimentally by their peculiar depen-
dence on the system parameters.

I. INTRODUCTION

The electron transport in microstructures created in
high mobility GaAs-Al„Ga& As heterostructures bears
a strong resemblance to the propagation of electromag-
netic waves in waveguides. ' In samples having dimen-
sions of less than the elastic mean free path I„due to the
remote impurities and residual impurities in the channels,
the Drude theory is no longer applicable since impurity
scattering does not play a role. The conductance of the
system is solely influenced by the geometrical features.
When the phase-coherence length of an electron exceeds
the sample size at low temperatures, the Fermi wave-
length A,F provides another important length scale since
the conductance is modified due to quantum interference
effects as the sample dimensions vary on the order of A,~.'

The problem can be viewed as a quantum scattering prob-
lem, and hence it is required to solve the Schrodinger
equation in determining the scattering coeScients be-
tween one-dimensional (1D) transmission channels. Elec-
tron devices utilizing the fully quantum-mechanical na-
ture of the transport have been proposed based on their
analogy with microwave and optical devices.

A considerable number of anomalous ballistic effects
have been observed in the resistance measured in cross
junctions of quasi-1D wires, including the quenched or
negative Hall resistance and the negative bend resis-
tance. Surprisingly, these features can be reproduced by
the classical billiard model, in which the transmission
coefficients are examined by simply following ballistic tra-
jectories in the sample geometries. If the corners of the
cross region are rounded, which is the case in the experi-
mental situation due to screening, many electrons are
reflected from the diagonal wall into the wrong Hall
probe, or electrons multiply reflected in the expanded in-
tersection region have equal opportunity to exit on either
side at very weak magnetic fields. ' This rebound and
scrambling trajectories are responsible for the anomalous
phenomena in the Hall resistance. '

Recently, Hirayama et al." have investigated the
transport properties in parallel wires directly coupled by
a ballistic window. The coupling in this geometry takes
place in a direction perpendicular to the electron propa-
gation in the infinite wires, so that the transmission
reflects the angular distribution of the incident electrons.
The transfer resistance, which we define in Sec. II, be-
comes negative when the sample size is reduced to below

l„ in contrast to a positive value in a diffusive transport
sample. It was observed in this ballistic regime that an
oscillation was superimposed on the resistance as the
width of the channel was varied. " The experiment was
performed at relatively high temperatures so that the
quantum interference effect was expected to be less im-
portant. The oscillation was thus interpreted in terms of
the depopulation of 1D subbands in the terminal wires.
Interestingly, in the smallest sample, in which the
clearest oscillation was observed as expected, the resis-
tance oscillated between negative and positive values. "

It is the purpose of this paper to present numerical re-
sults for the resistances in the para11el wire structures.
Although the interpretation of the oscillation in terms of
the subband effect will be confirmed to be reasonable, we

propose an alternative mechanism which may account for
the oscillation. This explanation is based on the classical
rebound effect in a straight wire, and it may be tested by
measuring the temperature dependence of the oscillation.
We wi11 also show that quantum-mechanical interference
leads to oscillations in the resistance if the system is en-
tirely phase coherent.

II. NUMERICAL MODEL

We model the geometry as illustrated in Fig. 1. Two
parallel infinite waveguides of width W are connected by
a transverse waveguide with width D and length I.. We
set D = W throughout the paper unless otherwise noted.
We take an electrostatic potential which is zero within
the channels, and infinite outside. The Coulomb interac-
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tions between electrons are ignored so that the Couloinb
blockade is assumed not to play a role in our results. '

The transport in the structure is treated as a scattering
problem of a noninteracting electron system in the
linear-response regime. Generally, the individual
transmission coelcients among the leads are not accessi-
ble in the experiments, though it is possible to measure
them as demonstrated in a recent experiment. ' For con-
venience, to compare with the experimental results, we
define four-terminal resistances in the structure, i.e., the
longitudinal resistance RL =R»z4, the transfer resis-
tance R&=R &2 34 and the generalized Hall resistance

RH =Ri3,4, where R; k&=(Vk —V&)/I;, indicates that
the voltage difference is measured between leads k and I
while the current flows from lead i to lead j. These resis-
tances are related to the transmission coefficients of an
electron at the Fermi energy EF=Pi kF/2m through the
Buttiker-Landauer formula. Because of the symmetry of
the structure, the transmission in the absence of a mag-
netic field is described by the four transmission probabili-
ties indicated in Fig. 1, which we denote T, S+, Sz, and
R. We thus have

III. CLASSICAL TRANSMISSION

We first describe the classical mechanism of the oscilla-
tion. Hirayama et al." observed an oscillation in Rr,
which is proportional to the difference between the
transmission probabilities into each side of the second
waveguide, Sz —SF. Obviously, SF &Sz, as L is short
since the direct transmission from lead 1 to lead 4 is
significant. However, this diagona1 trajectory is sha-
dowed by the sidewall of the window region when I. is in-
creased. The rebound trajectory reffected from the facing
wall into lead 3, illustrated by the dotted line in the mid-
dle inset of Fig. 2(a), will eventually become dominant,
leading to Sz & Sii which results in an inversion of the po-
larity of Rr. When L is further increased, the electron is
reffected twice in the window region (the right inset), and
R r will again become negative. Therefore, Rz will exhib-
it an oscillation according to the number of reflections
from the walls in the window region.

In order to confirm the above idea, we have numerical-
ly calculated the transmission coefficients employing clas-
sical and quantum-mechanical methods. In Figs. 2 and 3,
we show the transmission and the resistances evaluated
by the billiard model. 9 The transmission probabilities are
determined by counting the number of classical trajec-
tories which reach each terminal lead as electrons are in-
jected from one of the leads with uniform distribution
over the channel width Wand cos8 dependence on the in-

cident angle 8. ' The reffections from the waveguide
walls are assumed to be specular. ' Because electrons
prefer to move straight instead of turning around the

It is easy to show that'

R~=RL, —RH . (2)
0.3

0.7

- 0.6
We note that, in the current and voltage probe
configurations for Rz, the voltage probes are separated
from the nominal current path, and hence Rz is useful to
characterize any nonlocal behavior of the transport. '

The local resistances RL and RH, on the other hand, con-
tain the conventional "bulk" resistance if the impurity
scattering is not completely negligible. In the classical
diffusive transport limit, it is expected that Rz =R&, and
R & =0, since SF=Sz.
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FIG. 1. Schematic view of the coupled parallel waveguides.
Four reservoirs attached to the semi-infinite leads are labeled
1—4. The four-terminal resistances of the system are deter-
mined by the transmission probabilities T, SF, Sz, and R, in the
absence of magnetic field. We assume D= 8'except in Figs. 3
and 6.

FIG. 2. (a) Transmission probabilities and (b) resistances cal-
culated by the billiard model as a function of the separation I.
between two parallel wires of width O'. In the classical case,
R =0. The transmission becomes independent of L for larger
separation. The inset illustrates the direct (left), rebound
(center), and multiply reflected (right) trajectories which lead to
an oscillation in R& for smaller L.
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FIG. 3. (a) Classical transmission probabilities and (b) resis-

tances as a function of D/W when the aspect ratio of the win-

dow region is fixed at L /D = 1.

corner and, obviously, S~ ~0 for L ~0, RT is negative
for L-0. '" The dependence of the resistances on L
shown in Fig. 2(b) indicates that RT indeed exhibits an
oscillatory behavior and ranges between negative and
positive values due to the classical mechanism mentioned
above. When for L & 38'the electrons are reflected many
times from the walls, Sz and S~ become comparable and

nearly independent on L because of the broad angular
distribution of injection, resulting in the rapid decay of
the oscillation. Notice that RL and RH are almost identi-
cal in this multiple reflection regime, whereas they devi-
ate from each other as the oscillatory behavior in RT is
evident for smaller L. The straight-through transmission
is almost independent of L for L & 0.5 W since the elec-
trons hardly see the second waveguide directly. ' The de-
crease of T compared to the L =0 case makes RL rough-

ly independent of L.
In the experiments of Hirayama et al. , the in-plane

gate voltage applied to the terminal wires mainly modifies
the width of the parallel wires, while the size of the win-

dow region is almost unchanged. ' Figure 3 gives results
corresponding to this situation. The transmission
straight through the initial waveguide approaches unity
as the entrance of the window region is narrowed because
of the fixed total transmission. Since L =D, S~ is expect-
ed to be larger than Sz due to the rebound effect. This
tendency is clear for smaller D/8'. When the width of
the waveguides is reduced relative to the window region,
all the transmission probabilities (except for R =0) be-
come comparable since the angular distribution of the
flux injected into the window region becomes broad. An
oscillation may be present in R T. However, its amplitude
is comparable with the statistical error.

We have emphasized that the broad distribution of the
flux in the window region is detrimental to the oscilla-

tion. Although the oscillation is found to be weak, it may
be enhanced in the experimental situation due to the for-
ward collimation of the injected electron beam. ' The
distribution of electrons departed from a gradually
widened channel is sharpened in the forward direc-
tion. ' ' If the channel width varies adiabatically from
8' to 8', the angular distribution is restricted within a
cone of an angle O,„=sin '( W/W ). An improved
oscillation may appear particularly in the magnetic-field
dependence rather than in the L dependence. Beenakker
and van Houten have discussed oscillatory behaviors of
R T as a function of magnetic field due to electron focus-
ing in narrow wires. Our results indicate that an oscilla-
tion due to a similar mechanism can take place even in
the absence of magnetic field. Although the mechanism
of the transmission modulation is classical, the magne-
toresistance oscillation is sensitive to temperature since
thermal smearing of the Fermi distribution, which is
equivalent to a nonuniform cyclotron radius Ak~/eB,
corresponds to a magnetic-field averaging. It is essen-
tially impossible to distinguish the oscillation from the
phenomena of quantum-mechanical origin in terms of the
temperature dependence. The oscillation we have dis-
cussed, on the other hand, is insensitive to temperatures
since the thermal velocity distribution does not affect the
results. For simplicity, we have neglected the rounded
geometry of the corners in our model. In the presence of
the rounding, S~ and S~ depend chaotically on magnetic
fields due to the scrambling effect in the intersection re-

gion, leading to irregular fluctuations in RT. ' It is thus
important to take into account the rounded geometry
when one calculates the magnetic-field dependence of the
transmission. However, the chaotic scrambling effect is
not important in the zero-magnetic-field case.

IV. QUANTUM-MECHANICAL TRANSMISSION

We now turn to a discussion of quantum-mechanical
results. The phase-coherence length is a length scale over
which the phase information of an electron is retained
and thus quantum-mechanical interference takes place.
At finite temperatures, quantum interference effects
deteriorate because of phase breaking due to inelastic
scattering. We thus assume zero temperature, and that
all scattering effects are neglected. The transmission
probabilities were then determined by means of the
waveguide-matching method. Details of the transmis-
sion properties depend strongly on the system parame-
ters, and especially A,+, which does not appear in the clas-

sical simulation, is now an important length scale. In
general, the clearest quantum-mechanical effects are ex-

pected in the single-mode regime, and the transmission
approaches classical behavior as the number of occupied
modes X= [k~ W/vr ]j is increased.

A. Depopulation of transverse modes

In Fig. 4, we show transmission probabilities as a func-
tion of wave vector for three difFerent window lengths (a)
L =0, (b) L =0.5D, and (c) L =D. The classical values
indicated by the thin lines are in good agreement with the
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FKr. 4. Quantum-mechanical transmission probabilities as a
function of kF W/~ for L =(a) 0, (b) 0.5D, and (c) D. The thin
lines represent the corresponding classical values, for which the
total flux is reduced by —'. In the classical limit, these three
cases correspond to (a) S~&S&=0, (b) S~&S& &0, and (c)
S& & SF due to the rebound effect. The curves for S+, S&, and R
are offset by —1, —1, and —2, respectively.

average behavior of the quantum-mechanical results.
Here the amount of the incident flux kF W/n. is reduced

by —,', which corresponds to the suppression due to the
quantum zero-point motion in the transverse direction.
The correction to the total classical flux is also adopted in
the following when compared with the quantum-
mechanical results. In the classical case R =0, and hence
R remains small as the injected flux is increased. It is the
same with S& for L =0, as shown in Fig. 4{a}. Near the
subband thresholds, substantial deviations from classical
values appear as dips in T and peaks in R, since addition-
al scattering channels become available. When the ener-

gy is barely above the thresholds, the trapping times of
the electron in the scattering region are very long, and
hence the electron suffers significant backscattering. The
singularities are enhanced as L is increased. The momen-
turn of electrons with energy slightly above the threshold
is considerably transverse directed, and hence the
transmission probabilities turning around the corner into
the second waveguide are large. The electron is more for-
ward directed as the energy is increased for a fixed mode
number. This trend is evident for L =0, where T in-
creases whereas the transmission into the second
waveguide decreases until a higher-lying mode falls below
EF. It is interesting that this ballistic nature is, in a
sense, reversed when S+ and S~ are concerned. We
would expect naively that the diagonal transmission SF is
preferable to Sz, at least when L =0, as the electron is
forward directed. However, SF exhibits maxima when
the energy is slightly above the threshold, and decreases
with increasing energy irrespective of L/D. The average
behavior of Sz, on the other hand, is roughly indepen-
dent of energy. Note that Sz exceeds SF when the elec-
trons are forward directed for L =D. A natural explana-
tion for this phenomenon is that the rebound trajectory
makes a major contribution to the transmission, and the
electron is scattered from the sidewall of the window re-
gion into the opposite lead.

In order to examine these characteristics in more de-
tail, in Fig. 5 we show the transmission probabilities as a
function of the incident mode for different wave vectors
and L/D ratios. The lower-lying modes tend to go
straight since the momentum is forward directed, while

SF becomes larger when the momentum is transverse
directed for the higher-lying modes. Therefore, major
contributions to S& generally come from midlying modes.
This provides the reason the quantum-mechanical
transmission exhibits somewhat unusual dependencies on
system parameters. For L =D, SF is larger than Sz when

the energy is slightly above the propagation thresholds,
and it becomes smaller than Sz when the energy is slight-

ly below the thresholds. We also see this trend in indivi-
dual modes. On the other hand, S~ is always larger than
SF for the lower-lying modes when L=0.5D. Because
the higher-lying modes strongly tend to go to lead 4 rath-
er than to lead 3, SF summed over the modes becomes
larger than S~.

In addition to the subband effect, resonant structures
due to quasibound states in the window region emerge in
Fig. 4, and the number of the transmission resonances in-
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creases as L gets longer. ' ' Coherent multiple
reflections of the electron from the sample boundaries
occur at the resonances, and so the electron is transmit-
ted equally from the quasibound states to all the leads
since the waveguide widths are equivalent, leading to
T=SF=Sz =R =

4 in the single-mode regime. This

resembles the classical scrambling e8'ect. The unusual
relations between the transmission probabilities are par-
ticularly remarkable. When L =0, Sz and R are surpris-

ingly almost identical over the entire energy range,
whereas Sz coincides with Sz for L =0.5D and D in the
single-mode regime.

The oscillatory behavior in the previous case arises
from the population of modes in both the terminal
waveguides and the window region. In Fig. 6, W is
varied relative to A,z while L =D is fixed at kFL /n. =2.5
to highlight the role of the mode population in the termi-
nal waveguides. The results are compared with the corre-
sponding classical case shown in Fig. 3. When increasing
the number of propagating modes (D/W~O), T in-

creases while SF, S~, and R remain small in agreement
with the classica1 behavior. The electron is again strong-
ly reflected from the junction just above the mode thresh-
olds in the terminal waveguides. Since L =D, transmis-
sion S~ is enhanced, whereas SF is suppressed with in-

creasing energy for a fixed mode number similar to Fig.
4(c). Figure 6(b) shows that the modulation in the
transmission leads to oscillations in the resistances. No-
tice that, unlike R~ and RH, the singularities in T and R
at the mode thresholds do not necessarily result in an os-
cillation in RT. The rebound effect, i.e., the length of the
window region, has important influences on the details of
the oscillation in RT, as indicated in Fig. 4. The ampli-

tude of the oscillation in S~ —SF only slightly decreases
as W is increased, and so the amplitude in R T is inversely
proportional to N. The oscillation due to the classical
pinball in this situation is indicated to be weak in Fig. 3,
so that the oscillatory behavior is ascribed to the
quantum-mechanical subband effect. Near k~ W/m.

=1.47, RT and RH reveal a divergence, since Sz be-
comes nearly unity and the other three transmission
probabilities are a1most zero.

B. Fabry-Perot-type interference

Quantum interference in the scattering from the two
T-shaped junctions gives rise to oscillations in the
transmission as the distance between the parallel
waveguides is varied analogously to the optical Fabry-
Perot device. The clearest oscillation is expected in the
single-mode regime. In Fig. 7(a), the transmission proba-
bilities are plotted as a function of the separation between
the waveguides for k~W/n =1.5. The average values of
the transmission probabilities do not depend on L/W
and agree with the classical predictions in the 1ong-L lim-
it, indicated by the dashed arrows. The peaks in Sz, S~,
and R occur in phase while they coincide with the dips in
the transmission straight through the incident waveguide
since the total transmission is fixed. At these "reso-
nance" conditions of L /W, the transmissions into the
four leads are nearly identical. As expected, the period
agrees with one-half of the longitudinal wavelength A,

~~

in
the window region. Notice that Sz possesses interesting
relations to the other transmission probabilities. Until Sz
reaches the first peak when L is increased (L (0.3W), it
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the period of the rapid oscillation corresponds, in con-
trast to our case, to the A,

t
of the higher-lying mode. This

may be ascribed to the fact that the direction of the elec-
tron incidence is parallel to the Fabry-Perot interferome-
ter in Baranger s case, while it is transverse in our case.
When the electron is injected through the main
waveguide, the interferometer is fairly transparent for the
lower-lying modes, and the multiple reflection between
the junctions is significant for the higher-lying modes.

The resistances obtained from the transmission proba-
bilities in Fig. 7 are shown in Fig. 8. Note that the situa-
tion corresponds to the classical case shown in Fig. 2. In
the single-mode case, the L dependence of Rz is similar
to the classical one, though the position of the peak does
not agree with the classical result, evidencing that the
modulation is related to the rebound mechanism. In the
region where the modulation in Rz disappears, RI and

RH are identical as they are in the classical case. Howev-
er, RL and RH exhibit an oscillation produced by the
Fabry-Perot interference in contrast to the classical case.
Remarkably, this Fabry-Perot interference is not
reflected in Rz. The oscillation in Rz in the multiple-
mode case, on the other hand, does not attenuate as L is
increased. It is thus apparent that this oscillation arises
from a different scenario, though part of the oscillation
for smaller L may be related to the classical rebound
mechanism. Since the large-period oscillation in SF and

Sz is out of phase, it does not show up in Rz and Rz, as

0.15

is nearly identical with R and then becomes identical
with Sz for L & 8' as indicated in Fig. 4.

The transmission is more complicated in the multiple-
mode case, since each mode has different A,

~~.
We show

the transmission probabilities when three modes are oc-
cupied (kz W/sr=3 5) in Fig..7(b). The average values of
the transmission probabilities again agree with the classi-
cal values. We find a short-period sma11-amplitude
modulation in all four transmission probabilities, and a
long-period large-amplitude modulation in the transmis-
sions passing through the window region. The amplitude
of the rapid oscillation shows a beat structure due to mix-
ing of different fundamental frequencies. The Fabry-
Perot resonances in the rapid modulation always appear
as narrow peaks in R and dips in T, whereas they can be
either peaks or dips in SF and Sz. Nevertheless, these
structures occur nearly simultaneously, and the period
roughly corresponds to the X~I of the lower-lying mode.
The slowly varying large-amplitude oscillations in Sz and

S~ are out of phase, and lead to an oscillation in Rz as
will be shown below. The rapid xnodulation, on the other
hand, does not have a definite phase relation. The period
of the slow modulation is much larger than the A.

~~

of any
three modes and agrees with the mixing frequency due to
the lowest and second modes. Baranger has investigat-
ed the osci11ations in double-junction waveguide struc-
tures, in which two semi-infinite waveguides are attached
to an infinite waveguide at right angles. It is found that
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FiG. 8. Transfer resistance, longitudinal resistance, and Hall
resistance (dotted line) calculated from the transmission proba-
bilities in Fig. 7 as a function of the separation between the
waveguides. The Fermi energy is taken to be k+W/m =(a) 1.5
and (b) 3.5. (a) For larger L/W, RL and R& overlap with each
other. The classical values of the resistances are indicated by
the dashed arrows.
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can be derived from Eqs. (Ia) and (1b). It is surprising
that it is the single-mode case which shows a resemblance
to the classical case instead of the multiple-mode case.
Because of the quantum-mechanical mixing of modes, RL
and RH do not coincide in the multiple-mode case. The
average values of RL and RH, however, do not vary with
length, and correspond approximately to the classical
prediction.

V. SUMMARY

We have investigated possible mechanisms for the os-
cillatory behavior of the transfer resistance measured in
coupled parallel wires in the ballistic regime. The sub-
band depopulation in the terminal wire is found to pro-
duce an oscillation in the transfer resistance. We point

out that it is not the enhanced backscattering at the sub-
band thresholds but the incident-angle-dependent
reflection in the window region which causes the oscilla-
tion. We find that the classical rebound trajectory gives
rise to an oscillation when the length of the window re-
gion is small. This mechanism could be dominant if kz T
is larger than the subband spacing. At lower tempera-
tures, oscillations can occur due to Fabry-Perot-type
quantum interference in the window region, provided
that the whole system is phase coherent. The period of
the oscillation is large and determined by the mixing of
various modes in the wire.
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