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Self-consistent calculation of traversal time in a double-barrier resonant-tunneling structure
in the presence of a transverse magnetic field
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A self-consistent calculation of the traversal time in a resonant tunneling device has been presented.
The model is then used to study the e8ect of a transverse magnetic field on the traversal time. The calcu-
lation shows the presence of bistability in the traversal time. It is also observed that the traversal time
becomes progressively longer in the presence of increasing magnetic field. A quantity called the effective
traversal time has been defined which can be compared to an important time scale, namely, the carrier
thermalization time, and may be experimentally measurable.

INTRODUCTION

The behavior of double-barrier resonant-tunneling
structures (DBRTS} in the presence of a magnetic field
has been studied extensively in recent years. A number
of works, ' both theoretical and experimental, have
been reported so far. In almost all the theoretical and ex-
perimental works, the main emphasis was on the quench-
ing of tunneling current and the fluctuation of conduc-
tance with increasing magnetic field. However, another
important aspect, that is, the behavior of the traversal
(or, tunneling) time in the presence of an applied magnet-
ic field, has not been addressed much.

The study of tunneling time, in general, has attracted
much attention. Despite great efforts, the issue of tunnel-

ing time still remains a highly debated topic. This is

partly due to the nona vailability of any quantum-
mechanical operator that gives time as an expectation
value. Thus, indirect methods capable of providing ac-
cess to tunneling time have been solicited rather than the
standard quantum-mechanical prescription of tunneling
time. Depending on the prescriptions, three different
time scales can be identified: ' the transmission time v.z. ,
the reflection time ~z, and the dwell time ~D. ~~ is often
called the traversal (tunneling} time if the incident energy
of the particle is less (greater) than the barrier potential.
The early work on tunneling time dates back to the late
1940s and 1950s when Wigner used the phase method to
calculate it. Phase time is an asymptotic quantity and
refers to the event when transient phenomenon has died
out. Moreover, phase time cannot be defined locally as it
only refers to asymptotic free motion. Smith introduced
the concept of dwell time, which does not suffer from this
diSculty and can be computed locally. However, dwell-
time formalism does not provide a mechanism to separate
the time between different scattering channels. Baz' in-
troduced the Larmor precision to calculate particle life-
time in nuclear reactions. The method was extended by
Rybachenko" and later by Buttiker' to calculate traver-
sal time. Gueret, Baratoff, and Marclay' used the con-
cept of the larmor clock to measure the tunneling time of
a heterostructure barrier experimentally. They have
shown that tunneling time can be determined from the
reduction of current in a magnetic field applied perpen-

dicular to the current. Buttiker and Landauer' calculat-
ed tunneling time using the WKB approximation by con-
sidering tunneling through a time-modulated barrier.
Numerical studies' using wave packets are also reported
for a lifetime calculation. Although many different ap-
proaches for calculating tunneling time have been report-
ed, there exists no general consensus among these
methods. As pointed out by Leavens, ' different ap-
proaches give different results simply because they are
concerned with different characteristic times.

In this paper, a self-consistent calculation of tunneling
time (i.e., the time it takes for the particle to traverse the
structure) will be presented for a DBRTS. The treatment
is then extended to the case when the electric and mag-
netic fields are crossed. For DBRTS, the time that a par-
ticle takes to traverse the structure is particularly impor-
tant in the understanding of different scattering process-
es. It is observed that the tunneling time in the present
study can be compared to an important time scale, name-

ly, the carrier thermalization time.

THEORY

A self-consistent calculation of tunneling (traversal)
time requires the knowledge of the amount of space
charge formed in the quantum structure. The computa-
tion of the developed space charge demands a self-
consistent solution of Schrodinger and Poisson s equa-
tions. The Schrodinger equation is solved by using the
logarithmic derivative of the wave function. The one
electron Schrodinger equation in the effective mass ap-
proximation is written as

d:-(x,E„)
4x

= —j:-(x,E„) +—[V(x)+ V (x) E]—m*
2 4

2'

Here, =(x,E„)=2A'/jm *[/'(x)/g(x)] is the logarithmic
derivative' and g(x) is the electronic wave function.
V(x) accounts for the algebraic summation of the poten-
tial energies due to the applied bias V, (x), the space
charge V„(x), the conduction band discontinuity

0163-1829/94/49(24)/17440(4)/$06. 00 49 1994 The American Physical Society



49 BRIEF REPORTS 17 441

AE, (x), and magnetic field V (x). V (x) can be ex-

pressed as
m'

2V = ro(x —xo) (2)

(3)

where A =—[V(x„) E„+0.—5m 'ro, (d, +0.512)—2x„M ], bx =x„+,—x„, and d, and d2 are the width
of the barriers and the quantum well, respectively.

The solution of Poisson's equation requires the space-
charge distribution n (x) inside the quantum well and is
given as

n (x)= f dE„Q n *(x,E„), (4)

where

J*(E„}
n +(x,E }=-

qv*(x, E„}
(5)

and J(E„) is the total current density
[J+(E„}+J (E )], the +(—) sign implies that the
electron is moving from the emitter (collector) to the col-
lector (emitter) electrode, ' and vs is the electron group
velocity and is related to the real part of the logarithmic
derivative as'

u (x,E„)=—,'Re[:"*(x,E„)] .

The calculation of J(E, ) follows the method presented
by Alam and Khondker however, V (x) has to be in-
corporated in the V(x) calculation. The updated poten-
tial profile is obtained by solving Poisson's equation and
is given by

P(x)=P(0) +f dx' f —n(x")dx"
0 0

Here, xo =fik~/qB, co, =qB /m
' is the cyclotron frequen-

cy, B is the applied magnetic field, q is the electronic
charge, m' is the electronic effective mass, and fi is the
modified Planck's constant. Equation (1) may be solved
numerically and for a piecewise constant potential profile,
the recurrence relation may be written as

'1/2 ' ' 1/2
8A 2m'A

tanh —j hx
m*

1/2 '

m'+arctanh:"„+1

ergy, an eff'ective tunneling time ( r) may be defined as

ger E„n E„E„
(r(V, B))= f n(E„}dE„

QW

where

J+(E—„)dx
n(E„)=g

Qw qug (x,E„)
(10)

(r) depends on the applied bias and magnetic field and
provides an important tool to investigate phenomena like
carrier thermalization. (r) will provide a more realistic
measure of tunneling time in the context of device model-
ing and in the understanding of different scattering phe-
nomena.

&-[0
bP
0

—12

RESULTS AND DISCUSSION

A double-barrier resonant-tunneling structure consist-
0

ing of a 50-A-wide quantum well and 50-A-wide barriers
is used. The eff'ective mass of the electron inside the well
and barriers are 0.067mo and 0.096mo, respectively,
where ma=9. 1X10 ' kg. The barrier height is 0.275
eV. The Fermi level Ez is assumed to be 0.03 eV above
the bottom of the conduction band in the emitter contact.

In Fig. 1, tunneling times are plotted as a function of
energy (E„) with and without invoking self-consistency.
It is observed that the self-consistently obtained tunneling
time is longer than the corresponding non-self-consistent
case. In the figure, curve 1 corresponds to bias voltage
0.01 V and curve 2 corresponds to the bias voltage 0.11
V. It is interesting to note that the difference between
self-consistent and non-self-consistent tunneling time be-
comes greater at 0.11 V as compared to 0.01 V. This can
be attributed to the accumulated space charge' in the
quantum well which is greater at 0.11 V than that at 0.01

and V (x)= —qp(x). Equations (1)—(7) are solved till a
consistent current is obtained.

As soon as the self-consistent potential profile is
achieved, tunneling time is calculated next. Tunneling
time for a DBRTS of length L ( =2d, +d2 ) is written as'

—[4

0.0 0. 1 0.2

Electron Energy (eV)

0.3

dx & dx
o u+(x, E ) o Re[:-(x,E„)]

In the absence of scattering, r+(E„)=r (E„}=r(E„}is
implied.

Instead of depicting tunneling time as a function of en-

FIG. 1. Tunneling time gE„) is plotted as a function of in-
cident electron energy with (solid line) and without (dashed line)
invoking self-consistency. Sets 1 and 2 correspond to the bias of
0.01 and 0.11 V, respectively. The inset shows the space-charge
concentration in the quantum well (10 2/m 3} as a function of
bias voltage.
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(r) &r~„making the thermalization possible. As ob-
served, for a given magnetic field (r) becotnes smaller
than ~ h with increasing bias. However, with increasing
magnetic field, the effective tunneling time characteristic
moves up, making ( r ) & r h and allowing thermalization
to be possible again. The last observation can be ex-
plained in terms of the space charge stored in the quan-
turn well.

CONCLUSION

0.24

O 0.0
FIG. 5. The effective tunneling time (~( V,B)) is plotted as a

function of the applied bias and magnetic field. Note (g V,B))
increases with magnetic field but decreases with applied bias.

Figure 5 can also be used to study carrier thermaliza-
tion in DBRTS. At low-temperature, energy relaxation is
via emission of acoustic phonons and the characteristics
time, mph is approximately 10 sec. At very low bias,
irrespective of the magnitude of the magnetic field,

In this paper, a self-consistent calculation of the tun-
neling time has been presented. The study of the tunnel-
ing time is useful in the context of the carrier thermaliza-
tion inside the DBRTS. It has been observed that the ap-
plication of a transverse magnetic field includes enhance-
ment in the relaxation rate and thereby makes thermali-
zation possible.

ACKNOWLEDGMENTS

The authors wish to thank Dr. M. Biittiker for insight-
ful discussions. This work is partly supported by a Uni-
versity of Connecticut Research Foundation Grant No.
461.

P. Gueret, A. Baratoff, and E. Marclay, Europhys. Lett. 3, 367
(1987).

S. Ben Amor, K. P. Martin, J. J. L. Rascol, and R. J. Higgins,
Appl. Phys. Lett. 53, 2540 (1988).

L. A. Cury, A. Celeste, and J. C. Portal, Phys. Rev. B 38,
13482 (1988).

4P. England, J. R. Hayes, M. Helm, J. P. Harbinson, L. T.
Florez, and S.J. Allen, Jr., Appl. Phys. Lett. 54, 1469 (1989).

5M. L. Leadbeater, E. S. Alves, L. Eaves, M. Henini, O. H.
Hughes, F. W. Sheard, and G. A. Toombs, in Nanostructure
Physics and Fabrication, Proceedings of the International Sym-
posium, College Station, Texas, 1989, edited by Mark A. Reed
and Wiley P. Kirk (Academic, New York, 1989), p. 263.

6E. H. Hauge and J. A. St5vneng, Rev. Mod. Phys. 61, 917
(1989).

7C. R. Leavens and G. C. Aers, Phys. Rev. B 39, 1202 (1989);C.

R. Leavens, Solid State Commun. 68, 13 (1988).
E. P. Wigner, Phys. Rev. 98, 145 (1955).
F.T. Smith, Phys. Rev. 118, 349 (1960).
A. I. Baz', Sov. J. Nucl. Phys. 4, 182 (1967).
V. F. Rybachenko, Sov. J. Nucl. Phys. 5, 635 (1967).
M. Buttiker, Phys. Rev. B 27, 6178 (1983).
M. Biittiker and R. Landauer, Phys. Rev. Lett. 4, 1739 (1982).
T. E. Hartman, J. Appl. Phys. 33, 3427 (1962);33, 635 (1967).
C. R. Leavens, Solid State Commun. 74, 923 (1990).
A. N. Khondker, M. R. Khan, and A. F. M. Anwar, J. Appl.
Phys. 63, 5191 (1989).

' M. Alam and A. N. Khondker, J. Appl. Phys. 68, 1196(1990).
A. F. M. Anwar, A. N. Khondker, and M. R. Khan, J. Appl.
Phys. 65, 2761 (1989).

' R. K. Mains, J. P. Sun, and G. I. Haddad, Appl. Phys. Lett.
55, 371 (1989).


