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Bulk and surface dielectric response of a superlattice
with an arbitrary varying dielectric function:

A general analytical solution in local theory in the long-wave limit
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We present an analytical solution for the dielectric response of infinite and semi-infinite super-
lattices with the constituent dielectric function s(w, z) being an arbitrary periodic function of one

coordinate z. The long-wave limit in the local theory is used. All results are expressed in terms of
the two bulk quantities, namely, the average over one period of the functions s(u, z) and 1/e(u, z).
The damping of the bulk and the surface plasmon modes specific for superlattices with a continu-

ously varying constituent dielectric function is obtained and discussed. Our theory provides deeper
insight into the role of the local-field e8'ects in the dielectric response of a superlattice.

I. INTRODUCTION

Within the last two decades, there has been a large
amount of work devoted to the superlattices, which are
systems consisting of alternating layers with different di-
electric properties. Using the hydrodynamical approxi-
mation, Fetter obtained the spectrum of collective ex-
citations in the layered electron gas, which is an infinite
periodic array of sheets of two-dimensional electron gas.
Giuliani and Quinn2 obtained the quantum-mechanical
solution for the semi-infinite variant of this model. Giu-
liani, Quinn, and Walliss derived the dispersion relation
for plasmons in an infinite metallic superlattice consist-
ing of layers of finite width. Camley and Mills solved
this problem for infinite and semi-infinite superlattices
with arbitrary dielectric functions of the layers. In the
latter two works the local approximation was used.

Since then, the theory of collective excitations in lay-
ered systems has included many of the more fine efFects:
the finiteness of a superlattice, the intrinsic damping of
the superlattice constituents and the retardation, the
coupling of two adjoining superlattices" (for more refer-
ences see, for example, Ref. 8).

However difFerent these models are with respect to the
studied superlattices or in the approximations applied,
they have one important feature in common: the super-
lattices are assumed to consist of alternating layers of
two (or more) completely distinct materials with their
own bulk dielectric functions. The boundaries between
layers are assumed to be abrupt and the constituents of
the superlattices are suggested to pertain to their bulk
dielectric function up to the layers's boundaries.

We find it interesting to consider a superlattice with
a continuously varying dielectric function of the con-
stituents. The most evident reason for this is that the
interfaces in real superlattices may not be abrupt and it
is important to account for the intermediate regions. An-
other reason, as we shall show, is that the superlattices
with a continuously varying dielectric function demon-

strate an effect not present in the superlattices with
abrupt layers: the former have a damping of collective
excitations which does not originate from the imaginary
part of the constituent dielectric function but is the prop-
erty of the superlattice as a whole.

In this paper, we present the analytical solutions for
the dielectric response and the eigenmodes of collective
excitations of infinite and semi-infinite superlattices con-
stituted by a dielectric function e(ur, z), which is an arbi-
trary periodic function of coordinate z. These solutions
are obtained in the local theory and in the long-wave
1imit. We show that the bulk macroscopic dielectric func-
tion of the superlattice as a whole, the surface energy loss
function, and the excitation spectra in both the infinite
and the semi-infinite cases depend on only two bulk quan-
tities: the average over the period of the functions e(w, z)
and 1/e(u, z).

The spectrum of the bulk modes in the long-wave limit
has a directional spatial dispersion, which is the property
of the superlattice as a whole, and reflects the anisotropy
of the system.

In this paper, we show that for a superlattice the con-
ventional expression for the surface energy loss function
of a homogeneous medium L, (~) = —Im 1/[1 + e(~)]
(Ref. 9) must be replaced by

1
L, ((u) = —Im 1+ Q~~(((u)e~((u)

where ~~I and ~~ are the parallel and the normal to the
surface components of the dielectric tensor of the super-
lattice as a whole.

We discuss the role of the local-field efFects in the the-
ory of the dielectric response of superlattices and we show
that, in contrast to the dielectric theory of the crys-
talline solids, the neglect of these effects for superlat-
tices is totally unacceptable, since it is equivalent to the
replacement of a superlattice with a homogeneous dielec-
tric medium.
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In this work we demonstrate that the technique of in-
verting the dielectric matrix used in the dielectric theory
of crystalline solids can be successfully applied in the
theory of superlattices, which is the alternative approach
to the direct solving of the Maxwell's equations or the
transfer matrix method.

Let us note that, although the long-wave limit is a
specific case in the theory of the dielectric response of
superlattices, it is a very important one. For example, the
optical spectra of superlattices are characterized by the
long-wave limit of the dielectric function of a superlattice
as a whole. Similarly, for the fast incident electrons, the
energy loss spectra are mostly defined by the long-wave
behavior of the dielectric response.

Apart from these, there is one philosophical reason why
the long-wave properties of semi-in6nite superlattices are
especially important. Only in the long-wave limit the
dielectric response and eigenmodes of semi-infinite su-
perlattices do not depend on the spot within the period
where the surface is cut, so that we can speak of the re-
sponse of a semi-infinite superlattice without specifying
the detailed structure of its surface.

Since our results are obtained for an arbitrary peri-
odic dielectric function, they are also applicable for the
steplike dielectric functions, characterizing the superlat-
tices with distinct constituents. For this case, we present
the comparison of our results with the long-wave limit of
the results known Rom the literature, and we obtain an
agreement.

II. DIELECTRIC RESPONSE GF INFINITE
SUPERLATTICE

A. The range of applicability
of the local approximation in the theory
of the dielectric response of superlattices

To outline the range of applicability of the local ap-
proximation in the theory of superlattices, let us 6rst
consider this question for more conventional superlattices
with distinct constituents.

The selection of an approximation to investigate a solid
superlattice depends on the relations between the three
characteristic scales of the problem: the length of the
order of the periods of the crystalline lattice of the su-
perlattice constituents a, the period of the superlattice c,
and the wavelength A of the electromagnetic wave prop-
agating in the superlattice. We can regard the following
cases.

(1) c is of the same order as a. In this case the layers of
the superlattice are not of sufhcient width to treat them
macroscopically. A quantum-mechanical approach must
be used.

(2) c » a, A is of the same order as a. The layers
of the superlattice constituents can be considered macro-
scopically. The response in an individual layer can be de-
scribed by macroscopic nonlocal frequency and a wave-
vector-dependent bulk dielectric function e(ur, q) of the
corresponding infinite material, which can be calculated

or taken from an independent experiment. Then the elec-
tromagnetic problem of coupling the excitations at the
interfaces of the superlattice must be solved.

(3) c » a, A » a. In this case we can describe the
dielectric response of an individual layer of the superlat-
tice macroscopically by the frequency-dependent wave-
vector-independent dielectric function e(u), which is the
local approximation. Since e(cu) does not depend on q,
we can write D(r, u) = e(u)E(r, u) in each individual
layer of the superlattice, where D is the dielectric dis-
placement and E is the electric 6eld. As in case 2, the
electromagnetic problem of coupling the excitations at
the interfaces must be solved, which, however, in this
case is far more simple. It must be noted that although
in this case the individual layers are described by the
wave-vector-independent local dielectric function, the di-
electric function and the excitation spectrum of the su-
perlattice as a whole obtained in this approximation are
wave-vector dependent and consequently nonlocal. ' Let
us also note that however simple this approximation ap-
pears, it is the one in which sophisticated spectra of exci-
tations of superlattices were obtained (see, for example,
Refs. 3, 4).

To apply the local approximation to superlattices
with continuously varying dielectric function of the con-
stituents, we must add one more condition to the condi-
tions of case 3. It is (de(u, z)/dz) «[e(&u, z)/a~, which
means that the dielectric function varies slowly over the
atomic scale. Of course, unless this last condition is
satis6ed, the dielectric function of the superlattice con-
stituents has no meaning at all.

The present work treats case 3. This means that we
restrict our consideration to superlattices (metallic, semi-
conductor, dielectric, or mixed) with periods large com-
pared with the atomic scale. While we study the excita-
tions with wavelengths large compared with the period of
the superlattice, the second of the conditions of case 3 is
satis6ed automatically. This case embraces a large fam-
ily of physically interesting superlattices4 with periods in
the range of 100—5000 A, .

We neglect the retardation effects throughout the pa-
per.

B. Microscopic dielectric matrix
of infinite periodic system in local theory

It is the general practice to seek the dielectric response
of superlattices with distinct constituents by solving the
equations of the electromagnetic 6eld in individual lay-
ers, then applying the boundary conditions at the lay-
ers's interfaces. Recently this technique was generalized
to include in closed form any number of surfaces and
interfaces. However, it is evident that for a superlattice
with continuously varying dielectric function no bound-
ary conditions exist, and one must solve Maxwell's equa-
tions together with the material equations for the varying
dielectric function. In the local theory these equations
are

(1)
(2)
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where p,„t is the external charge density and e(u, r) is
the local dielectric function within a period of the super-
lattice. We assume that the medium is locally isotropic,
so that e(w, r) is scalar.

If the retardation eHects are neglected, then we can
describe the total and the external fields by their scalar
potentials P and P,„t. Equations (1) and (2) then give

V'[e(r) V4 (r)] = V'y.„,(r),
where &om here on the ~ dependence will be implied.

It is known ' that, if the system under study is pe-
riodic, then in wave-vector representation the equation
holds

&. i(G+q) = ).eca (q) 4(G'+q),
G'

imation ec &(q) = e(0) = an average over the period of
the constituent dielectric function and it does not depend
on G or g. This rather striking fact must be interpreted
as follows: in the local approximation the difference be-
tween the microscopic dielectric matrix of a superlattice
and a homogeneous medium with the dielectric function
equal to the average dielectric function of the superlattice
constituents lies in the nondiagonal elements. If the strict
procedure of inverting this matrix is carried out, then the
resulting macroscopic dielectric function (4) of the super-
lattice will have the g dependence, which will be the same
as that obtained by the solving of Maxwell's equations.
A priori this statement follows &om the equivalence of
the Eqs. (1) and (2) and Eq. (6). A posteriori we show
that in Sec. IV by comparing our results with these of
the previous theories.

1
eM(q) =

coo (q)
(4)

where egG (q) is the microscopic dielectric matrix of the
system, G and G' are the reciprocal vectors of the peri-
odic lattice, and g is the wave vector in the first Brillouin
zone. It is also known ' that

C. Inversion of the microscopic dielectric
matrix of in6nite superlattice

Let us write down the explicit form of the microscopic
dielectric matrix for a superlattice constituted by peri-
odic dielectric function e(ur, z), which is homogeneous in
the XY plane. By Eq. (6), we have

where eM(q) is the macroscopic dielectric function of the
system as a whole. It is seen from Eq. (4) that to obtain
the macroscopic dielectric function, we must invert the
microscopic dielectric matrix e~G (q).

Equation (4) includes the local-field eKects, which are
the short-wave response to the long-wave perturbation.
The approximation

e(q) = coo(q)

(G+ q. )(G'+ q*) + qII
&GG (q„qII) = (G,2 2 &(G —G ),G+ q')2+ q2II

where e(G) on the right-hand side is the Fourier trans-
form of e(z), G = 27m/c, n = 0, +1, ..., and c is the
period of the superlattice.

I et us invert Eq. (7) in the long-wave limit for an ar-
bitrary angle 8 between q and the superlattice axis z. To
do it, let us introduce the matrix U with elements

is known as the one without the local-Geld eKects.
Equation (4) is quite general for periodic systems and
it is applicable for crystalline solids with periods of a few
A. as well as for superlattices with periods of several thou-
sands A. . In this work we apply the general formalism of
inverting the microscopic dielectric matrix to a superlat-
tice with an arbitrary periodic dielectric function of the
constituents. This procedure is equivalent to the solving
of Eq. (3) in the real space.

The explicit form of the microscopic dielectric matrix
in local approximation can be obtained from Eq. (3) by
going over into the wave-vector representation. Then we
have

Ugt- =
[qII

—i(G+ q, )]bG~,

where b~G. is Kronecker's symbol.
Then we can write

eI:G (q. , qII) —= (U e U ')GG'(q qII)

= e(G —G')
G-G'

'

[qII+ i(G+ q. )][qII i(G'+ q. )]
x e(G —G').

If q tends to zero, then it is seen from Eq. (9) that

(8)

(9)

)
( +q)( +q) (c G)E~~ q =

)
e (6)

where e(G) on the right-hand side is the Fourier trans-
form of e(r).

Let us note that the term "microscopic, " as it is used
in this paper, applies to the quantities of the individual
periods of the superlattice, while "macroscopic" pertains
to the lengths of a number of the periods of a superlat-
tice. In this sense Eq. (2) is microscopic, although in the
atomic scale it is, of course, macroscopic.

It can be seen from Eq. (6) that in the local approx-

e~a (q-, qII) = e(G- G') — (G —G')

0, G Q 0, G' $ 0 or
x ( tan8/(tan8 —i),

tan 8/(tan 8 + i),

G=o, G'=o
GQO, G'=0
G=O, G'$0

(»)

A matrix with the structure of Eq. (10) can be easily
inverted (for details see Ref. 14). Then we can obtain
with help of Eq. (8)
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&GGo(8) = [+ (& ) +]GGo

qmo qexp(i8) + G b &&) «&&) & )
(1& , fl')

yi coo e bco
I

I ( G') —hoc'
I I

(&)E') E')

where (1/e) (G) is the Fourier transform of 1/e(z), ~y.„,(r) = 0, ~ & 0,

b, = cos 8+sin 8—,
e(( = e(z),

1 1

« e(z)
' (12)

and the line over a function denotes an average over the
period.

Equations (4) and (11) give

eM(8) (8) = «((d) cos 8 + f((a)) slil 8. (13)

The bulk energy loss function of the superlattice is then
given by

i(r) = Ae &II'~II+&II (19)

But it is evident that the behavior of the external field
in vacuum does not afFect the semi-infinite system at
all. is Then we xnay seek for the response of the system to
the external perturbation (19) valid in the whole space
notwithstanding the exponential increase of Eq. (19) into
vacuum. The field induced by the system in vacuum sat-
isfies the equation

bP;„g(r) =0, z ) 0, (2o)

since there is no external charge inside the system. For
definite q~~, Eq. (18) gives the only decreasing into the
solid solution

1
Ls(8, (d) = —Im

&M
(14)

for there is no induced charge in vacuum. Then we can
write for z ) 0

The dispersion relation for a long-wave bulk plasmon
propagating in the 8 direction then is

P(r) = (t(,„i(r) +(t); s(r) = (Aeill'+ Be ill')e'ill'll,

«(~) = —tan 8.
e(((cu)

fey 0 0l
0 e)( 0

(0 0 «)
(16)

which is defined by

It can be easily shown that the macroscopic dielectric
tensor

since the potential induced by the system must decrease
into vacuum.

Equation (21) makes it clear that the surface response
of a semi-infinite system is completely characterized by
B(v, q~~)/A((d, q~~) with A and B defined by Eq. (21).

In recent work we have shown that the surface energy
loss function of an arbitrary semi-infinite homogeneous in
the XY plane system is given by

L, (q)(, ~) = 7ri lim (q, —iq(()—(e ')2(q„k„q)(, (d),
qz -++iq[[

DM =a EM) (17)
A,, -+—iq[[

(22)
by virtue of Eq. (1) gives exactly Eq. (13). This justifies
our notations of e~~ and E'~.

III. SURFACE ENERGY LOSS FUNCTION
OF SEMI-INFINITE SUPERLATTICE

A. Separation of the surface response

where

(e ')2(q„k„q((, (d)

'(q„k„q((, (d) —e '(q„k„q)), —(u)

2i

To separate the surface excitations of a semi-infinite su-
perlattice &om the bulk ones the following general proce-
dure may be pursued. Let us define the surface response
of a semi-infinite system as its response to the perturba-
tion provided by the Quctuations of an external charge
density located outside the system. Then, assuming that
the system occupies the z ( 0 half-space, we can write

and e (q„k„q~~, (d) is defined by

&(c. cia ) = f '(c*(. col )4'.* (~ Ill ), ,

It follows &om Eq. (22) that L, (q~~, ur) is given by the
exp( —

q)~z) component of P in response to the exp(q~~z)
component of P,„i. Then we can write by use of Eqs. (21)
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and (22)

B(qll ~)
L, (qll ~) = ——Im

2 Aiq
(23)

B. Macroscopic approach

We shall see in Sec. IV that for a half-space occupied
by a homogenous medium with dielectric function e(u),
Eq. (23) gives —Im 1/[1 + e(tu)], in compliance with the
conventional result. '

P(z) = ) /~exp[i(G+ q, )z], z ( 0,
G

4(z) = Aexp(qllz)+Bexp( q (29)

to both the field equations and the boundary condi-
tions. The object of the present section is to demonstrate
that for the model under study the rigorous microscopic
derivation does not change the final result (27).

Let us consider the response of our system to the ex-
ternal perturbation (19). After Fourier transform, we

have

First, let us consider the surface response of a semi-
infinite superlattice macroscopically. Then we must find

P of the form (21) as a response to the external pertur-
bation (19). We can write by use of Eqs. (1), (17), and
(16)

2
—

ellqtl p(z) =
qll tt'ext (z)

z &0, (24)

where the explicit form (19) of P,„t was used. Equa-
tions (24) and (21) give

) [(G + q, ) (G' + q, ) + qll] e(G —G') pG = 0. (30)

lim, Pp.
egp(q )

~*~co happ'(q, )

Let us regard Eq. (30) as a system of linear algebraic
equations for the determination of PG, . Then this system
is compatible if we choose q, = qo such that the determi-
nant of this system is zero. After some algebraic trans-
formations and using the properties of determinants, we
can express all of P~ by Pp

P(z) = Cexp( —,
"

p~~z), z & 0,

p(z) = A exp(qllz) + Bexp( qllz) z & 0, (25)

where the square root must be taken with the positive
real part.

The boundary conditions are

C=A+B,

The boundary conditions are

) QG =A+B,
G

&(z = 0) ) (G + q, )p~ = qll(A
—B)

By using Eqs. (12)

(32)

C A B~ll
(26)

where the first is the continuity of the parallel compo-
nent of the electric field and the second is the continuity
of the normal component of the dielectric displacement.
Equations (23) and (26) give for the surface energy loss
function of a semi-infinite superlattice

1
L, (~) = —Im

1 + QEll (id)e~(tL))
(27)

where the square root must be taken with the positive
imaginary part, which is the consequence of the sign se-
lection in Eq. (25).

The equation for the eigenfrequency of the surface plas-
mon is

all((u)e~(~) = —1. (28)

C. Microscopic approach

Expression (27) for the surface energy loss function of
a semi-infinite superlattice was derived macroscopically
without accounting for the local-field efFects. Meanwhile
the short-wave components of the response to the long-
wave perturbation may, generally speaking, contribute

~ ~II
qp/qll = cot Hp ——i

Eg

After substituting Eq. (31) into Eqs. (32), taking ad-
vantage of the equality

e&p'(q, ) q exp(iH, ) t 11~'""happ'(q. )

&& (sin Hp ell + i sin Hp cos Hp E~), (34)

which follows from Eq. (11) and some algebraic transfor-
mations, we shall obtain the boundary conditions

4p ——A+ B,

=A —B,
Eg

(35)

which are the same as Eq. (26) within notations. This
proves that the expression (27) for the surface energy loss
function is valid within the microscopical derivation.

Let us note that the agreement between the micro-
scopic and macroscopic results are due to the fact that
only the long-wave components of p and D, /qll do not
vanish in the long-wave limit, which can be seen from

Eqs. (32) and (34). In contrast, all ~~~pon~~t~ of E /q
are nonzero, but it does not a6'ect the boundary condi-
tions (35).
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IV. COMPARISON WITH THE PREVIOUS
THEORIES

In this work, we applied the method of inverting the
microscopic dielectric matrix to 6nd the macroscopic di-
electric function and the excitation spectrum of a su-
perlattice with an arbitrary varying dielectric function
of the constituents. Of course, this technique is strictly
equivalent to others (the transfer matrix method and the
method of the direct solving of the Maxwell's equations)
in both the quantum and the classical regimes. Speci6-
cally, it may be stated, for example, that the eigenvalues
of the matrix (7) represent the excitation spectrum found
in Ref. 4 by solving Maxwell's equations with boundary
conditions at interfaces for any q as long as e(G) is the

I

Fourier transform of the step function taking two distinct
values in the corresponding layers. In this section, we
show this explicitly in the long-wave limit we are dealing
with.

If the constituent dielectric function e(z) is constant
over the period, then by Eqs. (12) e~~

——e~ = e. Equa-
tion (13) then gives eM = e. For the surface loss function
we then have the well known result '

1
L, ((u) = —Im

e((u) + 1

The dispersion relation for the bulk plasmon in a su-
perlattice constituted by alternating layers of two distinct
dielectric functions eq and e2 with thicknesses dq and d2,
reads

(e', + e', )»nh(qll d, )»nh(qll d, ) + 2e&e2(cosh(qlld, ) «»h(qll d, ) —cos[(d, + d, )q, ]) = 0. (37)

In the long-wave limit (37) gives

(e~ + ez)dqd2 + eqe2[d~ + d2 + (dq + d2) cot 8] = 0.

In our approach, we have for this system

(38)

(39)

1
ei[ = (ez) = (d~ei + d2e2),

By+82
1 1 1 /dg d21

(

—+ —
I

~

e~ e(z) d& + d2

gory

e2 J
Substituting Eq. (39) into Eq. (15) we obtain just
Eq. (38).

The dispersion relation of the surface plasmon in this
superlattice is

sinh(q~~dq) [e2 cosh(q~~d2) —sinh(q~~d2)]ez + (ez —1) cosh(qlldq) sinh(qlld

In the long-wave limit, Eq. (40) gives

dye2e~ + (e2 —1)eyd2 —e2dg ——0. (41)

+e2 sinh(q[(d~)[e2 sinh(ql)d2) —cosh(qlld2)] = 0. (40)

I

the anisotropy of this system.
Let us consider a metallic superlattice with the Drude-

type constituent dielectric function

Substituting Eq. (39) into Eq. (28), we obtain just
Eq. (41).

,'() 4" (.)e(~, z) =1 — " =1-
u)(u) + i0+) mu)(ur + i0+)

' (42)

V. DISCUSSION

Above, we have considered in6nite and semi-in6nite
superlattices constituted by an arbitrary varying period-
ical dielectric function. In local theory, in the long-wave
limit we have found the general solutions for the bulk
and the surface dielectric response of these systems.

In the bulk case, Eq. (13) shows that the macroscopic
dielectric function of a superlattice in the long-wave limit
depends on the direction of the wave propagation. As a
consequence, even in the long-wave limit, the bulk plas-
mon of a superlattice has a directional "spatial disper-
sion" (15). It must be noted that this spatial dispersion
is obtained in a model, in which the intrinsic dielectric
function of the constituents of the superlattice has no
spatial dispersion. The directional spatial dispersion of
the bulk plasmon in a superlattice is due, of course, to

1 (d dz
Im = —Im

e~((d) c o td —(d (z) + 10+

C

b[(u —(u (z)]dz
C 0

p

—1
du) 2

(zg, )
c Iz

k

(43)

where zA, are the roots of the equation

ld&(zy) = hJ (44)

where n(z) is the electron density, u~(z) is the local
plasma &equency, and m and e are the mass and the
charge of the electron. We assume no intrinsic damping
in e(~, z). If we calculate e~~ and e~ by Eqs. (12), then e~~

will not include the imaginary part, but for e~ we have
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FIG. 2. Semi-infinite superlattice. (s) The model electron density of a superlsttice with the Drude-type constituent dielectric
function Eq. (42). The parameter values are the same as in Fig. 1. (b) The surface energy loss function obtained by Eq. (27)
for the superlattice with the electron density plotted in Fig. 2(s). The vertical line shows the b peak corresponding to the
surface loss inherited from the loss spectrum of the semi-infinite homogeneous medium (see discussion in the text).
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In Fig. 2(b), we present the surface loss function (27) of
the metallic semi-in6nite superlattice, the charge density
of which is plotted in Fig. 2(a). The constituent dielectric
function is chosen the same as in the bulk case [Eq. (42)].
In the surface case we observe the same effect of the 6nite
damping of peaks in the loss function without the intrin-
sic damping of the constituent dielectric function, as in
the bulk one. The vertical line in Fig. 2 (b) shows the 6-
peak corresponding to the surface loss inherited from the
loss spectrum of the semi-infinite homogeneous medium,
which can be demonstrated by tending the charge den-
sity in the period to a constant. The energy position of
this peak then tends to id„/~2, as it must be.2o In our
example this peak is not broadened, since its energy does
not satisfy Eq. (45). If we take the damping constant in
the Drude dielectric function of the constituents of the
superlattice nonzero, this peak will have a finite width.
Two other peaks in Fig. 2(b) are inherent to the super-
lattice with continuously varying dielectric function and
they disappear in the homogeneous case or their widths

tend to zero in the case of a superlattice with distinct
constituents.

VI. CONCLUSION

We have considered the superlattices constituted by a
variable dielectric function e(id, z), which is an arbitrary
periodic function of coordinate z. In the long-wave limit,
using the local theory, we have obtained the analytical
solutions for the dielectric response and the excitation
spectrum of this system in the in6nite and semi-infinite
cases.

Both the bulk and the surface response of this system
are characterized by the two bulk quantities: the average
over the period of the functions e(id, z) and 1/e(id, z).

We have shown that in the long-wave limit the bulk
plasmon of the superlattice has a directional spatial dis-
persion, which is the consequence of the anisotropy of the
system.

The specific damping of the surface and the bulk col-
lective modes in the superlattices with continuously vary-
ing constituent dielectric functions, which is not present
in superlattices with distinct layers, is obtained and dis-
cussed.

It is shown that the local-6eld effects represent all the
properties, which distinguish the superlattices &om the
homogeneous media.

Our theory is also applicable to superlattices with dis-
tinct constituents. In this case, it gives the results that
are in accordance with those known from the literature.
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