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Quantum size effect on the optical properties of small metallic particles
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A simple quantum-sphere model for small metallic particles of arbitrary size embedded in nonabsorb-

ing dielectric media is used to compute the real and imaginary parts of the dielectric function. The
quantum confined electrons can be considered as nearly free electrons but having discrete energy levels.

The dielectric function contributed from transitions between energy levels is calculated via the momen-

tum transition matrix under the zero-temperature approximation. Consequently, we have derived the
size dependence of the absorption spectra which clearly indicate the blueshift and the broadening of the

spectra as the particle sizes are reduced. The theoretical simulation is in satisfactory agreement with the
experimental data for particle sizes below 10 nm.

I. INTRODUCTION

=&b + V~/R, (2)

where ~b denotes the bulk relaxation time, Vz is the Fer-
mi velocity, and R is the particle size. As the particle

The dielectric function is an important physical quanti-
ty for the study of the optical absorption spectrum of
small metallic particles. Recently, much effort' has
been devoted to implementing different models to solve
different ranges of incident photon energies. The varia-
tional integration method as exploited in this calculation
results in accurate solutions which are applicable to
broad spectra.

Under the random-phase approximation, the dielectic
function at low frequencies and long wavelengths is'

lim s(q, co)=1+0.1061(k(;ao )[a /ao ]
co~0
q~0

where a is the size of the particle and ao is the Bohr ra-
dius. However, this equation yields an infinite dielectric
function as the size of the metallic particles approaches
the dimensions of the bulk solid. The error mainly re-
sults from the approximation of co—+0 and the simplified
electronic transitions. Kawabata and Kubo have also
derived the imaginary part of the dielectric function by
using the semiclassical theory of the current-current
correlation function. Genzel, Martin, and Kreibig ob-
tained the dielectric function by considering the quantum
degeneracy. Cocchini, Bassani, and Bourg introduced a
soluble tight-binding model for the simple cubic crystal
to derive the dielectric function. Additionally, there are
some other derivations for the dielectric function with
different approximations. But none of these calculations
gives numerical results that agree with the experimental
data at various sizes and frequencies.

The classical size effect presumes the correction to the
dielectric function to be due to the scattering of electrons
with a spherical boundary, with a reduction of the
effective relaxation time by

size decreases to below 10 nm, the electrons behave in a
wavelike rather than a particlelike way, and the classical
Drude model should be modified in some energy ranges.
As the size of the metallic particles is reduced from some
characteristic length to others (e.g., from the mean free
path I = VFr-400 A for silver to the de Broglie wave-

length A, =h/p=h/+2mEI-50 A at EI-5.49 eV), a
microscopic size effect should appear.

In this work, the dielectric function is calculated based
on quantum state transitions with wave function solved
from a spherical model. The results for the blueshift and
the broadening of the linewidth of the absorption spectra
are comparable to the experimental data.

fiH%= — V + V(r) V=E%',
2m

where V(r)=Vs for r(R and V(r)=ao for r &R. The
normalized one-electron wave function is solved to be

(r, 8,$)= 2
, A a.( R

Y((~0)
J(+( a ((

=R„((r)Y((S,(t(), (4)

where the Y( 's are the spherical harmonics (
—l ~ m ~1)

and ji is the spherical Bessel function of order I with the
nth root a„(.The energy of the eigenstate f„(is

E„(=(a„()Eo, (5)

where Eo =A' /2m, 'R, m,' is the effective electron mass,

II. QUANTUM-SPHERE MODEL

To simplify the mathematical treatment, we propose
the quantum-sphere model (QSM) for the evaluation of
the dielectric function of small metallic particles. Small
particles prepared by inert-gas evaporation or the chemi-
cal sol-gel process usually present a spherical shape under
surface tension. The QSM infers N independent electrons
confined in a sphere of radius R. We may solve the one-
electron Schrodinger equation
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and the energy E„&is independent of the azimutha1 quan-
tum number m.

The asymptotic approximations of the roots of the
spherical Bessel functions are

Al particles

R= 7.5 nm

T= 42
»1 ~

~ ~

~ ~ ~

a„&—=(2n+1)—for large n . (6)
4

2.3 cm = 0.28 meV
V 0

The spacing of neighboring energy levels can be
simplified to
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FIG. 1. Far-infrared absorption spectrum of small gas-
evaporated aluminum particles with an average radius of 7.5 nm
(Ref. 9).

ci(co) = 1 —co /co

c~(co) co& /(co 7 —) .
(10)

The result of a numerical estimation of E0 is about of the
order of 0.1 meV for a quantum sphere (QS} radius of
R =10 nm, and b,E& %co-is about 0.3 meV. As shown in

Fig. 1, the oscillation period of the absorption coeScient
for fine aluminum particles at low temperatures is also
about 0.3 meV, which clearly confirms the quantum
confinement effect of the Al particles.

The dielectric function may have contributions from
the terms

c(co)=c„+cf+c'+ c',
where c.

„

is due to positive-core-ion vibrations, c is the
free-carrier contribution in Drude form, c is due to inter-
band transitions, and c. is due to intraband transitions.
For metals in the near-infrared region, the inter- and in-

traband transitions can be neglected, and

2
COp

c(co)= c,„—
eo(co+ I 1 )

Writing c(co)=c&(co)+ic2(co) and with co))r ', we ob-
tain

Taking account of the classical size effect, the carrier re-
laxation time ~ is reduced from its bulk value ~b by the
collision with the boundary. The experimental result as
given in Ref. 8 indicates that the absorption coefBcient is
almost the same for silver at 15 and 300 K. %e can take
the zero-temperature approximation for the Fermi-Dirac
distribution in the derivation of the dielectric function.

III. THEORY

In general, there are several methods to derive the
dielectric function. Lindhard s equation is the most fa-
miliar from the point of view of many-particle physics.
In quantum optics, one usually derives the electric sus-
ceptibility y, from the value of the matrix element of
electric dipole moment p „;then the dielectric function
is equal to 1+4irg, . Considering the perturbation due to
incident photons, the Hamiltonian is written as
(1/2m )[p+ (e /c ) A] + Vo. The dielectric function eval-

uated in this method is'

c"'"(co,R ) = [c&(co)+i cf2(co)]+ [c~i (co,R )+ icpM(co, R )]

(o)
i

2

mco(co+i' ') 3V fico~

l

Sm„S l 7

1

COmn +CO+ l 7

where V is the volume of the spherical particles, the QM
represents the parts contributed from the quantum-
sphere model, the indices I and n represent the filled and
empty states, respectively, and ir „=( m ~& ~

n ) with
ir=(e/m )[p +(e/c) A]; the superscript (0) denotes the
zero-temperature approximation and p is the Fermi-
Dirac distribution for the I to n transition. The dielec-
tric function we present here is the correction to the first

' 3/2
2&l eD(E}=

2m
E 1/2

1/2

3m E'/'
0

(12)

l

order, in which the higher-order contributions of the
transitions of electrons are neglected.

To simplify the calculation, we implement the bulk
density of states including spin degeneracy, which is
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With the asymptotic approximation hE = ir(EOE& )'~, we

may obtain the number of states N(E) between E and
E+AE as

N(E) =D{E)bE=2E/3EO . w~ere

(co,R ) =Re[a™(co,R )], (14)

The real part of the dielectric function for the particles of
quantum size is

4n (4ReEO) E E„ 1 1s&M(co, R)= +(fico),„(E—E„) [(E„E—) f'i(co—+is )] [(E„E—} g—(co+j g i))
(15)

In Eq. (15), we have inserted the value of the dipole ma-
trix element

4ReEO (E„E)'~
16~mn mn

In evaluating this equation, we only consider the transi-
tions near the Fermi level (i.e., co „-O,E„&EF&E)

and take the zero-temperature approximation of

1 if E &EF
(0)

Pmm 0 if E )E

The index k includes all possible initial states, while E
can take the values of EF-2k QEE. Then

32e E
(co,R )= — EED(EE),

R (fico }

where Eo=iii /2m, 'R and D(EE)=2'~ /(3irEo~ ).
Finally

e EF fi2 5/2

(co,R )=—
~ R (%co) +2m,' (20)

The same strategy can be used to solve the imaginary
part of s™.Exploiting the identity

I =P( 1 lx )+i n 5(x )x —i0+The summation in Eq. (18) can be calculated by applying
the selection rule. If E„~EF ~E, then E„—E
= (2k + 1)EEE and

for k=0, 1,2, . . . .„(E„E) k
—(2k+1)EEF

by using the principal-value integration P(1/x ) and the
Dirac delta function 5(x), the second term in Eq. (15)
vanishes owing to the presence of 5(x ). Then we can re-
place the summation by an integral for all incident waves
with %co &&hE —several rneV. Consequently,(19)

For co »~ ', Eq. (15) can be readily solved to yield

4~ (4 ReEO) —2(E„E}E„—E—
(fico) „(fico) (E„E)—

32e Eo E„E
X (18)„(E„E)—

4~ (4ReEO) EF 1
PzM(co, R ) = Im D(E }dE

(f'ico) EF 26E' (E' E}2 [E' E—A(co+i'—')]—
2 2 E~ 164n 16e R ~ E3/2(E+g~) l2dE — F(v)

4 3 3n(fico)" 3ir R(iiico)
3—m.R

3
1 4

where v=EF /fico and

(21)

I'(v) =— x (x+v)' dx .
1

V 1 —v
(22)

IV. NUMERICAL CALCULATIONS OF
DIELECTRIC FUNCTIONS

As an example to test Eq. (20), some parameters of
silver particles are given by m,' =0.96m„
&, =3.1X IO '4 sec, and EF=5.49 eV (see Fig. 2). We
ca.i demonstrate that

h (e&)

FIG. 2. Curve Stting of cI(fur) and e&(fur) with m, =0.96m,
and~, =3.1X10 ' sec(Ref. 23).
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(co,R ) =— 134.8
(R) (%co)

(23)
V. THEORETICAL SIMULATION OI' THE

ABSORPTION SPECTRA

where R is in units of nm and fico is in eV. Another result
from Eq. (21) is

QM( R ) — 73.68

R (fico)
(24)

For silver within the visible range of 0.5 & %co ~ 3.5 eV,
F(v) can be approximated as (1.000—0.5034)irico/EF.

The size and fre uency dependence of the real and
imaginary parts of c. , c~, and c are shown in Figs. 3, 4,
and 5, respectively. In these figures, the quantum size
confinement term c.~ approaches zero as the size
R ~ 00. However, when the radius R is below 10 nm the
values of c are comparable to those obtained from the
free-electron model.

cosi(co, R )

c [[2e +e, (co, R)] +[ei(co,R)] )

(25)

where a is in units of cm ' and f is the volume filling
factor defined as the ratio of the volume of small particles
to the total volume of particles and matrix.

In the measurement of the absorption spectra, a reso-
nance peak occurs when

2E +s&(co+,R ) =0 . (26)

In general, the dielectric function cannot be measured
directly from experiment, while the absorption spectra
can be readily measured. " ' For a composite system,
nanocrystalline particles are embedded uniformly in a
nonabsorbing matrix such as water or glass with dielec-
tric c. . The absorption coe%cient of the composite sys-
tem can be derived from Mie's scattering as given by'

(f w -10

FIG. 3. c (fico) is the dielectric function contributed from
nearly free electrons.

FIG. 4. c~ (%co,R) is the dielectric function contributed
from quantum confined electrons.
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Although the absorption spectrum as derived from the
Drude-like dielectric constant can satisfy the experimen-
tal data for an average diameter of about 10 nm, ' the
size dependence of the peak wavelength and half width
(half width at half maximum) of the spectra cannot be
predicted satisfactorily, especially when the particle size
is smaller than 5 nm. Three-dimensional plots of the ab-
sorption spectra are shown in Fig. 6. As shown in Fig. 7,
the peak frequency of the resonant absorption shifts to
higher energy and the half width becomes larger as the
particle size decreases. To find the resonance frequency
for peak absorption, we may derive the frequency co~

from the differential equation Ba/Bco
~
„=0. The

R

theoretical value of co+ for various particle sizes R ob-
tained in this work clearly points out the trend of blue-
shift of the absorption spectra as shown in Fig. 8. Our
derivation is based on the quantum confinement of elec-
trons for the calculation of both c& and c2. There are
different arguments between the viewpoints of semiclassi-
cal theory and quantum degeneracy. The blueshift
from the QSM is mainly due to the choice of an infinite
barrier, by which the electron density drops suddenly
from its bulk value to zero at the spherical boundary.
The other argument from diffuse scattering' ' will pre-

18me f e2(A, ,R )

[ [2e +e, (}1,,R ) ] + [e2(A, ,R ) ]2]
(27)

The expansion near the resonance peak A.z gives

dict a redshift of co+ which can explain the experimental
work of Smithard and co-workers. ' ' But in recent
years there has been some evidence ' ' of the blueshift of
co+. In addition to Fig. 8, we also plot Fig. 9 to compare
the recent data with the theory of QSM to delineate the
blueshift. The deviation of the experimental values from
the curve is due to the broad size distribution and the de-
formation of the particle shape from the ideal sphere as
discussed in Ref. 20. The aspect ratio of small particles
can also affect the shift of roR. In applying the QSM to
the prediction of the spectra of other metals, such as
sodium, aluminum, and gold, a correct consideration of
the Fermi energy as given in Eqs. (20) and (21} and the
bulk contributions in Eq. (11) is required. For the ab-
sorption of near-ultraviolet light, fewer experimental re-
sults other than those of silver are available.

The broadening of the half width of the absorption
spectrum can be derived by exploiting the Taylor expan-
sion of a,

2e +e, (A, ,R}=[2e +e, (AR, R)]

Be,(A, ,R )

+higher-order terms,

and the absorption coefficient a becomes

18ne / f e2(A, R,R )

[p (A, —AR ) +[s2(AR, R )] ]
(28)

where p=Be1/M, ~& & . From the above equation, we
R

can obtain the half width at half maximum of the absorp-
tion spectrum as

~}1'1/2 I ~R ~1/2l e2(~R 'R }/ ~l (29)

Exploiting the parameters A, =135.1 nm, A,0=1240 nm,
and A,z =405 nm for silver, we can calculate

= —44. 35—15.16/R (30}

FIG. 5. c (%co,R)=c (Pug)+&~ (A'a), R) is the total dielectric
function.

Consequently,

44.35+ 15.16/R
1/2 I I e2 " 0 0623+ 1 847/R

(31)
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