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Formation of subbands in b-doped semiconductors
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The formation of the two-dimensional subbands in uncompensated b-doped semiconductors &om
single impurity bound states with increasing impurity concentration is calculated using multiple-
scattering theory. Previous calculations treated the b plane as a metallic sheet by solving a one-
dimensional Schrodinger equation in a self-consistently screened one-dimensional potential and could
not reproduce single impurity bound states in the limit c —+ 0. In contrast to this approximation
multiple-scattering theory can describe well both limits of small and large c. The crossover from
impurity bands at low concentrations to subbands at large concentrations is discussed and a Mott
transition within the b plane (defined as the vanishing of the gaps in the density of states) is found
at c„=9.95 x 10 cm in the case of GaAs:Si.

I. INTRODUCTION

Recently, there has been a growing interest in the use
of atomic plane (h-) doping techniques due to their poten-
tial technological applications for the realization of high-
speed electronic and of optoelectronic devices. In the
case of GaAs:Si, e.g. , shallow Si-impurities substitute Ga-
atoms in a (100)-oriented GaAs monolayer. At vanishing
impurity concentration individual impurities bind elec-
trons and Coulomb-like bound states are formed. With
increasing impurity concentration these bound states are
expected to broaden into impurity bands. In the high-
density limit the electrons will be confined to the ionized
sheet of the impurities and form a two-dimensional elec-
tron gas with a two-dimensional subband structure.

Treating the case of an uncompensated b-doped semi-
conductor the impurity band formation is entirely due to
wave-function overlap and the impurity level broadening
by fluctuating classical potentials treated by Shklovskii
and Efros has not to be considered.

In the case of a single Si b-layer in bulk GaAs, the-
oretical investigation of the electron band structure in
the high concentration limit have been performed by sev-
eral groups in the Hartree, 4 the Thomas-Fermi and in
the local density approximations. It has been proved by
Ioratti that the semiclassical Thomas-Fermi approxima-
tion gives results that are numerically nearly equivalent
to those obtained kom the much more complicated self-
consistent Hartree approximation. Degani has shown,
that exchange and correlation effects within the local
density approximation have only small influences on the
effective potential and the energy band structure in the
high-density limit. There are also theoretical investiga-
tions of acceptor (Be) b-doped GaAs (Ref. 7) and of n
type uncompensated b-doped GaAs superlattices. The
existence of a two-dimensional electron gas confined in
a subband structure has been predicted by these cal-
culations, and has been confirmed by different experi-
mental techniques such as infrared absorption, Raman

scattering ' and magnetotransport measurements.
All these theories assume, however, that the charge of

the ionized impurities is homogeneously smeared out in
the b-doped plane, neglecting the point-charge character
of the dopants as well as the spatial potential fluctua-
tions which result from the random distribution of the
impurities. We will refer to this jellium approximation
as to the metallic sheet approximation. It is expected to
be correct in the high-density limit. On the other hand,
for vanishing impurity concentration we expect the for-
mation of single impurity bound states. The metallic
sheet approximation is not able to reproduce them and
becomes wrong at low densities. The aim of the present
paper is to present a theory which is correct in both limits
of low and high density.

We restrict ourselves to the effective mass approxima-
tion, treating the host semiconductor as a homogeneous
medium with a dielectric constant e and the charge carri-
ers as Bee particles with an effective mass m'. The bare
impurity potential is approximated to be a pure Coulomb
one.

The screening of the bare Coulomb potentials is a
complicated problem, which has been haDdled in difI'er-

ent degrees of sophistication. The best static screening
theory available now is to calculate screened potentials
self-consistently, as done for disordered solids by Vignale
et al. combining the coherent potential approximation
with the local density approximation. Here we restrict
ourselves to the simple Thomas-Fermi screening approx-
imation. It gives the correct high-density limit as well
the correct limit at vanishing impurity density. Details
of this calculation will be presented in Sec. II of this pa-
per.

The density of states of the impurity bands in the
approxilnation of a nonfIuctuating impurity density will

show sharp cutouts and no band tails. Band tails could be
obtained either by the optimum fluctuation method
or by the more simplified method of Serre et al. In this
contribution, we do not attempt to calculate band tails
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but restrict ourselves to treat disorder without taking
density Buctuations into account.

The standard method to do this is the coherent po-
tential approximation (CPA).~s 2s Until now it cannot be
applied to the present case of long range and, hence, over-

lapping impurity potentials. Already in 1961 Klauder
proposed a simplified version of the CPA, the Klauder
V approximation, in which so-called multiple occupancy
corrections are neglected, and which can be applied to
overlapping potentials. This neglection should be toler-
able at the usual impurity concentrations. However, as
shown by Monecke and by Monecke et al. , the self-

energy M in the Klauder V approximation reproduces
correctly the self-energy M~,—0 in the limit of a van-

ishing impurity concentration c, but not its first deriva-
tive with respect to the concentration &, ~,—0 at ener-

gies near those of bound states, in which we are just
interested. Therefore we will use a linear approximation
M = M~,—0 + c &, ~, o for the calculation of impurity
bands.

In Sec. II we will calculate the screening of bare
Coulomb potentials by a two-dimensional electron gas
confined by the same and not by external potentials. In
Sec. III we will present the treatment of disorder. Results
will be presented in Sec. IV and conclusions are given in
Sec. V.

II. SCREENING OF AN IMPURITY
BY A TWO-DIMENSIONAL ELECTRON GAS

The screening of an impurity by a two-dimensional
electron gas will be calculated in the same approxima-
tions (Thomas-Fermi approximation to the kinetic en-

ergy of the electrons, linear response of the induced den-
sity to the self-consistent potential, neglect of exchange
and correlation energy, high density limit) leading to the
well-known Thomas-Fermi screened impurity potential

in the three-dimensional case.
Lengths are measured in units of the eHective Bohr

radius a~ and energies are measured in effective Ryd-
berg (5 = 2m' = —' = 1) in the following. In contrast
to the case of quantum wells it is impossible to use the
well-known two-dimensional screening result given, e.g. ,
in Refs. 25 and 26, because the electrons are confined by
the screened potentials themselves and not by an exter-
nal potential, the confinement of the electrons and not
only the screening vanishes with vanishing electron con-
centration.

The total Thomas-Fermi energy is given by

where n(r) and p(r) are the electron and impurity densi-
ties, respectively. Minimizing E under the constraint of
a constant number of electrons, h E —p f n(r)dr = 0,
we obtain

n(r) = a [p —V(r)] /, a = (2)

with p being the Fermi energy to be determined later
and

, p(r ) —'n(r')

f
r —r'

f

(3)

Due to the charge neutrality we have f drn(r)
f drp(r).

For the subsequent application of single site multiple-
scattering theory in Sec. III we have to require that the
Fourier transformed screened potential can be written
in the form V(k) = Qu(k)p(k) with the structure fac-
tor p(k) of the impurity distribution. This corresponds
to the neglection of, e.g. , covalent bonding leading to
"forbidden" refiexes. The common charge cloud of two
impurities then is simply the superpositon of their indi-
vidual charge clouds independent of the distance. This
is ensured linearizing (2) with the result

n(r) = ap / ——ap, '/ V(r).
2

(4)

b,V(r) = —8vr[p(r) —n(r)].

The Fourier transformation

1
V(q) = — dre'~' V(r),

As in the three-dimensional case this linearization of the
response can be justified only a posteriori. V(r) in (2) is
not small compared to p the regions of small n(r). But
in these regions the Thomas-Fermi theory itself becomes
wrong due to its statistical character. Its failure results in
a power law s decrease of the self-consistent n(r) away
from a single impurity, respectively, n(z) ~ in the two-
dimensional case. The linear response theory results in
both cases in the expected exponential decrease of n(r)
(see below).

Hence, the linearized theory describes better the
screening charge cloud around one given impurity than
the full one, neglecting charge redistributions between
impurities, however.

The compensation of the errors of the Thomas-Fermi
theory itself with that of its linearization never has been
fully understood, the use of the linearized Thomas-Fermi
theory can be justified by its evident successes in all con-
sidered applications only.

From (3) we obtain

dr —(3~ ) / n / (r) —2 dr'
5 fr —r'/

0
V(r) =

(2n.)s dqe '~'V(q)

,nr'nr
f+ dr

)
r —r'

)

of (5) then gives together with that of (4) the self-
consistent potential
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8m 2
V(q) =—,p(q) + -V(~'(q)

q +k~T 3 (6)

with

k2
n(q) = , „, p(q) (7)

1

k~T = 12' GP

b (r) and bs(q) are normalized here in such a way that

j dg6 (q) = 1 nnd —f drdr(r) = I .

In the high-density limit we can approximate the b-doped
layer as a metallic sheet replacing p(r) by its averaged
value (p(r)) over all possible impurity positions within
the z = 0 plane

(p( )) = ~~( )

(p(q)) = ~b(~*)~(~.)

where c is the two-dimensional impurity concentration
given by

p(r)dr = cF = c / dndy. (10)

From (7) we obtain

k2
n(q) =

2 2
—6((I )b(9v),

q + k~T I
or

and from (4)

2 1
V(z) = —p, —8x z n(z).

3 k~T
(13)

The Fermi energy )M, and therefore I(;~~ ——/12mapi/2,
remains to be determined using the high-density results
(12) and (13).

For neutral systems p cannot be obtained &om the con-
straint N = f n(r)dr, which is satisfied automatically in
the linearized Thomas-Fermi theory [n(q = 0) = p(q =
0), see (7)].

In the corresponding three-dimensional linear response
case p can be obtained from

n(r) = 0 ckFT —A;y g z

(27r)'
dqe 'i' n(q) = n(z) = e»I I

(12)

pN= 3x in~ r @dr+ Vr p, nr @dr 16

as another equation for p, .
Eg;„and E»t ——f V'(r)n(r)dr with V' = V —p are

related by the virial theorem in the Thomas-Fermi ap-
proximation

5

3
-EkiD = —Epo~, (17)

which again leads to a self-consistent p determination.
Within the full nonlinearized Thomas-Fermi theory

the results for p naturally coincide. This, however, is not
the case in the linear response theory. Here, the potential
V(r) obtained from (13) does not exactly minimize E.
The error in V(r), however, is differently weighted by the
methods mentioned, leading together with (12) and (13)
to different results for k~T . k~T ——1.5788 x c ~, k~T ——

1.9816xc ~, k~T ——1.9472xc ~ and k~T ——1.3927xc ~

for the above given four possiblities, respectively. Within
the Thomas-Fermi approximation the kinetic energy is
given only in a relatively rough approximation, leading to
the unusual virial theorem 3Eg;„———E~ t. We, therefore,
tried to obtain additionally a more reliable result by the
following method.

Multiplying the self-consistent (not the bare) potential
V'(r) by an arbitrary coupling constant A, the Hellmann-
Feynman theorem

&&
——(g, ~&& g) leads to

1

E = E),;„(A = 0) + dA —Ep t(A).

In our case, we have E),;„(A = 0) = 0 due to

A f n(r)dr = 0 and

E (A) = frn(r, A)V'(r, A)dr = A f n(r)V'(r)dr

due to n V'. From (18) we obtain then

2Ek;„———Ep t.

the high-density limit by its kinetic energy contribu-
tion E)„.„——f dr —(3vrz) 2) sns~s. In the two-dimensional
case all contributions to E have the same c dependence

( c ) ) as Ek;„, however, and we have to use the full
expression (1).

In the case of the full (nonlinearized) Thomas-Fermi
theory p can be obtained by the following equivalent
methods: First from (14) with E = Ek;„+E»t Fr.om
(4) we obtain with the choice of the energy zero so that
V(z=0) =0,

n(z = 0, p, ) = ap )

as a second self-consistent equation for the determination
of p.

The integration of (2) results in

bE bNe Oe

bN bN On' (14) This equation results together with (12) and (13) in

with e being the energy per eIectron and n being the
three-dimensional concentration, approximating E in

k = 1.2484

as a further possible function k~z (c).

(2o)
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G (k)= E —k (23)
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FIG. 1. The self-consistent Hartree potential and
the potential of the linearized Thomas-Fermi theory
(kET = 1.2484c ~ ) for c = 5 a& and the corresponding two
lowest subband bottoms.

The uncertainty in the determination of k~~ is inher-
ent to a linear response theory and cannot be circum-
vented by any mean. It does not occur in the three-
dimensional linear response case because there in the high
density limit E can be approxixnated by E)„. , V(r) not
being involved at all.

Because the screening within any Thomas-Fermi ap-
proximation always is too large, we decided to use the
smallest k~T given by (20) in the following calculations.

In Fig. 1 we show the potential V(z) obtained in
this way in comparision with the self-consistent Hartree
potential, 6 which is well approximated by that of the full
Thomas-Fermi one, together with the two lowest eigen-
values (subband bottoms) for c = 5. We did not try to
choose k~z in such a way that these eigenvalues coincide,
the difFerence not being of essential importance for the
subsequent calculations.

From (6) and V(q) = Av(q)P(q) + sobs(q), we get

v(r) = 0 —ig r 2 —It~g v

(2vr) s dqe '~'v(q) = ——e (21)

for one single, screened by a two-dimensional electron
gas, impurity potential at the origin. This expression
was derived from the high-density (metallic) limit but
reproduces the c = 0 limit as well [Eq. (20)j. So we
can expect that a multiple-scattering theory using this
potential results in two-dimensional subbands for large c
and in single impurity bound states for c ~ 0.

M-(r i" p ) = ()o(pi)a(p2)" n(p-)) (25)

have to be calculated, then.
The same approximation as in Ref. 24, which is cor-

rect linear in c, and corresponds to the average t-matrix
approximation, results for the two-dimensional case in

M(k, k', E) = —b (k2 —k2) t(k, k'; E), (26)

with k2 ——(k, k„), where

t(k, k'; E) = v(k —k')

+ f dqv(k —q)Gv(q)4(q, k';E) (22)

is the t matrix and v(k) is the potential of one impurity,
both multiplied by the total volume O.

As in the three-dimensional case the self-energy linear
in c is equal to the t matrix of one impurity, multiplied by
the concentration and a b function ensuring momentum
conservation, here in the x-y plane only. The correspond-
ing result is true in the one-dimensional case, too.

Substituting (26) into (24) one obtains for G(k, k') the
equation

G(k, k') = G (k)b (k —k')

+G (k)—f dq 4(k, q;E)G(q, k';E), (28)

where q = (k, k„,(b).
The solution of (28) is given by

G(k, k') = b (k2 —k2)G(k„k,';k2) . (29)

and V(k —q) being given by (6).
The averaged over all possible impurity configura-

tions in the z = 0 plane Green's function G(k, k')
(G(k, k')) obeys an equation similar to (22).

G(k, k') = G (k)b (k —k')

+G (k) f dqM(k, q;E)G(qk'), , (24)

which defines the self-energy M(k, q; E) as a nonlocal
energy-dependent average potential.

Equation (22) may be solved formally by iteration. For
the calculation of G(k, k') the averages

III. THE SMALL CONCENTRATION
APPROXIMATION FOR THE SELF-ENERGY

The equation of motion for the one-particle Green's
function in the efFective mass approximation is

G(k, k') = G (k)b (k —k')

+G (k) f dqV(k —q)G(q, k'), (22)

with

G(k„k,'; k2) obeys the integral equation

G(k„k,', k2) = G (k„k2)b(k, —k,') + G (k„k2)—
27r

x dq, t k, q„k2', E G q, k', k2

(30)

with k2 as a parameter.
Hence, due to the restricted to a plane momentum con-

servation, we cannot obtain the average Green's function
in the form
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G(k) = [E —k —M(k, E)] (31) parabolic subbands

as in the three-dimensional case, but have to solve the
one-dimensional integral equation (30) after the solution
of the three-dimensional integral Eq. (25).

IV. RESULTS

The numerical solution of the three-dimensional inte-
gral Eq. (27) as given in subsection (C) is a very time
consuming step and before performing it we try to avoid
this step by two simple approximations given in the sub-
sections (A) and (B).

A. Simpliest approximation, t(k, k'; E) = v(k —k')

We approximate t(k, k'; E) by its leading term
v(k —k') and obtain the following self-energy

E=E;+k +k (35)

B. Separable potential approach

with the E; shown in Fig. 2. These E; obtained in the
linearized Thomas-Fermi approximation only slightly de-
viate kom the results of the nonlinear Thomas-Fermi and
of Hartree calculations. '

For c m 0 the effective potential V(z) [Eq. (34)] van-
ishes and the metallic sheet approximation results in the
conduction band only, being not able to reproduce the
bound states of single impurities. The corrections to this
approximation by the separable potential approach (B)
or the full expression (C) of the t matrix is not small in
this limit, because the t matrix has poles at the energies
of the bound states of the one impurity problem, in which
energy region we are just interested.

M(k, k';E) = —b (ks —kz)v(k, —k', ) .

The solution of (24) then just corresponds to the solution
of the one-dimensional Schrodinger equation

d'
+ V(z)

~ g(z) = E@(z),
)

with

V(z) = dke '"'M(k, k'E)0
(2m. )s

4vrc FT Z

kgb

being given by (8), (12), and (13). The energy zero is
choosen so that V(z = oo) = 0. Hence, the replacement
of t(k, k'; E) by v(k —k') just reproduces the metallic
sheet result (high-density limit) usually considered.

The solutions of (33) have the well-known form of

The numerical solution of the integral Eq. (26) can be
avoided using an artifical techniques first applied to our
knowledge by Haug and Tran. We replace the potential
v(k —k') by the so-called separable potential in the same
way as described in detail by, e.g. , Gold et al. and Mo-
necke et al.24 This approach is applied to the calculation
of the self-energy M only, not to the integral equation
for the averaged Green's function. (27) then reduces to
an algebraic equation, and we obtain for the self-energy
the approximation

M(k, k', E) = —'~(k, —k', ),
"('

IcFT+g—E

This self-energy has a pole, which reproduces for c = 0
the lowest bound state of one single impurity at E = —1
Ry. Hence, we obtain even for c ~ 0 a finite self-energy
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FIG. 2. The lowest four subband bottom energies E,
as a function of the concentration c in the approximation
t(k, k'; E) = v(k —k').

FIG. 3. Dispersion relation E(k) with k = gk2 + k2 for
the three lowest snbbands at c = 0.01 a& (1.03 x 10 cm
in the case of GaAs:Si) within the separable potential approx-
imation.
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with vanishing c, which physically is impossible. From a
superposition of s-like states no odd subband can be ob-
tained in a reliable approximation. We expect in contrast
to this the lowest subband to shrink with c ~ 0 to the
s-like bound state at E = —1 Ry, the next subband of
even parity to shrink to the p, state at E = —

4 Ry and
so on, a behavior which principially cannot be obtained
with separable potentials.

C. Exact numerical solution of t(k, k'; E)

In order to obtain reliable results for the self-energy
Eq. (27) was solved numerically, discretizing it to a set of
linear equations which was solved exactly. The resulting
t matrix was used then to determine the poles of (30).
The results for

~
k2 ~= 0 and

~
k2 ~= oo are shown in

Fig. 7.
For small c the lowest band bottom starts correctly

&om E = —1 Ry. It 6rst rises rapidly and then moves
downward parallel to the lowest subband bottom ob-
tained from the metallic sheet approximation. The cor-
responding 1s band top starts at —1 Ry, too, and rises
continuously. Therefore, the dispersion relation for large
c becomes parabolic near the band bottom (see below).
The next subband bottom (of odd parity for large c)
starts at E = —

4 Ry for c = 0. Obviously it is de-
rived &om the 2p, state. Its top rises rapidly, so that
it cannot be drawn using the scale of Fig. 7. The third
subband bottom (of even parity for large c) could be dis-
tinguished numerically kom the second one only down to
about c = 0.02 a& . We believe it to start &om the 2s,
2p, and 2p„states at c = 0.

For
~

k2 ~~ oo we have G (k) -+ 0 and (30) has a so-
lution with G g 0 only at the poles of the one-impurity
t matrix. The impurity band top energies therefore coin-
cide exactly with the bound state energies of single im-

purities. The same is true in the case of the separable po-

00-

tential approximation, the common band top in this case
being given by the pole at E = —(1 —k~7 ) of (36). Our
numerical solutions for

~
k2 ~~ oo agree fairly well with

the results of Yukawa bound state calculations (see, e.g. ,
Rogers et al. ), indeed. This is valid in all dimensions
and is exact within the average t-matrix approximation,
i.e. , linear in c.

The fact, that the 1s-band top merges the conduc-
tion band just at the concentration at which one sin-
gle screened potential has no bound state (c = 0.79a&
corresponding to c = 8.1 x 10'x cm —2 for GaAs: Si in
our approximations) corresponds to the early suggestion
of Mott and Davies for the critical concentration of
insulator-to-metal transitions.

But well below this concentration the top of the 1s-
band merges with the bottom of the 2p, band (here at
c„=0.097a& corresponding to c„=9.95 x 10 cm
in the case of GaAs:Si). Due to the steep rise of all
other band tops with c for concentrations above c„no
other gaps between higher impurity bands are expected.
Therefore, c„ is the critical concentration of the insula-
tor to metal transition, de6ned as the concentration at
which all gaps close (calculating an averaged one particle
Green's function only no information about the expected
Anderson localization ~ of the states can be obtained, of
course ~

In the high-density limit (c ~ oo, k~z -+ oo) we are
far away from the energies of one impurity bound states
and, hence, we can treat (27) as an absolutly convergent
Neumann series

t(k, k';E) = v(k —k')

+ f dqv()v —q)G (q)v(q —k') + . . . .

(38)

With the help of the mean value theorem of the integral
calculus we obtain

t(k, k'; E) = v(k —k') + v(k —()G (()v(( —k') + ... .

(39)

For large c (respectively, k~z) the formfactor v is pro-
portional to 0(k&7 ) and neglecting higher orders we get

—Ov5
t(k, k'; E) v(k —k'), (40)

—1.5 —.

which results in the same self-energy as (32).
Hence, for large c the impurity bands become identi-

cal with the subbands obtained &om the metallic sheet
approximation.

I I I I I I 1 ) I 1~1 I I I ) I I I
—20-

0.0 Ov2 Ov4 0.6

c (a, ')
Ov8 1.0

FIG. 7. Concentration dependence of the bottoms of
the three lowest subbands and the 1s-band top (solid
lines) in comparision to those of the first approximation
t(k, k'; R) = v(k —k') (dashed lines).

V. CONCLUSIONS

Avoiding the metallic sheet approximation we de-
scribed a b layer as a system of randomly distributed
impurities in a plane and applied multiple-scattering the-
ory to obtain the averaged one particle Green's function
and, hence, the mean eigenvalue spectrum.

It was demonstrated that for very small concentrations
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the eigenvalues coincide with the bound state eigenval-
ues of single unscreened impurities. With increasing con-
centration in the uncompensated case impurity bands
are formed by wave-function overlap. These bands have
effective masses deviating &om the host semiconductor
conduction band mass and densities of states deviating
from the stepwise behavior of the metallic sheet approx-
imation. For large c the latter approximation becomes
exact and the impurity bands can be described in terms
of the well-known two-dimensional subbands.

This qualitative behaviour does not depend on the spe-
cial approximations choosen, the linear response screen-
ing theory for k~T obtained &om the high-density limit
and the average t-matrix approximation. Both approxi-
mations inBuence results only quantitatively.

Defining the critical concentration of the insulator-

to-metal transition as the concentration at which all
gaps between the impurity bands close, we obtain c„=
9.95 x 10 cm in the case of GaAs:Si. Below this con-
centration the subband concept clearly has no meaning.

Using a single-site multiple-scattering theory we could
not obtain extended band tails caused by impurity den-
sity Huctuations. Likewise, no information about the
extended, respectively, localized nature of the impurity
band states could be obtained. These points need further
investigations.
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