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Honeycomb structures on Ge(111): A structure-factor analysis
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A description of the surface structures consisting of hexagonal (2x2)-reconstructed domains of
adatoms, which tile the (ill) face of diamondlike crystals and have domain boundaries building up
a continuous net of c(4x 2)-antiphase domain boundaries, is presented. Calculations of the structure
factors of such honeycomb reconstructions show that not all of them account for the splitting of
the half-order re6ections observed in the difFraction pattern of the moderate-temperature phase
of Ge(111). The relation between the splitting and the average domain radius of the honeycomb
structures is deduced. Using the temperature dependence of the splitting measured by Phaneuf
and Webb [Surf. Sci. 184, 167 (1985)j, the average domain radius is found to vary almost linearly
with temperature. The efFect on the diffraction pattern of either the deformation compatible with
a perfect honeycomb net of antiphase domain boundaries or the breaking of this net is discussed.
Deformed structures are similar to those real-space images obtained with the scanning tunneling
microscope on the stabilization at room temperature of the moderate-temperature phase of Ge(111)
by means of Ga.

I. INTRODUCTION

In the past, a huge body of literature has dealt with
the study of the effect of antiphase domain bound-
aries (ADB's) on the structural~ and the electronic
propertiess of bulk materials and surfaces. An ADB can
arise for two reasons: the interchange of the chemical
species which occupy equivalent sublattices of the crys-
tal or the breaking of the periodicity of the structure
accompanied by no atomic substitutions. Typical exam-
ples of these ADB's are found in bulk AusCu (Refs. 1, 4,
and 5) and in Pts V (Refs. 6 and 7) for substitutional and
structural disorder, respectively. In this work we focus
on the latter type of ADB's for the particular case of the
(111)surfaces in crystals with the diamond structure. It
is well known that ADB's occur in both reconstructed
clean surfaces (Ge(111)-c(2x8) (Ref. 8)) as well as on
chemisorbed (Ni(111)-0 (Ref. 9)) and physisorbed (Kr
on graphite~~~z) surfaces. The necessary condition for

the formation of ADB's on a surface is the existence of
more than one equivalent domain of the reconstruction
on top of the truncated bulk. The spatial origins between
those equivalent domains are separated by a multiple of
the lattice vectors of the unrelaxed surface, which is a
submultiple of the lattice vectors of the reconstructed
surface.

The indicative feature in the diKraction spectra of the
presence of ADB's in a surface is the splitting or broad-
ening of those reBections5 which arise &om the breaking
of the periodicity inside the domains by the ADB's. In
this paper, we examine the origin of the splitting of the
half-order refiections of the moderate temperature (MT)
(between 300'C and 775 C) Ge(111) surface and its
relation to the presence of ADB's on the surface. In or-
der to achieve a consistent description of the low-energy
electron-diffraction (LEED) pattern of both the MT
phase of Ge(ill) (Ref. 13) and its stabilization at room
temperature (RT), structure-factor calculations of

honeycomb reconstructions, which are built up with reg-
ular and irregular hexagonal (2x2)-reconstructed do-
mains, have been performed. The interest in these struc-
tures arises from the model proposed by Phaneuf and
Webb in order to explain the diffraction pattern of the
MT phase of Ge(111). The same diffraction pattern,
characterized by split refiections at half-order sites, was
observed, in fact, at room temperature on Ge(ill)/A1, ~4

Ge(111)/In, ' and Ge(ill)/Ga surfaces, ~v'~s leading
to the conclusion that the structure of the impurity-
stabilized phase should resemble the MT phase at least
on a time scale corresponding to the diffraction exper-
iment. Feenstra et al. reported on the high mobility
of the adatoms above 300 C, which hinders one from
obtaining an atomically resolved image of the surface
with the scanning tunneling microscope (STM).~~z~ The
presence of well-defined refiections in the LEED pattern
above 300 'C indicates that the adatoms do sit at discrete
positions on the surface (T4 sites) and still account for the
bonding proper of the c(2x8)-reconstructed surface in
photoelectron difFraction. Indeed Patthey et eL. found
with this technique that the bonding of the MT phase
was equivalent to that of the c(2x8) reconstruction. zz

Therefore, the MT phase should be only a reordering
of the c(4x2)- and (2x2)-building blocks of the c(2x8)
structure.

As a possible model for the MT phase, Phaneuf and
Webb suggested that this surface could be tiled by the
repetition of a (2x2)-reconstructed regular hexagon of
adatoms sitting at T4 positions. They also considered,
however, those nonperiodic structures having the same
average domain size as that already mentioned. Re-
cent STM images ' obtained on the Ga-stabilized MT
phase of Ge(111)showed also (2x 2)-reconstructed hexag-
onal domains of adatoms, sitting at T4 positions. The
observed adatom pattern, formed by regular and irreg-
ular hexagons, does not stay in contradiction with Pha-
neuf and Webb's model. However, the exact origin and
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dependence of the average size of the hexagons and the
observed splitting remains unsolved. Moreover, it is not
clear that the diffraction pattern of any honeycomb struc-
ture with an arbitrary average domain size will repro-
duce the expected difFraction pattern of the MT phase,
in which the only observed reBections are transversally
split spots at the half-order positions. Our interest in
performing the present calculations is to examine, as al-
ready proposed by Phaneuf and Webb, to what extent
the I(2x 2)-structure corresponds to the MT phase of the
Ge(111) surface.

A honeycomb domain structure can be character-
ized by the average domain size of the building block
hexagons. A parameter, the average domain radius of
the hexagon (R~), will be introduced in order to de-
scribe each such structure. We shall show that the two
kinds of structures proposed by Phaneuf and Webb [with
the somewhat misleading name of incommensurate (2x 2)
(I(2x2)) structures]is correspond to a very restrictive
sort of (2x 2)-reconstructed domains of adatoms with the
topology of a honeycomb, namely, those with odd domain
radius (R~) or, if disordered or deformed (see below),
with an odd RD. The I(2x2) structures (the notation
is maintained for the sake of clarity) have odd R~, and,
therefore, correspond to what we will call in this work
class (1) structures. A deformation which preserves the
honeycomb structure should keep invariant both the total
length of the c(4x2) ADB's parallel to the three equiv-
alent triagonal directions and the number of (~3x~3)
crossings, since, otherwise, the deformation induces
discontinuities (voids) in the net of c(4x2)-ADB s. These
two types of structures arising &om deformation of the
periodic ones will be called here disordered and deformed,
respectively.

The outline of the manuscript is as follows. After a
description in Sec. II of the difFerent sorts of honeycomb
(2x2)-reconstructed surfaces and the nomenclature used
throughout the paper for these structures, we present
in Sec. III the calculations of the structure factors at the
half-order positions. Prom these calculations, the relation
between the two splittings of the half-order reflections,
longitudinal and transverse, and the average domain ra-
dius will be deduced. Sections IV and V are devoted,
respectively, to the origin of both splittings and to the
efFect of short-range disorder on the difFraction pattern.
In Sec. VI we analyze the temperature dependence of the
transverse splitting on the MT phase of Ge(111) (Ref.
13) using the dependence of the transverse splitting on
the average domain radius obtained in Sec. III. The vari-
ation of the average domain radius with temperature is
found to be almost linear. We suggest that the MT phase
of Ge(111) could be a commensurate-incommensurate
phase transition in Sec. VII, where the results are sum-
marized and the conclusions presented.

II. HONEYCOMB (2x 2}-RECONSTRUCTED
DOMAIN STRUCTURES

Three types of honeycomb structures will be discussed
in this work: periodic, disordered, and deformed. The

periodic honeycomb structures show threefold symmetry
and can be further classi6ed depending on the number of
hexagons within the unit cell. The simplest kind of peri-
odic honeycomb (2x2)-reconstructed domain structures,
already proposed by Phaneuf and Webb in 1985, are
those built up by the repetition of a single hexagon. One
such structure is shown in Fig. 1. We define the domain
radius (RD) of such a honeycomb structure as the dis-

tance in (1x 1)-surface lattice units between the center of
the regular hexagon and the center of the half (~3x ~3)
unit cell at the edge of the regular hexagon as indicated
in Fig. 1. Due to the fact that the hexagon is regular,
this distance is the same as the length of each edge of
the building hexagon as illustrated in Fig. 1. The rela-
tion between the RD, and the number of adatoms sitting
along the antiphase domain boundary at the edge of each
hexagon, n, is given by

RD ——2n —1.

In the structure of Fig. 1 the c(4x 2)-reconstructed
domain boundaries are formed by two rows of three
adatoms each (n=3) and the domain radius corresponds
to 5x(1x1)-surface lattice units. The honeycomb struc-
tures formed by repetition of only one hexagon have nec-
essarily an odd RD. We refer to this group of structures
as class (1) structures because their R~'s are given by
1+2j, where j 6 N (j ) 0).

For RD's, which are not odd numbers, the surface can-
not be tiled solely with one regular hexagon. The unit
cell of the threefold symmetric reconstruction includes a
few hexagons, some of them irregular (see Fig. 2). We
wish to establish a correspondence between the struc-
tures with rational (not odd) domain radius and those
with odd domain radius. The number of hexagons in-

side the unit cell depends on the relative "unmatching"
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FIG. 1. Periodic honeycomb structure of (2 x 2)-re-
constructed domains of adatoms on a diamondlike (111)sur-

face. Large circles correspond to adatoms at T4 positions ei-

ther inside the domains (unfilled) or at the antiphase domain
vralls (filled). Small circles shovr the underlying hexagonal

(1x1) mesh of the unreconstructed (111) surface. The RLi of
this structure is five times larger than the (1xl)-lattice-unit
length (5xao~iioj, ao~iioj ——4 A in Ge). For structures vrith

odd domain radii (class (1) structures) the unit cell contains
a single regular hexagon (X=1).
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FIG. 2. Periodic honeycomb structure with even average
domain radius (class (0)) (Ro=6). Circles represent adatoms
at T4 positions either inside the domains (unfilled) or at the
antiphase domain walls (filled). In case of an even domain
radius the unit cell of the structure includes one regular and
three irregular hexagons (y=2 ). A unit cell is indicated by
enumerating the two domains along its two inequivalent sides.

of the honeycomb structure (with rational R~) to that of
a structure built up by a single hexagon (with odd R~).
We quantify the degree of "matching" of a structure of
arbitrary RD with respect to that of a structure with odd
RD using the number of hexagons inside the unit cell of
the structure, y, as a parameter. When y equals 1, the
structure is built up by repetition of solely one regular
hexagon. The lower the matching, the higher g. For ex-
ample, y=2 for even R~ (Fig. 2), y=4 for RD = 0.5+
2j (Fig. 3), and X=10 in case of structures with R~ =
0.8 + 2j (Fig. 4). y ~ oo corresponds to a structure with
irrational domain radius (R~ C I), a strictly speaking
incommensurate structure. 2~ Due to the fact that no do-
main radius can be defined when R~ is not odd (the unit
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FIG. 3. Periodic honeycomb structure belonging to class

(0.5) (Ro=4.5). Circles represent adatoms at T4 positions ei-
ther inside the domains (unfilled) or at the antiphase domain
walls (filled). Sixteen hexagonal domains form the unit cell of
the reconstruction (X=4 ). As in Fig. 2 the unit cell is indi-
cated by enumerating the domains along its two inequivalent
sides.

FIG. 4. Periodic honeycomb structure belonging to class
(0.8) (Rn=6.8). Circles represent adatoms at the antiphase
domain walls. Those adatoms inside the domains have not
been plotted for the sake of clarity. One hundred hexagonal
domains form the unit cell of the reconstruction (X=10 ). A
unit cell is indicated in the same fashion as in Figs. 2 and 3.

cell does not contain a single regular hexagon), RD shall
be substituted by average domain radius (R&), which, in
fact, accounts for the resulting distribution in size of the
difFerent hexagons. With not odd RD, the unit cell of the
reconstruction is tiled by regular and irregular hexagons,
whose average domain radius is RD. Each rational num-
ber q (0(q(2) defines a class of structures, (q), whose
R~ are given by

RD ——q+ 2j,

where j C N (j)0).
The second and third groups of structures we will deal

with are not periodic and do not show threefold symme-
try. We produce them by deformation of the periodic-
ity of the c(4x2)-reconstructed net of antiphase domain
walls of the periodic honeycomb structures. Two kinds
of deformations will be discussed. The deformation lead-
ing to disordered structures like that in Fig. 5 consists
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FIG. 5. Disordered honeycomb structure with odd domain
radius (class (1)) (Ro=5). Circles represent adatoms at T4
positions either inside the domains (unfiHed) or at the an-
tiphase domain walls (filled). The deformation shown is com-
patible with the c(4x2)-reconstructed net of antiphase do-
main walls.
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Hections (see Fig. 7) as a function of the R~. Therefore,
we calculate the structure factors (S(k)) at the half-order
reflections along both the (1,0) direction and perpendic-
ular to it through the (2, 0) point as labeled by longitu-
dinal and transverse, respectively, in Fig. 7. We define

the structure factor, S(k), as

(3)

FIG. 6. Deformed honeycomb structure with R~——7.6
(class (1.6)). In contrast to the disordered structure in

Fig. 5, the continuous c(4x2)-reconstructed net of ADB's
shows voids of various sizes at crossings of ADB's. Circles
represent adatoms at T4 positions either inside the domains
(unfilled) or at the antiphase domain walls (filled).

of changing the shape of the hexagonal (2x2) domains,
while the continuity of the net of c(4x2)-reconstructed
domain walls is preserved. In these disordered structures,
the crossings between domain walls represent, exactly
like in the case of periodic structures, half (v 3x v 3) unit
cells. The R~ is kept constant all over the surface so that
long-range order remains after deformation. The Quctua-
tions of the domain radius from the average value (B~),
however, are larger than in the periodic structures be-
cause these deformations are random though constrained
to respect the continuity of the c(4x2) net. Under this
first class of deformations both the total length of the an-
tiphase domain boundaries along each of the three equiv-
alent directions on the surface and the total number of
domain-wall crossings remain constant. This degener-
acy [many structures are possible under the constraint
of a fixed total length for the c(4x2) ADB's and a fixed
number of (~3x~3) crossingsj is not a particular fact of
(2x 2)-reconstructed domain structures. In fact, the hon-

eycomb (~3x~3)-reconstructed domain structures ob-
served in some physisorbed systems 2 ' 8 3 show, also,
structural degeneracy, which has an associated nonvan-

ishing configurational entropy.
The third type of structures, the deformed, are ob-

tained by further deformation of the c(4x2) net of do-
main walls, which leads to topological defects, whose
winding number is the same as that of the perfect tiling.
The constraint that antiphase domain walls intersect al-
ways forming half (v 3x v 3)-reconstructed arrangements
of adatoms is relaxed. Therefore, the presence of voids
at the place of some otherwise (v 3x~3)-reconstructed
crossings of domain walls is characteristic of these struc-
tures as shown in Fig. 6.

III. THE SPLITTINCS
OF THE HALF-ORDER REFLECTIONS

In this section we deduce the magnitude of both the
longitudinal and transverse splittings of the half-order re-

where N and r~ are, respectively, the total number of
atoms and their positions. For the sake of clarity in plots
of structure factor versus k vector we divide S(k) by N,
thus, the intensity of the (0,0) reHection is normalized to
1. Only the overlayer of adatoms was taken into account
in the calculation because no significant differences con-
cerning position and intensity of the split reHections were
found in the diffraction spectrum when including the first
underlying (1x1) layer of atoms.

The honeycomb reconstructions belonging to class (1)
are built up by a single regular hexagon (y=l) like that
in Fig. 1. Their diffraction patterns show splitting of the
half-order reflections both along the (1,0) direction (lon-
gitudinal splitting) and perpendicular to it (transverse
splitting) as depicted in Fig. 8. Whereas the distance be-
tween the longitudinally split reHections does not follow
a definite trend with increasing RD, the transverse split-
ting decreases monotonously with increasing RD. Ex-
actly like class (1) structures, those belonging to class
(0) (y=22) are characterized by a monotonic decrease
of the transverse splitting with increasing domain size,
while the intensities remain constant at approximately
0.5 (see Fig. 9). Along the (1,0) direction, however, we

find a qualitative difference with the diffraction spectra
of class (1) structures: the reHection at (2,0) appears
for the five investigated structures. The intensity of this
reHection decreases with increasing domain radius. In
addition we notice the presence of longitudinal split re-
Hections in two of the five structures of class (0). Only
along the direction perpendicular to the (1,0) direction,

(O, l)

longitud&na~

nsverse

(o,o)

FIG. 7. Scheme of the split spots for a honeycomb
(2x2)-domain structure with odd R~. The positions of the
split spots correspond to these of such a structure with an
average domain radius (R~) of 5 (see Table I).



49 HONEYCOMB STRUCTURES ON Ge(111): A STRUCTURE-. . . 17 153

Longitudinal

(a) 1.0

Transverse

(a)

0.5
O~ 0.0
U- 1.0
UJ~ 0.5

0.0
U 1.0
D
tx 0.5

0) 0.0
1.0

0.5UJ

0.0

K O.5

0.0
0.5

(e)

0.5

0.0
1.0

0.5

0.0
1.0-

0.5

(e)

0.0
-0.25 0.00 0 25

0.5

00 I
1.0 (c)

0.5

RD ——3

Rg ——5

Rg=7

RD—-9

RD-—11

class (1)
=1

FIG. 8. Calculated structure
factors along the (1,0) direc-
tion (left) and perpendicular to
it through the (—,0) point of
5 (2x2)-honeycomb structures
belonging to class (1) (X=1).
R~ = 3 (a), 5 (b), 7 (c), 9 (d),
and 11 (e). The left side shows

that k is the reciprocal vector
along the longitudinal direction
indicated in Fig. 7. The right
side shows that k is the projec-
tion along (0,1) of the recipro-
cal vector parallel to the trans-
verse direction in Fig. 7.

k VECTOR 7I VECTOR

we do observe split half-order reflections for the class
(0.5) structures (y=4 ) in Fig. 10. Their normalized in-
tensities correspond to those observed ia class (1) and
(0) structures, approximately 0.5. In contrast to the cal-
culations for class (1) and (0) structures, no longitudinal
splitting occurs for those belonging to class (0.5). Instead
the calculation predicts a weak reflection at the (2,0) po-
sition. For structures with larger g the structure factor
aloag the (1,0) direction is almost featureless. In order
to illustrate this, we show in Fig. 11 the diffraction pat-
tern for three such structures: R~=6.8 (y=l0 ), RD=7.6
(y=lO ), and R~=8.75 (y=8 ). The lack of intense re-
flections along the (1,0) direction and the permanence of
the transverse splitting with intensities comparable with
those for class (0), (1), and (0.5) structures are common

1I's =
3RD

(4)

Similarly, the magnitude of the longitudinal splittiag is
fixed exclusively by the RD of the structure.

features of honeycomb reconstructions with large y.
In order to clarify whether the decrease of the trans-

verse splitting with increasing R~ follows a common law
for structures belonging to diferent classes, we plot in
Fig. 12 the component of the transverse splitting aloag
the (O, l) direction (we call this projection Pg) as a func-
tion of the RD. All the calculated split reflections, inde-
pendeat of the class to which they belong, fit along the
hyperbola:
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FIG. 9. Calculated structure
factors along the (1,0) direc-
tion (left) and perpendicular to
it through the (2,0) point of
5 (2x 2)-honeycomb structures
belonging to class (0) (y=2 ).
R~ = 4 (a), 6 (b), 8 (c), 10 (d),
and 12 (e). k is the same as in
Fig. 8.
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FIG. 10. Calculated struc-
ture factors along the (1,0) di-
rection (left) and perpendicular
to it through the (-,0) point of
5 (2x2)-honeycomb structures
belonging to class (0.5) (y=4 ).
RD = 4.5 (a), 6.5 (b), 8.5 (c),
10.5 (d), and 12.5 (e). k is the
same as in Fig. 8.
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IV. THE ORIGIN OF THE SPLIT REFLECTIONS
AT (—,0) POINTS

How can we understand the dependence of the trans-
verse and longitudinal splittings on the RD? Next, based
on the fact that structures with odd domain radius ex-
hibit both types of splittings, we infer their origin in such
a structure and, with the information gained, justify why
the longitudinal splitting progressively disappears with
increasing y. The relationship between the two sorts of
splittings and the RD arises Rom the fact that the peri-
odicity along (perpendicular to) the ADB is responsible
for the transverse (longitudinal) splitting.

We can associate with each vector in reciprocal space,
I I

k, a periodicity, i.e. , a wavelength, A = iiaq + a2 ii along
I I

the corresponding direction of k in real space. ai and a2

are vectors parallel to the (1,0) and (0, 1) directions, re-
spectively. An interference maximum in reciprocal space

(a refiection) occurs at k when a large number of atoms
stay in phase with a wave having the corresponding wave-

length and direction. This means that a multiple of the

I I

period ai + a2 should equal the distance between equiv-
alent positions in the structure. In case of an in6nite
(2x 2)-reconstructed domain, the periodicity in real space
responsible for interference maxima in reciprocal space

I I

will be given by the vectors ai ——(2, 0) and a2 ——(0, 2)
or linear combinations thereof. By the introduction of
ADB's and therefore by breaking the symmetry of the
infinite (2x2) domain, ai ——(2, 0) and a2 ——(0, 2) are no
longer those vectors in real space whose linear combi-
nations correspond to the distances between equivalent
positions (for example, domain centers) in neighboring
doInalns.

A. Transverse splitting

The distance between the centers of two neighboring
domains along the ADB's is given by (3R&, 3Rz&). There-
fore no multiple of (2, 2) can connect equivalent positions

I I

of domains along the ADB's. The periodicity ai + a2
along the ADB's should be shorter (Fig. 13) or larger
(Fig. 14) than that of (2, 2) in order to correspond to
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(X=10 ) FIG. 11. Calculated structure factors

along the (1,0) direction (left) and perpen-
dicular to it through the (2,0) point of
three (2x 2)-honeycomb structures belonging
to (0.8) (Ro=6 8, X=10 ), (1.6). (Ro=7.6,
y=10 ), and (0.75) (Ro=8.75, X=8 ) classes.

t
k is the same as in Fig. 8.
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0.14

0.12—

0.10

TABLE I. Splitting of the half-order refIections along the
longitudinal and transverse directions shown in Fig. 7. For the
longitudinal and transverse splittings, (k,k„) are the compo-

nents of the projected k vectors along the hexagonal (1,0) and

(0,1) directions, respectively.
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FIG. 12. Dependence of the splitting (Ps) on the Ro for
some honeycomb structures, whose RD's belong to difFer-

ent classes. Triangles, circles, and cubes correspond to class
(0) (y=2 ), (0.5) (y=4 ), and (1) (y=l) structures, respec-
tively, whereas stars account for structures belonging to other
classes: (0.8) (Ro=6.8, y=10 ), (1.6) (Ro=7.6, g=10 ), and
(0.75) (Ro=8.75, y=8 ).

2+ and 2+ in Fig. 7, are given in Table I. With similar
arguments one can deduce the periods: (23R o i, +3RIi)
and (23& oi, —3Rii), whose inverse values correspond
to the 1++ and 1+ reflections in Fig. 7.

a constructive interference. Assuming that the period-
icity equals (2, 2) multiplied by a rational factor p, the
in-phase condition is

p (3RD + 1) (2) 2) = 3 R1) (2) 2)

With the determination of the factor p,

B. Longitudinal splitting

In order to fulfill the in-phase condition along the di-
rection perpendicular to the ADB's (see Fig. 15), the
p factor should be a solution of the following in-phase
equation:

3RD
3R +1 (2, 0) =R~ (2, 0) . (7)

I I

aq + a~ corresponds to the periodicities in real space

of the periodicities found, the positions of the reflections

I

The so obtained periodicities are ai = (R oi, 0) andR&+X ~

I

ai ——(& oi, 0). Their inverses, presented in Table I,

correspond to the reflections 1+ and lit in Fig. 7.
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FIG. 13. Honeycomb structure with odd domain radius
(Ro=5). The distance between nearest neighb-or dashed lines
represents a periodicity parallel to (2, 2), which guarantees the
in-phase condition along the ADB's between the adatoms of
difFerent domains. The plotted periodicity, whose modulus is
shorter than that of (2, 2), corresponds to the 2+ reSection in
Fig. 7 and Table I.
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C. Spot splitting for structures with large y
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FIG. 16. Periodic honeycomb structure (Ho=7.6) with
large X (X = 10 ); the ADB's do uot line up like in (0)-class
structures (see Fig. 15). With increasing y the dispersion in
the position along the direction perpendicular to the R~ s is
responsible for the decrease in intensity of the longitudinal
split reBections.

In case of honeycomb structures which present a large
"unmatching" (y )) 1) with those of class (1), the nor-
malized intensity of the transversally split half-order re-
Hections lies around 0.5 (see for example Fig. 11),exactly
as it does for class (1) and (0) structures. Therefore, the
in-phase condition for the tranverse splitting is still ful-
filled. On the other hand the number of atoms which
contribute to constructive interference along the direc-
tion perpendicular to the ADB's decreases as y increases
because of the increasing dispersion in the position of
the ADB's projected to the direction perpendicular to
them as indicated in Fig. 16 for the periodic honeycomb

structure with R~ ——7.6. Indeed the ADB's line up in
class (1) structures so that a periodicity exists perpen-
dicular to them. The longitudinal reflections, either split
or at (2,0), do not sharply disappear above a particu-
lar y value, but their intensity progressively disminishes
with increasing y. As we will discuss in the next section,
short-range disorder, either compatible or not with the
c(4x2) net of ADB's, accounts for an additional supres-
sion of the intensity of the longitudinal split reflections.

V. THE EFFECT OF SHORT-RANGE DISORDER
IN THE SPLIT REFLECTIONS

In order to clarify the inHuence of deformation of the
domain-wall net on the calculated intensities for the half-
order split reflections, we compare structure-factor cal-
culations for sets of three structures, namely, periodic,
disordered, and deformed structures with the same RD.
No significant differences exist between those structures
showing disorder or deformation. The presence of voids

in the deformed structures does aot give rise to a large
variation in the calculated structure factors of the disor-
dered ones. Therefore we will discuss only the differences
between the extreme cases: periodic and deformed. The
calculated longitudinal splitting for those structures with

R~ = 5 (y=l), 6.5 (y=42), and 7.6 (y=102) are shown

ia Fig. 17. Compared to the periodic structures, no shift
in the peak position appears, while the intensity of the
reflections decreases slightly. Therefore, for large y val-
ues no longitudinal reflections on deformed honeycomb
structures appear.

The effect of deformatioa on the transverse splitting
corresponds to a reduction of the intensity of the reflec-
tions as observed in Fig. 18. Additional effects are the
spatial localization of the reflections in a smaller segment
of the transverse direction and, also, the appearance of
small new reflectioas along it. The deformation of the
perfect honeycomb lattice, even when the preseace of
voids is involved, does not alter the distance between split
spots. However, it results in a decrease of the intensity
of the split reflections and the appearance of new sharp
reflections of much lower intensity along the conaecting
segment.

VI. THE MODERATE TEMPERATURE PHASE
OF Ce(ill)

What caa be understood about the MT phase of the
Ge(111) surface from other measurements using the rela-
tionship we have established between the tranverse split-
ting and the average domain radius? Phaneuf and Webb
showed with LEED a monotonic increase of the magni-
tude of the transverse splitting with temperature from
the phase transition up to 900 K. From the relation
between transverse splitting and average domaia radius

(R~) in Table I, we infer a decrease of the RD with tem-
perature. Figure 19 accounts for the exact temperature
dependence obtained from Phaneuf aad Webb's LEED
data and the expressions in Table I. The R~ decreases
linearly with temperature &om 7.08—2.81 in the temper-
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ature range 570 K—914 K. Using Eq. (1) the decrease of
the R~ can be expressed as a decrease of the number of
adatoms at the domain edges, n, which varies approxi-
mately &om 4—2. Disregarding the effect of voids at the
surface, the density of adatoms does not remain constant
with decreasing RD. The relative variation of the density,
however, is small:

pw —2 pw —4 0 03
Pn=2

where p„~ stands for the density of adatoms in a (1)
class structure with j atoms at the domain edge. The
decrease of the BD supposes an increase of the (4x 2)- and
(~3x~3)-reconstructed areas relative to those covered
with (2 x 2)-reconstructed cells.

VII. DISCUSSION AND SUMMARY

An overview of the possible tilings of a (111)-truncated
surface of diamondlike crystals with hexagonal (2x2)-
reconstructed domains of adatoms has been presented.
Emphasis was placed on the relation between the aver-
age domain size, characterized by the RD, and the half-
order split reHections. The distance between split re8ec-
tions along both the longitudinal and transverse direc-
tions depends exclusively on the average domain radius.
No shift in the position of the refIections appears when
introducing disorder, neither compatible with nor break-
ing the continuity of the honeycomb net of c(4 x 2) ADB's.
Odd RD's correspond to structures formed by repetition
of a single regular hexagon, whose diffraction patterns
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FIG. 19. Temperature dependence of the average domain
radius of the honeycomb structures appearing in the mod-
erate-temperature phase of Ge(111). The points were ob-
tained from the temperature dependence of the splitting of
the half-order re6ections in reciprocal space measured with
LEED by Phaneuf and Webb (Ref. 13). Equation (4) was
used to express the splitting (Ps) as a function of the Ro. A
line was drawn as a guide for the eye.

show not only transverse splitting, but also a longitudi-
nal one in disagreement with LEED (Ref. 13) and He-
diffractionss experiments. Deformed (q) structures with
large y reproduce the diffraction pattern measured on the
MT phase of Ge(111) and on its Ga stabilization at RT;
only tranverse split reflections arise from the calculation.
Almost no difference appears between the di6raction pat-
tern of a disordered and a deformed honeycomb domain
structure with identical RD. The reason lies in the fact
that the voids introduced in a disordered structure in
order to obtain a deformed one represent a set of point
defects, whose area is too small to change the diffraction
pattern.

The disorder introduced in this work does not ac-
count for the broad half-order split reflections measured
by Phaneuf and Webb on the MT phase of Ge(111).~s

Stronger fluctuations of the RD all over the surface, as
observed with STM on the Ga-stabilized MT phase,
would probably lead to a more accurate description of
the observed broadening. A realistic modeling, however,
would require a deeper knowledge of the long-range struc-
ture from STM images and is therefore beyond the scope
of this paper.

Taking advantage of the relationship obtained between
the magnitude of the splitting and the RD, we can re-

formulate the dependence on temperature of the split-
ting of the MT phase of Ge(111), which was found
with LEED by Phaneuf and Webb, as a dependence
of the average domain radius on temperature. The size
of the hexagonal domains decreases with temperature.
Therefore, independent of the density of voids, the por-
tion of the surface covered by c(4x2) and (~3xv 3)
cells increases relative to that (2x2) reconstructed. The
tendency to increase the density of adatoms at recon-
structed areas when modifying the surface structure is
characteristic of commensurate-incommensurate phase
transitions observed on physisorbed systems (i.e. , Kr
on graphite). 24 2s'2 2 The honeycomb domain struc-
tures in the case of Kr on graphite represent the evo-
lution of the system at the phase transition between a
commensurate (C) and an incommensurate (I) struc-
ture. On the Ge(111) surface, the MT phase could
be also an intermediate state between a C phase [the
c(2x8)j and an I phase, whose density should be larger
than that of the c(2x8) (& monolayer). Sakamoto and
Kanamori performed Monte Carlo calculations of the lat-
tice gas model for the Ge(ill) surface. s The number of
(~3x~3)-reconstructed defects increases with tempera-
ture in agreement with our results. However, the disorder
arising from the lattice gas procedure exceeds the more
constrained deformations of the perfect tiling of the sur-
face with (2x2)-reconstructed domains presented here.

A more accurate measurement, for example with sur-
face x-ray di8raction, of the evolution of the split reflec-
tions of the MT phase and of the Ga-stabilized one as a
function of temperature would be interesting in order to
determine to what extent the RD evolves continuously
with temperature. The possibility of a devil's staircase
behavior like that associated with the 1D anisotropic
next nearest neighbor Ising ' model cannot be ex-
cluded a priori.
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