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Correlation functions for mesoscopic conductance at finite frequency
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We extend to finite frequency the calculation of the conductance correlation function for a mesoscopic
device, using linear-response theory for noninteracting electrons. Because the conductance is complex,
two functions are required to fully specify correlations in the real and imaginary parts. The two func-
tions have different frequency dependences due to the placement of the diffusion propagators in the sim-
plest diagram. We apply our results to the case of h /e conductance oscillations in a ring.

I. INTRODUCTION

Linear-response theory has been shown to account for
quantum-transport effects on the dc conductance of
mesoscopic devices.! Recently, some attention has been
given to the problem of finite-frequency mesoscopic trans-
port.>3 The characteristic frequencies for a device are
the inverse electron-transit time through the device 77 !
and the thermal frequency kT /#. The dephasing rate
7, | may also play a role if 7, ' > 77 . For diffusive trans-
port, 7, =L*/D, where L is the device size and D the
diffusion constant. When the measurement frequency be-
comes comparable to these characteristic frequencies,
new complications appear in the calculation of the con-
ductance. In particular, the replacement of the micro-
scopic electric field within the device by the average or
classical field no longer gives an exact result,* as it does
in the dc limit.> This implies that screening and other in-
teraction effects may become important. Also, nonlinear
effects may occur if the ac field is sufficiently strong.®
Still, the linear-response conductance of noninteracting
electrons is a necessary starting point for the considera-
tion of finite-frequency mesoscopic effects.

In this work, we extend the calculation of the conduc-
tance correlation function F(AB)=(8G(B)3G (B
+AB)) to finite frequency, within the context of linear
response and for noninteracting electrons, in the diffusive
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regime. The resulting functions,

F(0,AB)=(8G (0,B)8G (w,B +AB)) ,

(1)
F,(0,AB)=(8G(w,B)8G*(»,B +AB)) ,

describe features of the magnetoconductance 6G (w, B) of
a mesoscopic device at measurement frequency w. We
apply the result to the case of an isolated ring made of
quasi-one-dimensional wire and obtain the frequency
dependence of the flux-periodic Aharonov-Bohm conduc-
tance oscillations. The case of periodic oscillations in a
ring is especially interesting because the distribution of
transit times for the relevant interfering paths is sharply
peaked near 7;, so that any frequency dependence should
become rapidly evident once w7; >1. Also, the result
can be compared directly with results of recent experi-
ments.>

II. DERIVATION OF FINITE-FREQUENCY
CORRELATION FUNCTIONS

Following Altshuler et al., we write the nonlocal con-
ductivity tensor as’

Uaﬁ(r,r’;w)zi[KaB(r,r,;(U)_KaB(r,r,;o)] y (2)

in which
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Here, G and G~ are, respectively, the retarded and ad-
vanced Green functions, P is the momentum operator
—iV, and f (¢) is the Fermi function. In the usual calcu-
lation of the zero-frequency limit of Eq. (2) the real part
is taken, which results in additional terms. For our pur-
poses, Egs. (2) and (3) contain all the needed information.
The quantity K ,4(r,r’;0) in Eq. (2) represents the di-
amagnetic part of the conductivity and, in the impurity
average, cancels the last two terms in Eq. (3) except for
quantities of order wr, where 7 is the elastic-scattering
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[
time. For all frequencies we are considering, o7 <<1, so
these terms can be neglected and we obtain

.o e’ v . fle)—fle—w)
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XPaG .l (1, )pgG_,(r,r) .
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This expression contains contributions to the conductivi-

17 059 ©1994 The American Physical Society



17 060

ty only from electrons near the Fermi surface, as expect-
ed. Its impurity average has been shown to yield the clas-
sical conductivity® and the weak-localization correction.’

We now wish to calculate correlation functions of the
diagonal part of the conductance tensor obtained from
Eq. (4). We consider the functions F;(w,AB) and
F,(w,AB) of Eq. (1); these together provide all informa-
tion about correlations of the real and imaginary parts of
J

2
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the conductances. In the approximation of a uniform
electric field within the sample, the conductance of a wire
or between opposite points of a ring is given by
(1/L2)f drdr' o(r,r’;0), where L is the length of the
wire or half the circumference of the ring. The expres-
sion for the simplest diagram contributing to F, [see Fig.
1(a)] is

X fdr}dr4dr5dr6j(r3’r6)j(r4’r5)Pw+£—E'(rﬁirS)Pm—E+a’(r4’r3) , (5)

Eq. (7), N, is the density of states at the Fermi level, and

_ e? ® © , fle)—fle—w) f(e)—f(e'—w)
Fl(w,AB)— m f_mdawadE © ©
[
where
j(r3,r6)=fdrldrzﬁaG:(rz,r3)G;w(r6,r2)

XPoGd(r,16)G_ (13,1)) (6)

and Pq(r,r’') is the diffusion propagator, which satisfies

the equation

{(—D[V—ie(A£ AN —iQ+7,"}Py(r,1')

=—L _se—r).
27Ny 7

The Green functions in Eq. (6) are impurity averaged. In

FIG. 1. Feynman diagrams in position space contributing
to the correlation functions (a) F,(w,AB)
=(8G (0,B)8G (v,B +AB)), and (b) F,(w,AB)

=(8G (»,B)5G*(w,B +AB)). Diagrams giving equal contri-
butions are obtained by exchanging r, and r}, accounting for the
overall factors of two in Egs. (10) and (13).

A and A’ are the vector potentials in the two conduc-
tances; the plus sign refers to the particle-particle or
Cooper channel, while the minus sign refers to the
particle-hole channel. In the following we shall consider
the particle-hole channel, since the particle-particle con-
tribution decays at moderately small fields because of the
positive sign.

Since the impurity-averaged Green functions decay ex-
ponentially over distances on the order of the mean free
path, in the diffusive approximation j(r;,r¢) may be re-
garded as proportional to 8(r;—rg), and is approximately
translationally invariant in the finite sample, so that it
may be evaluated in momentum space:'°

r6f

J(r3,16)=8( dpa Hp)

xG;,a,(p)GE.(p)G;_a,(p) . (8)
Here d is the dimensionality, and GZ(p)=[e—e(p)
+i/27]"". The integral can be evaluated by the contour
method; using |e —¢’|7<<1 [which is insured by the fac-
tors containing the Fermi functions in Eq. (6)], and
oT << 1, we have to sufficient accuracy
2

%FwNoﬂa(rJ—rﬁ) . ©)
The expression for j(r,,rs) is similar and gives the same
result. F, can now be written as

j(r31r6)=

2¢2DN, |

I lff_m dede' g(g,e';m)

X [ drdrP, . o(r,r')P,_  (r,1),

Fl(w,AB)=2 l

(10)
where we have used v%7/d =D, and defined
gleeho)=LEmfE) flema) /() = gy,

© 1)

To calculate F,, we take the complex conjugate of one
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of the conductances by using the symmetry property of
the Green functions,

[GE(r,r)]*=G ] (r',1). (12)
Since the diffusion ladders must connect Green functions
of opposite analyticity to give a singular correction, the
simplest diagram for F, is that shown in Fig. 1(b). The
current vertex functions j(r;,rs) and j(ry,rs) differ from
those in F; only in the energy arguments of the Green

functions and so are unchanged in our approximation.
The result for F, is

2e DNO

]ff dede'g(e,e';0)

X [ drdr'P,_ (r,f)P_ , (r',1) .

Fz(CO,AB)=

(13)

Note that the frequency does not appear in the diffusion
propagators in F,; this is because the diffuson depends
only on the difference of the energies of the Green-
function lines.

III. APPLICATION TO A MESOSCOPIC RING

We consider an isolated ring of one-dimensional con-
ductor, with radius a, If we choose the gauge
A— A’=AA=(ABr/2)0, where 8 is the azimuthal unit
vector, then Eq. (7) for the diffuson can be written

+fi( “1—iQ) |Py(6,0
D T‘P 1 Q( ) )

=—2 _56-¢ 14
27DNy7 ( o 49

Here, A® is the difference in flux threading the ring, and
@, is the flux quantum s /e. The operator on the left-

hand side has normalized eigenfunctions
@m(0)=(27)"2exp(im@) on the ring; since P(6,6')
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must satisfy periodic boundary conditions on the ring, m
must be an integer. The solution of Eq. (14) is then

(8)py (6')
P,(6,0)=—2 Om O 7" (15)
27DN, 7 4 A, ()
where A, (Q) is the eigenvalue associated with ¢,,,,
Ad 02 —1__ .
A, (Q)= m—TO +—5(¢‘p —iQ). (16)

Substituting into Egs. (10) and (13) and evaluating the in-
tegrals over the ring coordinates, we obtain

F,(w,AB)
2
f f_w dede'g(g,¢';0)

A le

1
X
% Ap@t+e—¢e A, (0—e+e') ’ an

2

e_z ff_w dede'g(e,e’,0)

F,(0,AB)=2

1
X
% Am(e—€ A, (—e+e') ’

where we have taken L =a for the ring.
The sums can be evaluated using the Poisson summa-
tion formula,

S Fm= 3 J7 dx Fxerm, (18)
m=—o p=—o
and by making the variable change x'=x +A® /®, the
flux dependence can be taken out of the integral, leading
directly to the Fourier expansion in the flux of the corre-
lation functions. In this case, the expansion is a cosine
series in the flux, and the coefficient of cosQmp AP /D)
in F, is

dx e 2mipx

F,,(0,AB)=4 f dedeg(s g co)f

® [x2+(a /L (@) ]+

19
[a%(e—¢')/D]? (19)

in which [L ()] =L ?—iw/D, and L,=(D7,)'”?. The expression for the pth component of F, is identical to this
with the exception that L ,(w) is replaced by L ,(0) in the integral over x.
The integrals over the energies can be approximated in the limits w <<kT and w>>kT. In the former case

g(g,e'so)=

(8f /9€) (3f /9€’), and the rest of the integrand depends only on e —¢g'.

Upon changing to average and

difference variables and integrating over the average energy, (3f/d¢) (3f /9¢’') becomes a function strongly peaked
about e —¢'=0, with width of order kT and unit integral. Therefore, for ® <<kT we may approximate F, as

dx e2mipx

Flp(a),AB)z e_3

2 kT o
= d(e—¢'
kT f_kT ETE )f-w [x2+(a /L (0))*])

+[aXe—¢€')/D]? 20)
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The result of the integral over e—eg’ involves an
arctangent which is of order unity for x2<a?kT /D,
which is the range of the main contribution to the x in-
tegral. Setting this factor equal to 1 and evaluating the x
integral by the contour method, we obtain

3 2 .9

62 LTL¢>((‘)) *27rpa/L¢,(w7

- | T e .
h 3

F,(0,AB)=2
a

2
T

2n

We have introduced the temperature diffusion length
L;=(#D /kT)'?, and restored factors of #. The corre-
sponding expression for F,, is again identical except for
the replacement of L (@) by L ,(0).

For w>>kT, g (¢,e';w) is approximately a rectangular
function of width ® and height 1/w, so that on changing
variables in Eq. (19) as before and integrating over the en-
ergy difference from —o to w, we have

3 2.,
e2 La;ch(w) —21rpa/L¢(w)
h ¢ ’

F,(0,AB)=2
a

3 |

(22)

where L =(D /w)'’?. Again, the corresponding expres-
sion for F, is obtained by replacing L (@) by L ,(0).

The meaning of these functions can be seen by expand-
ing the conductances in their real and imaginary parts.
We then find the correlations of the real and the imagi-
nary parts of the conductance,

(RedG (w,B)RedG (w,B +AB))=Re(F,+F,)/2,
(Im8G (©,B)Im8G (w,B +AB))=Re(F,—F,)/2 .

One can also consider the cross correlation
(Re8G Im8G ), which is equal to half the imaginary part
of F. The functions F, and F, are equal at zero frequen-
cy, but the presence of the frequency in the exponential
factor in the oscillatory terms in F; makes the contribu-
tion of F| to the conductance oscillation decay rapidly
for wr; > 1. By contrast, the contribution of F, is nearly
independent of frequency until w > kT /#, and then de-
cays only as (o7, )~ ! in the high-frequency limit because
of the energy-averaging factor g(e,e’;w). Therefore, for
o < kT /% the absolute magnitude of the 4 /e oscillation
(p=1 term) in the ring is nearly frequency independent,
but when o~77 ! some of the oscillation is transferred
from the real part to the imaginary part of the conduc-
tance, so that the oscillation in the real part decreases in
amplitude by 1/V'2, and an oscillation appears in the
imaginary part with an amplitude approaching that in
the real part. The predictions for the h /e amplitude as a
function of frequency are shown in Fig. 2. When
@>>kT /#i, the amplitudes in both parts decay as
(o7, )~ 1/%; this result has also been obtained for the mag-
nitude of the universal conductance fluctuations in a
one-dimensional wire. !!
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FIG. 2. The amplitude of the & /e-periodic conductance os-
cillations in a ring as a function of frequency, calculated from
the diagrams in Fig. 1 for dephasing times 7, which are longer
and shorter than the mean sample transit time 7,. These calcu-
lations assume that w << kT /# for all frequencies shown.

IV. CONCLUSIONS

Because the frequency does not appear in the diffuson
in F,, the frequency dependence of the absolute magni-
tude of mesoscopic conductance fluctuations is only
through energy averaging. On the other hand, the phase
with which the fluctuations enter the complex conduc-
tance is contained in F; and does vary at frequencies of
order 7, '. This reflects the phase delay of the interfer-
ence between diffusive paths having traversal times of or-
der 7,. The delay gives rise to a fluctuating imaginary
part of the conductance at w~7; ! which is comparable
in size to the nonfluctuating imaginary part due to classi-
cal reactive effects at the same frequency in a typical de-
vice [for example, a narrow wire 1 um long with an in-
ductance of order 1 pH, a real resistance of 50 2, and
Qw7 )" of order 1 GHz]. Because the distribution of
traversal times through a device is peaked near 7, it
might have been expected that mesoscopic effects should
decay at frequencies greater than 7 !, independently of
the energy averaging. This idea, however, is not support-
ed by the calculation we have presented. It is possible
that more complicated diagrams may become important
at high frequency and modify the results, or that the mi-
croscopic electric potential in the device may play an
essential role.
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APPENDIX

In this appendix we consider diagrams of the type
shown in Fig. 3, which describe the fluctuations in the
density of states. A typical current vertex in these dia-
grams has the form

Jlryr9)= [drdrip,GF (r,10,6 ., (r3r;)
XG [ (rg,15)G o, (13,14) , (A1)

which can again be evaluated in momentum space to give
the value of Eq. (9), with corrections for finite frequency
only of order w7. These vertices can also be dressed with
additional impurity lines; summing the dressed and un-
dressed diagrams at dc gives a partial cancellation result-
ing in an overall factor® of %, but there are four equal
contributions formed by exchanging r, and rj, or r, and
ry, or both. Since the correction to the vertices at finite
frequency is small, we assume that the numerical factor is
unchanged for ac and obtain contributions to F; and F,,

2e2DN,2 |* . .
F,(0,AB)y= -L—zo— ff_ dede'g(g,e;w)
X fdrdr’[Pa,Jre_e'(r,r')]2 )
(A2)
2¢2DN,7 |* o+ oo
Fy(0,AB)y= —zz—— ff_ dede'g(e,e';0)

derdr’[PE_s.(r,r’)]z.

Again, the diffusion propagators in F, are not frequency
dependent. For w <<kT, the F, diagram is essentially
equal to its dc value, which in one- and two-dimensional
systems at finite temperature is small compared to the di-
agram of Fig. 1(b) at dc.'? On the isolated ring the F, di-
agram can be written in terms of the eigenvalues of the
ring as

2

F,(0,AB)y= ff_w dede'g(e,e';0)

e
77_3

X3 [Aple—e)] 72,

(A3)
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FIG. 3. Diagrams contributing to the correlation functions
(a) F, and (b) F, through fluctuations in the density of states.
An optional impurity dressing of a current vertex is shown.

and for w << kT, its pth component in the flux is

2
2 1 kT
Fylo,8B)y= | =5 | 2o [ dle—e)
© dx e21ripx
X
f—w [x*+(a/L,)—iaXe—¢)/D]?’

(A4)

which is suppressed as exp(—2mpa /Ly) when Ly <<L,,
which is usually satisfied in experiments on metal devices.
Since a finite frequency only increases the range of the en-
ergy averaging in F, for a fixed temperature, the absolute
value of the contribution to the 4 /e oscillation in the ring
will be small compared to that of Fig. 1(b) at all frequen-
cies.
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