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Quasiyeriodic and chaotic self-excited voltage oscillations in T1InTe2
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The electrical behavior of the T1InTe2 ternary semiconductor is studied in the negative-difFerential-

resistance region of its S-type I-V characteristic. Self-excited voltage oscillations in this region, with an

amplitude of about 5 V were monitored at temperatures above 70 K. An analysis of the dynamic
behavior of these oscillations by means of the Grassberger and Proccacia method shows the existence of
two components in the signal, a quasiperiodic component and a chaotic component. Furthermore, this

analysis leads to the estimation of fractal dimensions, minimum embedding dimensions and Kolmogorov
entropies that characterize the two components.

I. INTRODUCTION II. KXPKRIMKNTAL DETAILS

T1InTez is a p-type semiconductor with a fibrous struc-
ture. In +Tez groups form chains extending along the
c axis of the material. These negatively charged chains
are bonded together by Tl+ ions. The resulting tetrago-
nal lattice is characterized by group symmetry Dz-
14/mcm. '

As already reported in a previous paper, T1InTez crys-
tals present interesting nonlinear electrical behavior, such
as, switching effects and a negative-differential-resistance
(NDR) region in their S-type I Vcharacte-ristics. In a
preliminary work, we studied separately the Ohmic and
NDR region. We used Arrhenious diagrams to evaluate
the parameters of the acceptor levels that regulate the
electrical conductivity in the linear region. The energy
positions of the acceptor levels were found to be at 0.41
and 0.030 eV above the top of the valence band with con-
centrations 4X10' and 1 X 10' cm, respectively.

To interpret the current-controlled negative-
differential-resistance (CCNDR) region that appears at
moderate and high current densities, a dominating elec-
trothermal process was taken into account. The effect
that strongly corrobor ates this interpretation is the
strong elevation of the temperature of the sample and its
distribution along the I-V characteristics. The electro-
thermal model used to describe qualitatively and quanti-
tatively these data can well account both for the absolute
values of the temperature of the sample for each current
value, as well as for the dependence of the threshold volt-
age V,h, at which the initiation of the NDR region
occurs, on the ambient temperature.

In the NDR region of these characteristics, self-excited
oscillations of the voltage were also observed. In the
present paper, we report on the dynamic behavior of
these oscillations. Our purpose is to establish the princi-
pally chaotic nature of the effects that dominate the
NDR region of the I-V characteristic of T1InTez single
crystals. We also present a quantitative analysis and pro-
duce values for characteristic parameters that govern the
chaotic effects in this semiconductor system. The results
will be discussed in the context of effects observed in
similar and other semiconductor materials.

Semiconducting T1InTez samples used in our electrical
measurements were cleaved from crystals grown by direct
melting of pure stoichiometric amounts of their constitu-
ent elements.

The samples were rectangularly shaped with parallel
faces and dimensions of the order 10X1X1 mm . In,
Au, and Ag were found to form Ohmic contacts of low
resistance with T1InTez. This was proved by the four-
contact method, by successive resistivity measurements
on samples of different thicknesses, as well as by photo-
conductivity measurements. In the present work, eva-
porated In stripes were used as contacts. The current-
providing contacts were applied on the ends of the rec-
tangular samples and oriented so that the current flowed
along the c axis of the material. A current source (model
225 by Keithley Instruments) was used to control the
current in the measurement of the S-type I-V characteris-
tics. The corresponding voltage drop was registered and
measured by a Keithley voltmeter (610A). Low-
frequency voltage oscillations that appear in the NDR re-
gion of the I- V characteristics were monitored by an X-F
recorder. In the high-frequency range a storage oscillo-
scope was used. The samples were mounted on the
copper cold finger of a liquid-helium cryostat that en-
abled electrical measurements down to 10 K. An ap-
propriate feedthrough was used to allow the electrical
wiring inside the cryostat. A copper cup was used to
minimize thermal losses and to electrically shield the
specimens. All measurements were performed in a vacu-
um below 10 Torr. Coaxial cables were used in the cir-
cuitry in order to avoid the influence of external noise.
With all these precautions noise was restricted to a level
below 0.1%%uo.

III. ANALYSIS OF THE VOLTAGE QSCILLATIONS

A.. Characterization of the attractor

In Fig. 1, a representative current-voltage characteris-
tic is shown, registered on a sample of T1InTez, at an am-

bient temperature of 77 K. Voltage oscillations were ob-
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FIG. 1. A representative current-voltage (I-V) characteristic
as registered on TlInTe2, at an ambient temperature 77 K.

served in the NDR region, both just after exceeding the
threshold value, I,h, as well as at higher values. I,h is the
current value that corresponds to the initiation of the
NDR region. In the region of oscillations, voltage values
of the I-V curve were obtained by averaging over long-
time intervals. A representative example of such a signal
is shown in Fig. 2(a). This wave form was monitored for
a current value I=1.15 mA, in the NDR region of the
I-V characteristic shown in Fig. 1. Figures 2(b) and 2(c)
show the enlargement of two different regions a, b of the
signal of Fig. 2(a). In Fig. 3, the power spectrum of the
whole signal shown in Fig. 2(a) is presented. Similar re-
sults were obtained from the time series of Figs. 2(b) and
2(c). The spectrum of Fig. 3 consists of pronounced fre-
quency lines, like those indicated by arrows and a broad-
band background, where the lack of pronounced frequen-
cies is evident. This broadband background is not due to
white noise, which lies at a level lower than 0.01 V, in
Fig. 3, as already mentioned in Sec. II. The form of the
power spectrum is indicative of the nonperiodic nature of
the signal of Fig. 2(a). This is consistent with the
behavior of the nonperiodic trajectories in the phase por-
trait of Fig. 4. They seem to lie within the basin of a
seemingly uniform attractor. Phase portraits obtained
for the signals of Figs. 2(b) and 2(c) are very similar to
that of Fig. 4.

Qualitatively, the phase portrait of Fig. 4 can be con-
sidered as consisting of rather quasiperiodic components,
highly dispersed by other, chaotic components. For a
quantitative study of the signal of Fig 2(a), we a.pplied
the well-known method, proposed by Grassberger and
Procaccia. ' According to Takens theorem, we used the
digitized form of the signal shown in Fig. 2(a), in order to
reconstruct the original phase space, where the attractor
characterizing the system is properly embedded. We cal-
culated the correlation integral C (2, l), which is defined
by the following formula:
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FIG. 2. (a) Typical voltage oscillations as monitored in the
NDR region of the curve presented in Fig. 1, for a fixed current
value I=1.15 mA. (b) and (c) Enlargements of the regions a
and b of the signal in (a).
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In the above equation, N is the number of the experimen-
tal points, X; is a point in the m-dimensional phase space
with X;= [ U(t;), U(t;+r), . . . , U[t;+(rn —1)r]J, r is
the time delay parameter, and e is a step function (Heav-
iside function) that simply counts the points in the phase
space with mutual distances less than l. The proper value
of ~ can be chosen using the autocorrelation function of
the measured time series. ' '" The numerical determina-
tion of the correlation integral is based on the box count-

g p; =C (2, 1)

= lim (1/N~)
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FIG. 3. Power spectrum of the total signal shown in Fig. 2(a).
Power spectra of the signals of Figs. 2(b) and 2(c) look very
similar to it.
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FIG. 4. The phase portrait of the total signal, shown in Fig.
2(a) ~

ing method. Applying the above expression for r= 1 (in
units of sampling rate), we have calculated the correla-
tion integral as a function of l for different embedding di-
mensions m, Fig. 5. The slope of the linear parts of these
double-logarithmic plots provides information about the
nature of the attractor.

As it is evident from the curves of Fig. 5, their lower
regions consist of two linear parts, with quite different
slopes v& and vz. These parts become parallel and
equispaced at higher m values. In the first group of these
linear segments, which appear at intermediate / values,

the correlation integral is proportional to I '.
v& ap-

proaches the asymptotic value 1.08, as m ~ ao, Fig. 6(a).
On the other hand, in the second group of the linear

segments, which appears at low / values, the correlation
integral is proportional to 1 . From Fig. 6(b) it is obvi-
ous that v2 is not proportional to m (i.e., the signal is not
a random one), but seems to saturate at the value 2.86.
This value is much higher than v, and confirms the
different behavior of the signal component, from which
this part arises.

One has to point out that v& saturates already at low m

values, i.e., v& already approaches its asymptotic value by

B. Introduction of generalized dimensions

The method of Grassberger and Procaccia, as present-
ed in the previous paragraph, provides reliable results,
only in the case of rather uniform attractors. To check
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809o, for m=2 [Fig. 6(a)]. This means, that this com-
ponent needs only a two-dimensional phase space for its
appropriate embedding, as expected. On the contrary, v2

seems to saturate at higher m values. In this case, this
component needs a high-dimensional phase space for its
appropriate embedding, as expected.

The Grassberger and Procaccia method leads to the es-
timation of the Kolmogorov entropy K2, a measure of
the information loss of the system. C(l) scales with Kz
according to an exponential law' of the form—m ~K2C(l)-e . With increasing m, Kz decreases mono-
tonously, tending to zero in the case of the component
with slope v, . This behavior is shown in Fig. 7 (curve a)
and is evidence for a quasiperiodic signal component. In
the case of the component with slope v2, I(:2 tends to the
asymptotic value 1 bits/r (Fig. 7, curve b), which is posi-
tive and finite, a consistent evidence for the existence of a
chaotic attractor, governing the motion of this com-
ponent in the phase space.
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FIG. 5. The correlation integral C (2, 1) vs l, with the
embedding dimension m as a parameter, obtained with a delay
time ~= 1 (units of sampling rate).

FIG. 6. (a) The slope vl of the upper linear parts of the curves
in Fig. 5 vs the embedding dimension m. For high values of m

the curve saturates at the value v=1.08. (b) The slope v2 of the
lower linear parts of the curves in Fig. 5 vs the embedding di-

mension m. Note that with increasing m, the curve clearly devi-

ates from the proportionality to m, tending to an asymptotic
value higher than 2.86.
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FIG. 7. The EC2 entropy plotted as a function of m for the

upper and lower linear segments of the curves of Fig. 5, curves a
and b, respectively. (Curve a) For high values of m this curve
tends to E2 =0. (Curve b) For high values of m this curve tends
to E2 =1 bits/~.

C (m, l)=gp, "r,

The correlation integral C (l},measures the probabili-
ty of finding q points of the attractor in the m-
dimensional phase space, at a distance smaller than l. ' '
The D 's measure correlations between different points
on the attractor and are, therefore, useful in characteriz-
ing its inhomogeneous static structure. For q =0, we ob-
tain Do, which is the ordinary fractal dimension of the at-
tractor (Hausdorff dimension}, for q = I we obtain the in-
formation dimension D

&
and for q =2 the correlation di-

mension D2. ' Using the last two relations we have cal-
culated Do and D &. These values are very close to D2, as
it was calculated applying the Grassberger-Procaccia
method, a fact providing evidence that the attractor can
be considered to be approximately homogeneous for these

q values.

IV. DISCUSSION

In the present paper, we studied the nonlinear behavior
of TlInTe2 semiconductor crystals and evaluated the ob-

the homogeneity of the attractor we have introduced the
generalized dimensions D .' The generalized dimensions
D are related to the generalized correlation integral
Cz(l } through the expression

D~ = —lim [I/(q —1)][lnC~(1)/In/],
1~0

where

served nonperiodic oscillations by means of. a well-
established procedure. The obtained results strongly sup-
port the idea that, the initial experimental signal consists
simultaneously of a quasiperiodic and a chaotic com-
ponent.

The two components, quasiperiodic and chaotic, are
present throughout the whole NDR region, i.e., for every
value of the control parameter I. Changing the current I,
the contribution of each component in the total signal
varies. At low current values the signal is dominated by
the quasiperiodic contribution, awhile at higher values, the
chaotic component is dominant.

In the literature, double-logarithmic plots of C (2, l)
as a function of I showing two distinct linear parts, are
usually correlated with the simultaneous existence of two
signals, one of deterministic chaotic origin and one due to
external white noise. In such cases, ' ' the upper linear
part comes from the chaotic signal, while the lower one is
due to white noise. The main feature of the part arising
from the noise is that its slope does not tend to an asymp-
totic finite value with increasing m, but it also increases,
tending to infinity. Such a part with slope monotonously
increasing with m is not present in the curves of Fig. 5,
corroborating that the noise level present in the measure-
ments was low. Thus, a decisive factor for the
classification of the linear parts of the curves of Fig. 5,
was that their slopes tend to finite asymptotic values.
Similar results, i.e., double logarithmic plots of C (2, 1)
as a function of I consisting of two distinct linear parts
with different slopes are reported also for the system
studied in Ref. 20. According to Ruelle ' this is expected
for a system with two noninteracting attractors of
different amplitudes.

To the best knowledge of the present authors this is
one of very few papers on the appearance of self-excited
oscillations in a bulk semiconductor at temperatures
higher than 10 K. It should be stressed that the crystal
presented in this work shows the same, though less pro-
nounced, dynamic behavior up to room temperature. Re-
ports on the appearance of chaotic effects at temperatures
lour than 10 K can be found in Refs. 22 and 23. These
authors present dynamic behavior observed in Ge and
GaAs semiconductors. The mechanism responsible for
their effects is impact ionization, triggered at very low
temperatures.

On the other hand, high temperature, self-excited dy-
namic behavior, similar to the one reported in the present
paper, has also been observed in the related chainlike
semiconductor TlGa Te2. In general, electrothermal
current filamentation can account for the dynamics ob-
served in this later kind of semiconductor materials.
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