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The paper deals with optical second-harmonic generation in a medium absorbing the second-harmonic
radiation, and where phase matching between the fundamental and second-harmonic radiation is not
necessarily achieved. We first take the waves to be in the form of traveling waves, and describe the
damping of the fundamental beam due to harmonic creation. It is found that both second-harmonic ab-

sorption and phase mismatch enhance the depletion length of the pump wave. Before depletion, the
second-harmonic output power is independent of the traversed thickness if it exceeds the second-
harmonic attenuation length. When depletion occurs, the second-harmonic output power is constant, in-

stead of quadratic, in the input power. Next, second-harmonic generation in a plane-parallel plate of los-

sy material is envisaged in the case of normal incidence, including the multiple reflections expected in

high-reflectance materials. The expressions of the harmonic output intensity, transmitted or reflected, of
this paper and from the conventional treatment, are compared. The deviation is noticeable in the case of
the transmitted harmonic power, and may be considerable in the case of the reflected power. Last, mea-

surements of the second-harmonic output intensity in GaSe and InSe are reported at a fundamental

wavelength of 1.06 p,m. The sample dependence is in good agreement with our theory, which in turn is

applied to derive new values of the nonlinear optical susceptibilities in the layered-structured III-VI ma-

terials. The treatment is fully analytical and may be applied to a wealth of materials.

I. IIVTRODUCI iON

The layered-structured III-VI compounds GaSe and
InSe have attracted much attention because of their very
high nonlinear optical coefficients in the infrared (IR)
range, making them candidates for second-harmonic (SH)
generation. ' In performing power measurements of
the SH radiation generated in thin layers of both materi-
als with a fundamental wavelength of 1.06 p,m, we found
that the transmitted SH power was not very different be-
tween both selenides. Since the reported nonlinear sus-
ceptibility of GaSe is about fourfold that of InSe, and
since SH absorption at 0.53 pm is higher in the latter ma-
terial owing to its smaller band gap, the expected ratio in
SH generation is expected to be at least 16 in favor of
GaSe. This called for a closer examination of harmonic
generation in such materials. The conventional treat-
ment of SH generation is restricted to the case of nonab-
sorbing media, or to the rarely relevant case of identical
IR and SH absorption. Furthermore, phase matching
between the fundamental and SH radiation is often as-
sumed. In GaSe and InSe, none of those simplifications
can be made ' for a fundamental wavelength of 1.06 pm:
(i) the second-harmonic photon energy is higher than the
band gap, so that SH and not IR is absorbed; and (ii) no
phase matching at 1.06 pm was achieved so far. Since
other materials of physical or technological significance
share one or both features, a general treatment of har-
monic generation including SH absorption and phase
mismatch is highly desirable. This is the purpose of the

present paper, which is structured as follows. Section II
is devoted to the generation of SH radiation due to a
traveling IR wave in the presence of SH absorption and
phase mismatch, including the depletion of the pump
wave. The approach is analytical and outlines the
relevant length scales associated with various possible
behaviors (the detailed calculations are given in Appen-
dix A). The results are applied to our materials. Section
III considers SH generation in a plane-parallel plate of
lossy material, including the multiple IR and SH
reflections expected in high-reflectance materials (details
in Appendix B). The expressions for the SH output in-
tensity obtained in Secs. II and III and in previous studies
are compared in Sec. IV, and experimental values of the
second-order optical susceptibilities of GaSe and InSe are
derived. Section V sketches the conclusions.

II. DAMPED SECOND-HARMONIC GENERATION

A. The propagation equations and the ideal case

The propagation equations for collinear sinsoidal
waves at co and 2', coupled by a nonlinear polarization
that is proportional to the square of the field, were first
obtained by Armstrong et a/. in the general form of
sum-frequency conversion. Their application to SH gen-
eration (co+co~2co} has been reviewed by Craxton. '

For the sake of clarity, we shall briefly recall the steps in-
volved. If the harmonic electric field is written in the
form Ez„(z}exp(2icot), where z denotes the propagation
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[d /dz +(k2 i—P) ]E2 = 2—poco d'E2, (la)

coordinate, the spatial part Ez (z) is the solution of an
inhomogeneous differential equation:

plitudes with z is small enough that

k idA /dzl»ld'A /dz'I

)(k2 —ip)dA, /dz(»(d A2 idz
(

.

(4a)

(4b)

[d /dz +k ]E = —poro d'E "Ei (lb)

where the right-hand side describes the coupling with the
SH wave, and k =n„(co/c) and n„, respectively, stand
for the wave vector and the refraction index at co. Since
the magnitude of the harmonic wave is of order E at
low E„, the right-hand side is often dropped at low

power, so that the fundamental wave propagates unper-
turbed by SH generation. We shall not do so in this sec-
tion. In what follows, the electric fields at co and 2' are
taken to be in the form of traveling plane waves along in-
creasing z, so that complex amplitudes A„„(z) may be
defined from the E„„(z)'sby extracting the usual travel-

ing part:

E„(z)=n '~ A (z)exp( ik z—),
E,~(z)=ii,„' 'A, (z)exp( —~'k, ~z —Pz) .

(2a}

(2b)

In Eq. (2b) the traveling term includes the SH attenuation
factor. The reason for including this factor lies in the
simplicity of the equations obeyed by the amplitudes A„
so defined. The prefactors in Eqs. (2a) and (2b) are such
that the Poynting vectors at z may be written

P (z)=( —,')s c~A„(z)~

P2 (z)=( —,')each A2 (z)~ exp( —2Pz) .

(3a)

(3b)

The nonlinear medium is located at 0&z &d. An in-
cident wave at co comes from vacuum (z &0), so that
P (0) (henceforth denoted as P ) defines A (0) (real),
while A2 (0)=0. By P2 we shall denote P2 (d), which
will be called the SH output power density.

Next, we make the approximation of slowly varying
amplitudes; that is, the variation of the complex field am-

where the source term (right-hand side) originates from
the nonlinear polarization, and involves the spatial part
of the electric field at co, E (z), and d' is a component of
the (real) nonlinear susceptibility tensor in the coordinate
system used to describe the propagation. We use mks
units such that d '/so is in m/V. In Eq. ( la),
k2 =n~ (2'/e), nz, and P, respectively, are the wave

vector, (real) refraction index, and attenuation coefficient
at 2~ (P is half the energy absorption coefficient). Con-
versely, E (z) is governed by a differential equation:

d A /dz = i a—A ' A 2 exp( —Az ),
d A z /dz = i ~ A—„exp( Az ),

(Sa)

(Sb)

where A=P+iAk, and b,k=k2„—2k is the phase
mismatch; the coherence length is defined as I/hk. We
have recovered Eqs. (A9) and (A10} of Ref. 10. The
coefficient ~ is related to the nonlinear susceptibility d'
through'

a= (n'n )
'"CO

d'
N 2Q)

0

Table I lists the material parameters' ' for GaSe and
InSe. The linear coefficients have been obtained by our
group, ' and the nonlinear susceptibilities are taken from
Akhundov et al. ' We call ~A~ '=(P +6k )

' the
"attenuation-coherence length, " which is of the order of
the smaller of the coherence length Ak ' and the at-
tenuation length P '. A=O will be referred to as the
ideal case, which has already received solution. The pic-
ture obtained in the ideal case may be described either in
terms of length (at constant incoming power) or power (at
constant traversed thickness). There appears a charac-
teristic length 1,

I =lr '(2P„/soc)

over which the fundamental wave is converted into SH.
For sample thickness d » l, the input power at co is en-

tirely converted into SH. The conversion is complete due
to phase matching, and lossless due to a lack of absorp-
tion. Increasing the input power density P„shrinks the
typical conversion length I as (P ) '~: for a high enough
input power, I becomes «d and all IR light is converted
into SH. Now in terms of power at constant d, the
P2 (P ) relationship begins quadratically and saturates
to the asymptotic law P2„=P:

P2 =P„[tanh[~d(2P /soc) '
] I

If P & k2, the second condition entails

k2 ~d [ A z exp( —Pz) ]/dz
~

»~d [A2„exp( —Pz)]/dz ~
. (4c)

After that change of variables and this approximation
have been made, for P « k~ we obtain

TABLE I. Material parameters (fundamental wavelength in vacuum =1.06 pm). The linear con-
stants have been measured by our group (Refs. 7 and 8); the nonlinear coefficient is taken from Ref. 1,
with d'/co=5. 6X10 ' m/V for KDP.

GaSe
InSe

Refraction
index at co

2.800
2.788

Refraction
index at 2'

3.068
3.210

Coherence
length

1/Ak (pm)

0.315
0.200

Attenuation
length

P ' (pm)

10
2

Relative
attenuation

Plk,

2.7X10 '
1.3X10 '

Nonlinear
coefficient

v (V ')

2.32 X 10-'
0.505 X 10
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The highest powers investigated in Ref. 4 (P„—10
W/cm ) yield l of the order of sample thickness d, so that
an exact calculation including the nonideal efFects (SH
absorption, phase mismatch) is necessary

gives a differential equation on the sole function A „:
dA /dz= —(a /A)A*[A„(z) —A (0)exp( —Az)],

B. The nonideal case

Now, what mill happen in the nonideal case& Both
phase mismatch and absorption tend to lengthen the
characteristic scale over which the fundamental wave will
be converted into SH radiation. First, part of the energy
at 2' is sent back to the fundamental mode due to
mismatch. Second, the 2' wave is damped, which de-
creases the energy exchange between both modes.
Hence, if the effects of mismatch and absorption take
place over a characteristic length ~A~

' shorter than the
ideal IR-SH conversion length l (Table II), we can expect
the damping of the fundamental wave to occur over very
large lengths for nonzero A, thereby allowing us to in-
tegrate Eq. (Sb) by parts while neglecting d A „/dz:

L =(iAi /2P)l =[sac/(4P a )]{hkz+P )/l3, (12)

instead of one length, the typical IR-SH conversion scale
l, in the ideal case. Note that L depends on the input
power density as P„' Beca.use l » ~A~ ', we have the
following chain of inequalities (see Table II):

which can be solved by separate examination of the
modulus and phase of A (z). The detailed calculation of
A„(z) and A z„(z) can be found in Appendix A, and here
we just sketch the main results, emphasizing the role of
length scales.

(i) The amplitude ~A (z)~ of the fundamental is now
governed by turbo characteristic lengths, namely

~
A

~

' and
L,

A z„(z)= ( i@/—A )[ A (z)exp(Az) —A „(0)], (9a)

„P(&-,' ) eloAcI zii' 2, (10)

breaks down for a huge incoming power.
In the case where l »~A~ ', injecting (9a) into (5a)

TABLE II. The relevant length scales at P„=10'
Wgcm' (1-P.-'",L -P.-').

GaSe
InSe

Attenuation-
coherence
length ~A~

(pm)

0.315
0.199

Ideal conversion
length 1(P„)

(pm)

49.6
228

Nonideal
damping length

L(P„) (cm)

12.4
131

or, equivalently,

A2 (z)exp( —Pz) =( i~/A—)[ A „(z)exp(ihkz)

—A „(0)exp( —Pz) ), (9b)

taking as initial conditions A„(0) real, and Az„(0)=0.
In (9b) the real exponential quickly decays for z »P

The first term on the right-hand side of (9b) decreases as
the square modulus of the co wave, i.e., on distances of l
(in the ideal case) or more (in the nonideal one), very
slowly compared to the phase term exp(ihkz), which
varies over the much shorter coherence length 1/hk. In
this paper, we consider the case where l is longer than the
attenuation-coherence length ~A~ . If this condition [al-
lowing the writing of (9)] is not fulfilled, it means that the
fundamental could be converted into second-harmonic
radiation before absorption and phase mismatch have ap-
preciable sects. This is highly unrealistic given our ma-
terial parameters, with ~A~

' around the pm. Further-
more, the amplitude A „would then vary over such short
scales that neither the integration by parts leading to (9)
nor the approximation of slowly varying amplitudes
would be valid. Practically speaking, the condition
I & [Af ', viz.

For fixed P„and finite b,k, L increases as P~O: for low
SH absorption, there is hardly any decay of the pump
wave. For fixed P„and hk =0, the depletion length of
the co wave in the presence of SH absorption L =Pl /2 is
longer than the ideal one, since Pl »1: this apparently
counterintuitive result is due to the fact that the weaken-
ing of the 2' wave over a length P ' « l lowers the rate
of (coherent) SH creation. Finally, we note that the in-
tegration by parts yielding (9) is justified, since

(ii) Near z =0, the second-harmonic amplitude
( Az (z)( varies as (1—e '~: it is pseudoperiodic, the os-
cillations being damped for z »P '. Thereafter ( Az„(z) ~

is fiat as long as z stays between P ' and L. At last, for
z &L,

~ A2„(z)~ smoothly decreases as (1+z/L) ', corre-
sponding to the damping of the fundamental wave.
Where P ' «z «L, the harmonic wave is continuously
absorbed, but at the same time continuously regenerated
by the co wave, which eventually dies for z »L. The op-
timum thickness for SH generation lies between
z=n/2b, k and mid, k, accordingly, as P» or «b, k,
after which the output power reaches a stable value
within some attenuation lengths. Figure 1 gives a graphi-
cal representation of ~Az„(z)~ . The behavior of the
phases of functions A„and Az„ is described in Appendix
functions 3 and A2„ is described in Appendix A.

Nom what is the SH output power density P2 when
the incoming power density P„and the thickness d are
varied? First, keeping P„ fixed, we vary d. For d &(L,
P2 varies quadratically in P, and for d &&L, P2 be-
comes independent of the input power. Second, keeping
d Sxed, we vary P„. As long as L -P„' remains larger
than d, then (1+4/L) = 1, and Pi varies as P:
Pi„=[a /{b,k +P )](2P„/eoc) (d »P '), {13a)

which is to be multiplied by ~1
—exp( —Ad)~ if d is of the

order of P '. At high enough input power, L &d, and
P2„varies subquadratically in P and eventually becomes
constant:
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FIG. 1. Calculated output power at 2' in

the case of pure traveling waves, as a function
of the traversed thickness d, in logarithmic
scales. For d «L, P,„=P0 given by Eq. (13a);
for d»L, Pz -d is given by Eq. (13b).
The oscillations in the growth of P& for very
small thicknesses (Pd & 1) have been drawn in
the inset (with InSe parameters): for Pd »1,
P2„=PO.

0.1 L 10L cI

P2„=(—,')sac iAi l(2aPd) (13b)
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whatever the input power. Figure 2 displays the cross-
over between both behaviors, taking GaSe as an example.
This is in contrast to the ideal case (A =0), where at low
power Pz„-P„and at high enough power P2„=P . For
convenience the ideal SH response is also displayed in
Fig. 2.

In the case of GaSe and InSe, the characteristic length
L beyond which SH generation is subquadratic is very
large in spite of the high nonlinear coefficients ~. There-
fore we may consider that (i} the SH output power is al-
ways quadratic in input IR power, and (ii) the fundamen-
tal wave is undamped in the practical range of
thicknesses available. Most of the markedly nonideal ma-
terials will in fact keep in the quadratic regime. In that
regime for thick enough layers (d ))p ') the reduction
in output power compared to the ideal case is equivalent

to replacing d by ~A~
' in Eq. (8}. Hence as far as har-

monic conversion efficiency is concerned, a nonideal ma-
terial is equivalent to an ideal material having the same
nonlinear coefficient ~ with a thickness equal to the
attenuation-coherence length.

III. THE PLANK-PARALLEL PLATE

[d Idz +(k~ ip) ]E2 —= 2IJ,oco d'E„(z)— (14)

Section II has shown that in the practical ranges of
power and thickness, the damping of the fundamental
wave could be neglected. Then the output harmonic
power is quadratic in IR power and given by Eq. (13a).
The calculation has been done in the slowly varying am-
plitude approximation, and with the assumption of for-
ward traveling waves at co and 2'. In this section we
shall lift those two restrictions. This is needed since (i)
our selenide samples are plane-parallel plates of high
reflectance both at c0 and 2' (Table I}, leading to non-
negligible standing-wave ratios; and (ii) in InSe the at-
tenuation length is of the order of the wavelength in the

11medium. The treatment of Bloembergen and Pershan
was limited to a low reflectance at co. We will therefore
return to the general propagation equation (la) governing
the spatial part E2„(z) of the electric field at 2', that we
rewrite here for convenience:

—2-
-4

4 5 6 7 8 9 1Q 11 12 13 14 15
~o }0P (W/Crn )

According to Sec. II, E (z) is negligibly affected by SH
generation, and can be derived from the linear propaga-
tion theory. Consequently for E (z) we take a superposi-
tion of forward- and backward-traveling waves:

FIG. 2. Calculated output SH power density P2 vs input
power density P, with thickness d as a parameter; the scales
are logarithmic. The solid lines show the nonideal case, and the
dashed lines the ideal case (4=0), with GaSe parameters (Table
I) ~ The upper power limit for the treatment of Sec. II to be val-

id, corresponding to I = ~A~ ', has been indicated by an arrow
on the incident power axis. Note that for short thicknesses
(Pd & 1), the prefactor ~1

—e
~

deviates from its asymptotic
value (unity) and varies between 0 and 4.

E (z) =ED I exp( ik„z )+r exp[ik„(—z —d) ]I, (15)

2E;„/(n + 1)

1 —R exp( 2ik d)— (16a)

where Eo is related to the incident wave Geld E;„at co in
vacuum arriving from the left at z =0 through the well-
known Fresnel formulas:
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r=R„' exp( —ik„d), R„=[(n„—1)/(n„+1)]z,
(16b)

where d is the plate thickness, which occupies the space
0&z (d, and R denotes the energy reflection coeScient
at co. Absorption of the fundamental wave (not con-

sidered here} would not alter the treatment, and a nega-
tive imaginary part would just be added to k in Eqs. (15)
and (16).

When expression (15) is substituted into Eq. (14), solv-

ing for (14} is straightforward. The right-hand side of
(14) gives rise to a forced harmonic wave:

exp( —2ik z)+ r exp[2ik (z —d) ] 2r exp( ik—d)

(kz„iP—) (2k—) (kz iP—)
(17)

The wave is forced in the sense that its wave vector 2k is determined by the source wave at co. In (17) there are two
traveling waves (along +z and —z} and a constant term. In the case of weak loss (p«kz„}, a resonance appears for
kz =2k„, i.e., when the forced wave vector 2k is matched to the free wave vector kz„. The response E~ at reso-
nance is limited only by the losses at 2'. In the absence of any linear loss (that is, p=O}, a particular solution of Eq.
(14) for kz„=2k„ is

Ez„(z)= 2@~ d—'E
p (z [exp( —ik&„z)—r exp[ik& (z —d ) ] ] 4ir—exp( ik d—}/kz„) .

2'

Ez„(z)=E,„,exp[ 2ico(z ——d)/c] (z & d),
Ez„(z)=E,'„,exp(2i z/coc) (z &0) .

(20a)

(20b)

The wave (20a) propagating along +z is usually called
the harmonic transmitted wave, while the wave (20b)
traveling along —z is the so-called harmonic reflected
wave. The need to satisfy two continuity conditions
(electric and magnetic) calls for the presence of a free
wave at 2' inside the plate of the form (19).

In Ref. 11 those conditions were expressed for arbi-
trary incidence of the pump beam, but the reflectance at

As
~
r

~
& 1, this is essentially a forward-traveling wave

whose amplitude grows with z: we recover the usual case5
of coherent (i.e., phase matched), lossless SH generation.
It turns out that the standing-wave ratio of the SH wave
equals that of the fundamental wave, as follows from in-
dex matching at co and 2'. In what follows this case is
discarded.

To the particular solution (17) of Eq. (14) we may add
any solution of the homogeneous equation, that is, free
waves propagating with the free wave vector kz„and at-
tenuated over a length p

b+ exp[ (ikz„z—+P)z]+b exp[(ikz„+P)(z —d) ] .

(19)

The signification of the free waves is clear" if one notices
that the constants b+ and b are determined by the
boundary conditions at z=0 and d. At the boundaries,
the harmonic wave gives rise to SH radiation in vacuum:

r7z„=n z iP', P—' =Pc/2', (21)

the forward-traveling (transmitted) field at 2' in vacuum
is given by

[2E;„exp( ik„d)/(n„+ 1)—]
2sp [1—R„exp( —2ik d)] (r7z +1)

X. 5& (1+R„)+n (1—R ) 2R '

2 2
$2~ Pl ~

(22a)

The reflected field at 2' is given by a similar expression:

co was supposed to be small (r =0}. Then the SH electric
fields in vacuum for transmission (E,„,) and reflection

(E,'„, ) were expressed as functions of the nonlinear
source term. Those formulas were used in various deter-
minations of nonlinear coefficients in lossy materials. In
our materials the indices are high, making the
simplification of small reflectance unacceptable, so we
embark on a general calculation for arbitrary r. The cal-
culation is detailed in Appendix 8, taking the attenuation
length to be «d. This is the interesting case in view of
our material parameters (Table I). The opposite case
(Pd & 1) yields very complicated expressions.

Introducing the complex optical index at 2', of which
the imaginary part p' is minus the relative attenuation
coefficient (attenuation over the reduced SH wavelength
in vacuum):

~l
out

[2E;„exp( ik„d) /(n „+1—) ]
2ep [1—R„exp( —2ik„d)] (Nz +1)

17'„[1+R„exp( 4ik„d)] n[1——R„—exp( 4ik„d)] 2R„'—~ exp( —2ik d)
IW I

S2 7l~
2 2

2co

(22b)
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Expressions (22a} and (22b) are valid for Pd »1. The limiting case of pure traveling waves treated in Sec. II may be
obtained from the present expression for the transmitted field by taking nz ——1 and n =1, corresponding to small

reflectances, together with a not too high attenuation coefficient at 2' (i.e., P & 1) owing to the slowly varying ampli-
tude approximation made in Sec. II. In other words, Eq. (22a) yields the result of Sec. II if we let the complex indices at
co and 2m tend toward unity. The quantitative comparison between the transmitted SH powers in our materials given

by various treatments is the subject of Sec. IV.
The modulus of each outgoing harmonic field is modulated according to the plate thickness, reminiscent of the

standing-wave ratio of the fundamental wave. The modulation depth is an increasing function of the reflection
coefficient R . The square modulus of each outgoing field is proportional to

2R
f(d)= (1+R ) 1 — cos(2k d)

1+R„
E

' —2

(23a)

That thickness-dependent factor is to be replaced by an average value if thickness fluctuations exceed the fundamental
wavelength. The average value of (23a} involves an elliptic integral of which a limited expansion is

2R
(f ) =(1+R ) 1+(—,')

1+R

'2 42R„+(15) +
1+R

(23b)

nz„(1+R )+n„(1—R„) 2R „'

P2 =(2P /Eoc)(d'/so) f(d)[2/(n +1)] z 2
+

4 n2„+1 n2 n~

P'z =(2P /eoc)(d'/so) f (d)[2/(n„+1)] 4 '!n2 +1!
nz [1+R exp( 4ik„d—)] n[1——R„exp( 4ik—„d)] 2R' exp( 2ik —d)

~ 2 2
Pl 2~ n 2'

That expansion is sufficient even in our highly reflective materials.
The transmitted and reflected SH power densities P2„and P2, respectively, are

2 2

(24a)

(24b)

where f (d) is given by (23).

Pz =(2P /eoc)(d'/so) P, (25)

so that they differ in the dimensionless factor P contain-
ing the complex refraction indices. The treatment of Sec.
II [Eq. (13)]yields

P=[16n n~„[(n2 n) +P' ]]—
while that of Sec. III [Eq. (24a)] has a P:

(26)

2

n +1 4ln,.+11'

n2 (1+R„)+n (1—R ) 2R'~
-2 2
n2 n n2

(27)

IV. DISCUSSION

A. Comparison between theories

This subsection is devoted to comparing the expres-
sions for the SH output power density obtained in this
paper [Eqs. (13) and (24a)], together with the expression
of Bloembergen and Pershan. " Section IV B describes
the experimental behavior of the SH output power in
GaSe and InSe, and this is applied to the practical deter-
mination of d' in our materials, which so far' referred
to Bloembergen and Pershan's treatment. "

To compare the various theoretical expressions for the
density of SH output power we write them on the pat-
tern,

Equations (26) and (27) coincide when both complex re-
fraction indices approach unity: the asymptotic expres-
sion for P is then

P-[16[(n2 n) +P' ]]— (28)

That limiting case corresponds to approximate phase
matching and vanishing SH loss per unit length over a
very thick plate, since d »P . Equation (28} provides
an easy way to check the results given by different frame-
works.

In the thickness range where the fundamental wave is
not depleted, and for d »P ', the difFerence between
Secs. II and III is twofold: (i) the assumption of slowly
varying amplitudes is not used in Sec. III; and (ii) exact
boundary conditions at co and 2' are used in Sec. III,
thereby accounting for the internal reflections occurring
in a plane-parallel plate. Table I shows that the approxi-
mation of slowly varying amplitude is good in GaSe at
1.06 pm, while it might be questioned in InSe in regard of
its violent attenuation. As a matter of fact the approxi-
mation of slowly varying amplitudes consists in dropping
the P' term in the resonant denominator of Eqs. (22a)
and (22b). In view of the smallness of P'/n2 (see Table
I), the error introduced by that approximation is
insignificant in either material. Hence the practical
difference between the two treatments is essentially due
to the boundary conditions.

The difference associated with the boundary conditions
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2E;„/W2
E „,= —4m'

n +1
8'2„+2i72„+n „

(R2„+1) nz„n„—
(29)

Equation (29) is written in the cgs-esu system. Note that
I

in (26) and (27} is twofold. The most obvious one lies in
the Fresnel relationship (16) between the internal field E„
and the field in vacuum E;„,and is expressed by the prod-
uct of [2/( n „+1)] by f (d ) arising from the multiple
reflections. In both materials (f ) little departs from uni-
ty: (f ) = 1.213 (GaSe) and 1.208 (InSe). The
[2/(n + 1)] term is significantly lower than unity (0.077
in GaSe and 0.078 in InSe). The second difference comes
from the treatment of the boundary conditions for the
harmonic field, for which no obvious picture can be given
(Appendix B). The factors P are computed and listed in
Table III, where f (d) was replaced by its average (f ).
It is seen that the exact one is about two-thirds of the ap-
proximate one from Sec. II.

The treatment of Ref. 11 is intermediate between those
of Secs. II and III, in that is supposes the reflectance at co

to be small. The field E in the plate is considered to be
that of a forward-traveling wave, i.e., r =0 in (15},and Eo
in (16a) may be written as 2E;„/(n„+1). In other words
the standing-wave ratio is neglected. For normal in-
cidence and a suSciently thick plate (that is, d &)P ),
their Eq. (6.8) giving the transmitted harmonic field E,„,
simplifies to

we have replaced E;„by E;„/&2: this is because the
treatment of Refs. 6 and 11 deals with sum-frequency
conversion instead of second-harmonic generation.
When the frequencies of the incident beams coincide
(co+co—+2co), one should consider that two identical
beams of power P„/2 interact to yield a wave at 2', as
has been shown in detail by Craxton. ' The Poynting
vector P 2„ass oci ated with (29) is (c/8m ) ~E,„,~, and the
mks formula is obtained from the cgs-esu one through
the substitutions'

(4n ) ~1/4mso, y~d'/so,

yielding the pattern (25) in which

(30)

1 2

4 n„+I
S2 +252 +n

(Kz +1) (if&„n„—}
(31)

If we let n and n2 approach unity, we do find the
asymptotic form (28} for P. If the values of P are com-
puted out of (31), we find that they are approximately
half the exact ones; see Table III. Hence the formula of
Ref. 11 underestimates the SH transmitted power, while
Eq. (13}or (26) leads to an overestimation.

For the sake of completeness we also compare our pre-
dictions for the reflected harmonic power with those of
Ref. 11. (The treatment of Sec. II is not considered, since
it was based upon pure forward-traveling waves. ) The
power density Pz„of Sec. III may be cast in the form
(25), with

p= f (d)
4

X
fl'2 [1+R exp( 4ik„d)—] n[1——R„exp( 4ik„d)] 2—R „'~ exp( 2ik„d—)

2 2
S2~ n~ 2'

2

(32)

according to our Eq. (24b), and
'4

1

(F2„+1}(if2„+n )

1 2
4 n+1 (33)

according to Eq. (6.7) of Ref. 11 [same steps as in deriv-

ing Eqs. (29) and (31)]. Equation (33) may be obtained
from (32) by letting R =0. The tI)'s are computed and

given in Table IV, where for definiteness we have taken
exp( —2ik d)=+ or —1 in (32). The discrepancy be-
tween the reflected SH powers given by both formulas is

more pronounced than that between the transmitted SH
powers P2 . This means that multiple reflections
significantly increase the reflected SH power, so that the
small-reflectance approximation can be in error by almost
two orders of magnitude for SH generation by reflection
in our materials.

Our treatment shows that both transmitted and
reflected SH amplitudes are enhanced by multiple inter-
nal reflections. The reason lies in the Fabry-Perot effect
enhancing the fundamental field, and in the harmonic
field being quadratic in the fundamental field. This is

TABLE III. The dimensionless prefactor P for the transmit-
ted SH power density according to various theories (Sec. II; Sec.
III with f (d) = (f ); and Ref. 11).

TABLE IV. The dimensionless prefactor P for the reflected

SH power density according to various theories [Sec. III of the

present paper, and Eq. (6.7) of Ref. 11].

GaSe
InSe

Eq. (26)
(Sec. II)

3.6X 10
1.4X 10

Eq. (27)
(exact)

2.3 X 10
0.94X10-'

Eq. (31)
(after Ref. 11)

0.96X 10-'
0.37X10-'

GaSe
InSe

Eq. (32) (exact)
cos(2k„d) = + 1

5.5X10-'
2.9X 10-'

Eq. (32) (exact)
cos(2k d)= —1

2.5X10 '
7.9X 10

Eq. (33)
(after Ref. 11)

3.4X10-'
3.1X10-'
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most apparent in the thickness-dependent term f (d) [Eq.
(23)], which is a Fabry-Perot interference function. If the
cavity length is a multiple of a half-wavelength in the
medium at co, this leads to a high E„and a concomitant
high SH output. With our figures f(d) varies (around
(f ) =1.2) between 2.75 and 0.45, according to whether
cos(2k d) equals + or —1, i.e, with a period
elk =0.19 pm.

B. Experiment

600)

500—
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0

100—

0 ipp 2QQ 3pp
d (p~)

I

Ga Se

400 5pp gpp

As far as we are aware, two previous experimental
determinations of the nonlinear coefficients d' in GaSe
and InSe at 1.06 pm have been published. Akhundov
et al. ' obtained values for d' by measuring the reflected
SH power without giving information about their sam-
ples. Catalano and co-workers ' made transmitted SH
power measurements, and refer to Eq. (6.8) of Bloember-
gen and Pershan, " here rewritten as Eq. (31). Owing to
the difficulty inherent in absolute determinations, ' both
groups made a relative determination of d' by comparing
the SH output intensity from a GaSe or InSe sample to
the one generated by a crystal of known nonlinear suscep-
tibility. Table V lists the values obtained. In the case of
Catalano and co-workers, ' only one sample thickness d
was used for each semiconductor, and we shall see fur-
ther that this parameter plays a more important role in
the determination of d' than previously assumed.

Our samples were grown in one of our laboratories by
the vertical Bridgman transport method. An undoped
GaSe crystal has been cleaved to form a set of thin GaSe
platelets, the thicknesses d of which have been measured
with an IR transmission spectrometer working around
3 pm. Only slices exhibiting a uniform thickness, evi-
denced by a high contrast, have been kept. Assuming a
Gaussian distribution for d, the contrast may be related
to the thickness standard deviation, and we find standard
deviations ranging from 0.10 to 0.21 pm (unrelated to the
thickness). Since the measurement is made with the rela-
tively broad beam of the interferometer, it gives an upper
limit of the thickness dispersion over the laser beam cross
section. The values of d range from 1.5 to 518 pm, ex-
cept for one very thick sample (d = 1000 pm). (Note that
the range of thicknesses investigated extends down to
Pd ~ 1.) We did the same to make up a set
(15.8~d ~243 p,m) of undoped InSe samples from only
one ingot. A11 samples were mounted on a rotating sam-
ple holder so that the laser beam hit the sample normally
onto a fixed 0.2-mm-diameter spot.

We used a Q-switched mode-locked Nd: YAG (yttrium
aluminum garnet) laser which provided bursts of about
40 pulses at 1.06 pm. For each sample the incident IR
power was varied from a maximum peak power of about

FIG. 3. Transmitted harmonic power output P2 as a func-
tion of traversed thickness d in GaSe, at constant incoming IR
power. The dashed lines show the upper and lower limits of P&„
due to the Fabry-Perot cavity effect enhanced by laser instabili-

ty [Eq. (34)]. The solid line indicates the expected output power
for a suSciently rough plate.

10 W. The output SH beam was separated from the
transmitted IR beam by an interferential beam splitter.
Its average power value P2 was recorded together with
the average IR power P . Along the IR power range in-
vestigated, we found a quadratic dependence of P2„
versus P„within an experimental uncertainty arising
from laser instability. It is normal that no subquadratici-
ty be observed since d is much smaller than L; see Sec. II
and Table II.

The slope P2„lP was found to depend rather random-
ly on sample thickness for both selenides, as shown on
Figs. 3 and 4. The slopes exhibit a wide variation, espe-
cially for the thinner samples. This is consistent only
with the prediction of Sec. III about Fabry-Perot effects
in second-harmonic generation. At 6rst sight, these
effects seem to bring a large uncertainty in the inferred
value of d', but we shall show that one can take profit of
them to provide a precise value of d'

~ These Fabry-Perot
effects were not taken into account by the aforemen-
tioned groups.

The f (d) term in Eq. (23a) gives a ratio of 6.21 and
6.13 for GaSe and InSe, respectively, between the maxi-
ma and minima of Pz„at constant P . It should be
stressed that f (d) switches from a maximum to a
minimum as d changes by ~/2k &0.10 pm, which is the
typical thickness measurement accuracy of our samples.
Therefore we can predict that a large enough assortment
of thicknesses will yield a dynamic range of SH output
power of 6.21 and 6.13. Indeed Figs. 3 and 4 give a
maximum-to-minimum ratio of 6.88 and 7.78 for GaSe
and InSe, respectively (even if restricted to the range
d )P '), and we regard this agreement as very satisfacto-
ry. This also proves that the dispersion on thickness d

TABLE V. The nonlinear susceptibilities d» /eo (in m/V) at 1.06 pm found in various works.

GaSe
InSe
Ratio GaSe/InSe

Akhundov et al.
1973 (Ref. 1)

38.4X 10
8.53 x 10-"
4.5

Catalano and co-workers
1979 (Refs. 2 and 3)

37.3x 10-"
10.3 x 10
3.6

This work

8.5x 10-"
18.5 x10-"
0.47
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was the raison d etre for this study. In GaSe and InSe,
the d' appearing in Eq. (1) is equal to dzz in the usual no-
tation. The transmitted SH output power at constant IR
input is proportional to d' P [Eq. (25)], where the dimen-
sionless factor P related to the linear coefficients is given
in Table III with f (d) taken to be (f ). From the previ-
ous data (obtained with the same laser beam) we infer

d'(GaSe)/d'(InSe) =0.48,

FIG. 4. Transmitted harmonic power output Pz as a func-
tion of traversed thickness d in InSe, at constant incoming IR
power. The dashed lines show the upper and lower limits of Pz
due to the Fabry-Perot cavity effect enhanced by laser instabili-
ty [Eq. (34)]. The solid line indicates the expected output power
for a suSciently rough plate.

over the IR beam cross section is very small in our sam-
ples. This is due to the way they have been selected: we
have chosen those which exhibited the largest contrast in
their transmission spectrum. The measured dynamic
range is a little larger than the theoretical one; this
enhancement is due to laser instability. If for the mea-
sured values of Pz„we assume

Pz =Pzj"(d)(1+aX) (34)

X being a random number ( —1 &X & 1) and a a laser in-
stability factor, Figs. 3 and 4 provide Pz values of 190
and 337 in arbitrary units, for GaSe and InSe, respective-
ly. The laser instability factor a is found to be 2.5 and
6% respectively, which is quite credible.

In Figs. 3 and 4 the SH output dynamic range is ob-
served to drop for large values of thickness. This is attri-
butable to the increasing sample roughness at large d. A
roughness b,d exceeding the half-wavelength (0.19 pm in-
side the materials) blurs the Fabry-Perot function f (d),
and replaces it by its average (f ) = 1.2. While the lay-
ered structure of the III-VI semiconductors certainly
helps to ensure thickness uniformity over the laser beam
cross section to a subwavelength precision for thin sam-
ples, it cannot do the same for thick samples
(d-200 —1000 pm}. For the thickest samples, the mea-
sured values of Pz„should therefore be found between
two limits, Pz„(f )(1—a) and Pz (f )(1+a) . For
GaSe, these lower and upper limits are 188 and 208 a.u. ,
respectively, whereas the observed value is 200, in agree-
ment with our theory. For InSe, the limits are 314 and
400 a.u. , respectively, and the observed value Pz„=243
a.u. does not lie in between. This is easily explained by a
slight attenuation (p =3 cm ') of the fundamental wave
which multiplies the IR output amplitude by a factor
exp( —P„d), and the SH output power by exp( —4P„d).
The?imits are changed into 235 and 299 a.u. , which en-
close the observed value. Andriyashik et al. ' report a
value p =0.5 cm ' at 1.165 eV (1.064 pm) and 300 K,
related to phonon-assisted transitions in the vicinity of
the (indirect} energy gap at 1.173 eV. Again we regard
the agreement as very satisfactory.

Having checked the theory for each material, we
proceed to compare their nonlinear coefficients d', which

in striking contrast to previous determinations see
Table V. Since the ratio $(GaSe}/$(lnSe) is nearly the
same in both treatments, the discrepancy is probably due
to the Fabry-Perot function f (d), which was ignored so
far. ' This is very likely in the case of Akhundov et al. '

who refer to a paper by Bloembergen and performed
reflected SH power measurements, which are very
difFerent according to the treatment; see Table IV. How-
ever, the samples of Catalano and co-workers ' were
studied by transmission and were rather thick, so that
they should have met the condition f (d) = (f ). Even in
the absence of roughness, the highest discrepancy in-
duced by the Fabry-Perot cavity effect is by a factor of
6.2 in SH power, and this does not sufBce to account for
the difference between our GaSe/InSe ratio and theirs.
Another cause of the discrepancy would lie in fabrication
flaws in either material or both, in their case or ours. In
this respect it seems that, unlike our samples, their GaSe
and InSe samples were grown in diff'erent laboratories. z z

In order to obtain the absolute values of d', we have
compared the Pz„-d' P from GaSe, InSe, and Gap. We
used a 482-pm-thick GaP wafer purchased from Wacker
and polished in one of our laboratories. For linear opti-
cal constants, Ref. 14 gives n =3.05 and nz„=3.50,
whereas P=0.25X10 cm ' was measured in one of our
laboratories (Table 2 of Ref. 15); this yields
/=0. 61X10 . The nonlinear coefficient di4/so of this
material is known' to be 1.0X10 'o m/V at 1.318 p,m,
and believed to be more reliable than the former value'
0.7X10 '0 m/V obtained at 1.06 pm. The GaP plate
was oriented normally to the (111) direction and the
coefficient d' (Gap) is found to be equal to 2d, 4/&6. In
moving the sample normal to the laser beam by 120-pm
steps, we found oscillations by +25% around the average
green light output, that we attribute to thickness fluctua-
tions and Fabry-Perot ensuing efFects. This is consistent
with the expected quality of the polishing, which is
deemed to give a residual roughness no better than 0.1

pm. Another source of uncertainty (not expected in lay-
ered materials) comes from a locally non-normal in-
cidence, which upon average over the beam cross section
is expected to reduce the Fabry-Perot finesses. From Fig.
5, and accounting for the diff'erence between Pz„(InSe,
d =243 pm) and Pz (f ), we obtain the ratios for the d'
coefficients relative to GaP, for which

d'(GaSe)/co=8. 5X10 "m/V

and

d'(InSe)/so=18. 5 X 10 "m/V,

and the nonlinear susceptibilities diaz/co of GaSe and
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FIG. 5. Harmonic power output P& as a function of input
IR power P (10&P„&100mW on average), for GaSe, InSe,
and GaP(111). The thicknesses were 518, 243, and 482 pm, re-
spectively. The solid lines are least-square fits to the experimen-
tal data, with slope 2 in logarithmic scales.

(dz2/Eo=10X10 " m/V) susceptibility of InSe may be
ascribed to our propagation theory and/or to the
different reference materials. (2) The marked change in
the GaSe/InSe susceptibility ratio at 1.06 p,m (here 0.47,
instead of -4) is partly due to a strong, accidental
Fabry-Perot effect in either semiconductor or both, not
accounted for in the previous measurements, ' but a fa-
bricational difference between our and their materials is
likely. We shall parenthetically remark that the finding
that GaSe and InSe have rather close nonlinear suscepti-
bilities (by a factor of 0.47) is not surprising to us, since
our own determination of the band structures of both ma-
terials points to a great similarity at the atomic level. ' '
It is hoped that the present paper will help to determine
more accurately the nonlinear susceptibilities of materials
in their absorbing range. While practical applications of
nonlinear materials in that range are scarce, the
knowledge of the nonlinear coefficients is of interest in
verifying quantum-electronic theoretical models of non-
linear optical properties.
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ity ratio from the data of Fig. 5 is 0.46, consistent with
the ratio (0.48) derived from Figs. 3 and 4.
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APPENDIX A

The function A„(z)=p&(z)exp[i8i(z)] will be separated
into its modulus and phase, with 8,(0)=0. In (Al) for
z &&1/~A~, we shall neglect the exponential term com-
pared to pi(z), of which it will be shown that it decays
subexponentially. If the real part p of A dominates, such
neglect is obvious; in case A is dominated by its imagi-
nary part hk (see Table I), the neglect is due to the rapid
phase variation, which gives a negligible contribution to

upon integration of (A 1). Let A =
~
A

~
e ', i.e.,

tg8=b, k/p and ~A~ =(b,k +p )' . Then (Al) reads

dLnp, /dz+id8, /dz = —(a. /~A~ )p2(z)e (Az)

By separating the real and imaginary parts, one obtains

dp, /dz = —(~ /~ A
i )p, (z)cos8,

d 8, /dz = (~ /~ A
~ )p, (z)sin8 .

(A3a)

(A3b)

The solution of (A3a) can be obtained in a straightfor-
ward manner:

p, (z) =p, (0)(1+z/L) (A4)

This appendix is devoted to solving for Eq. (11), deter-
mining function A (z):

dA /dz= —(a /A)A'[A (z) —A (0)exp( —Az)] .

(Al)
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where L denotes I lAl/(2cos8)=1 lAl /2P [Eq. (12)].
Equation (A3b) governing the phase 8i(z) can now be

solved, by injecting (A4) into (A3b):

8,(z) =(—,
' )tg8Ln(1+z/L) . (A5)

For infinite z, the phase varies logarithmically. From the
examination of (A4) and (A5), it appears that A„(z}
varies with the characteristic length L, and that dA /dz
is of the order of A /L, thereby legitimating the integra-
tion by parts leading to (Al), since L »

l Al
Near z =0+, i.e., for z & 1/l Al, the aforewritten formu-

las are not applicable, due to the neglect of the exponen-
tial term in (Al). The attenuation-coherence length
lAl

' is a second characteristic transition length, much
shorter than L according to our starting hypothesis, so
that both crossovers can be treated separately. From
(Al) one obtains by evaluating the successive derivatives
d "A /dz" at z =0:

A„(z)=p, (0)[1—z /21 +(A/61 )z +o(z )],
z ~0+, (A6a}

or, equivalently,

pi(z)/pi(0)=1 —z /21 +o(z ) (z~O+),

8,(z)=(bk/6I )z +o(z') (z~O+} .

(A6b)

(A6c)

The crossover between (A6b} and (A4) takes place for
z /212=z/2L, i.e., z=2(cos8)/lAl. Analogously, the
crossover for function 8,(z) [Eqs. (A6c) and (A5)] is
found to occur at z =~6/lAl. In each case, the length is
in the micrometer range (Tables I and II).

Consider now the function A2„(z). It is related to
A„(z}through Eq. (9a):

Expression (A8) warrants a comment. For z «L, the
phase evolution of E2„(z) is governed by the wave vector
k of the fundamental wave' , that is, E2 is a forced field
which is determined from the undamped fundamental
field and varies as E„;accordingly, the modulus of E2„(z)
is constant over the region P '(&z «L. For z &L, an
additional phase variation appears which is but logarith-
mic in z, while the modulus drops as z

The SH output power density at z =d is (d »P ')

P „2=(2/ e)(a/lAl) P /(I+d/L)z (A9)

P,„=(IAI '/I)'P„. (A10)

Because lAl '« I, relation (A10) explicitly shows that
the conversion factor is «1 (ideal case). Keep in mind
that lAl '(&I, i.e., P (&(—,')eoclAl ~, is the condition
for the present treatment to be valid.

In the region 0 & z &
l A l

', the SH radiation grows
from zero as l

1 —e "'l:
l
A z„(z) l

is pseudoperiodic, the
oscillations being damped for z »P '. Then

l A2 (z)l
slowly decays as (1+z/L) ', while the phase of A2„(z)
oscillates with the spatial period 2n. /b, k. In the asymp-
totic region (z &)L), (A9) yields

P,„=(-,' )s,c I A I'/(2~Pd )', (Al 1)

so that P2„becomes independent of the input power but
decreases as the inverse of d .

and therefore varies quadratically with the input power
at to, independent of d, as long as d «L. For Pd (1,
p, (z) is nearly constant, and (A9) is to be inultiplied by
ll —e l, which introduces damped oscillations of
period 2m /b k over the attenuation length. For
P ' (&d «L, Eq. (A9) may be written

A2„(z)=( ia/A)—[A „(z)e '—p, (0)] . (A7)

Using Eqs. (A4) and (A5) for A (z) yields for the spatial
part E2„(z)of the electric field (z»P '):

pf(0)
E2„(z)=( ia/A)— .

Xexp[ 2ik z+—i b,kLn(1+z/L)/P] .

AppENDIx B

This appendix is devoted to obtaining the harmonic
transmitted (E,„,) and reflected (E,'„, ) fields from the
forced harmonic field generated by the fundamental wave
and the boundary conditions. The forced 2' field is given
by Eq. (17):

exp( 2ik„z)+r—exp[2ik„(z —d)] 2r exp( ik d)—
E (z) = —2p d'E +

(k,.—iP)' —(2k. )' (k2„ i p)
(B1)

E2 (z) =E,„,exp[ 2ico(z —d)/c—] (z )d),
Ez„(z)=E,'«exp(2icoz/c) (z & 0) .

(B3)

to which a free 2' field is added [Eq. (19)]:

b+ exp[ —(ik2 z+P)z]+b exp[(ik2„+P)(z —d)] .

(B2)

The harmonic field in vacuum is [Eqs. (20a) and (20b)]: E,'„,=Ef(0)+b++b exp[ i (k2„—iP)d]—,

E,„,=Ef (d)+ b+ exp[ —i(k~ iP)d ]+b—(B5)

(B6)

Continuity of the harmonic magnetic field gives two more

%e are left with four unknowns E,„„E,'„„b+,and b
For normal incidence the electric and magnetic fields are
parallel to the boundaries and continuous at z =0 and d.
Continuity of E2 entails
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equations:

I —r exp( 2ik„d)
E,'„,=2n pou d'Eo

(kz —iP) —(2k )

+n2 I b+ —b exp[ i—(kz„iP—}d]],
exp( 2ik—d) r—

E,„,= —2n poco d'Eo
(k~ —iP) —(2k„)

+n2~ {b+exp[ t'(k—z„tP)—d] b—] .

(B7)

(B8)

b =E,„, Ef(d—) . (B10)

If, in Eqs. (B5) and (B6),pd is taken to be ))1, then

b+ =E,'„,—Ef(0), (B9)

Similarly, one term may be dropped in (B7) and (B8) if
pd )) l. Injection of (B9) into the simplified (B7), and of
(B10} into the simplified (B8), yields decoupled expres-
sions for E,„, and E,'„, The expressions are Eqs. (22a)
and (22b). Thus we see that if d »p ', both boundaries
behave independently. At each interface the forced wave
(with wave vector 2k„) generates a free wave (of wave
vector kz„) in the nonlinear medium, together with an
outgoing wave in vacuum, in order to satisfy the bound-
ary condition. The interface at z =0 generates a
forward-traveling free wave which damps at z »p
The interface at z =d generates a backward-traveling free
wave which vanishes for d —z »p . Inside the plate of
thickness d »p ' those two free waves do not overlap,
so that the boundaries ignore each other.
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