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Displacement-threshold energies in Si calculated by molecular dynamics
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Molecular-dynamics calculations of simple defect production in bulk Si are reported. The Tersoff
three-body potential-energy function is used to provide a realistic lattice-atom interaction potential. The
displacement-threshold energy E, is calculated as a function of the initial primary knock-on momentum
direction, and the formation energies for resulting defect structures are obtained. In addition, we deter-
mine the effect of the vacancy-interstitial separation on the anisotropy in E,, where the criterion for
stable Frenkel-pair defect formation is assumed to require a certain minimum separation. The resultant
angular dependent E,; versus (6, ¢) is compared with that proposed by Hemment and Stevens (HS) to ac-
count for the magnitude and anisotropy of the observed energetic electron-induced radiation damage in
Si. The anisotropy of our E, surface is consistent with that of HS provided a lower limit of 4 Ais placed
on the initial Frenkel-pair separation for the production of long-lived damage. The relatively large for-
mation energy of 8.4 eV which we obtain for such widely separated vacancy-interstitial pairs indicates
that the individual point defects are essentially isolated (i.e., noninteracting). More closely spaced
vacancy-interstitial complexes are also identified, which have lower formation energies. While it is ar-
gued that these complexes are relatively short lived, they may be relevant to dynamical processes such as
beam-enhanced molecular-beam epitaxy, atomic mixing at interfaces, and “subthreshold” damage pro-
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duction.

I. INTRODUCTION

Molecular-dynamics (MD) simulations of radiation
effects were first used by Vineyard and co-workers in
studies of radiation-induced defect production in fcc
copper! and bec iron.? Similar studies were carried out
subsequently for fcc iron by Beeler and Beeler.? These in-
vestigations were primarily motivated by concerns arising
from the radiation-induced damage observed in nuclear-
reactor structural materials, and Cu and Fe provided
simple model systems for the then available electronic
computing machines.

A variety of defects and defect properties in metals
have been investigated by application of MD techniques.
Defects and their properties that have been addressed in-
clude vacancies, divacancies, vacancy migration, vacancy
clusters, and self-interstitials in bee iron, fcc iron, nickel,
and hcp metals, as well as the effects of impurity atoms in
metal lattices.* In related studies, the anisotropy in
displacement-threshold energy in Fe (Ref. 3) and Cu
(Ref. 5) lattices has been investigated in detail.

These early MD studies were most tractable for metals
because of the relatively simple potential functions re-
quired to describe the interactions between atoms. In
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general, pairwise central forces were used, which were
supplemented by special “surface” forces on atoms near
the boundary of the computational crystal to represent
interactions with the surrounding material. The compos-
ite potentials used unique functional representations in
each of several ranges of the interatomic separation dis-
tance, with the parameters adjusted to give agreement
with the observed elastic properties, cohesive energies,
and minimum displacement-threshold energies. Theoret-
ical estimates were generally used for very small intera-
tomic separations.

In contrast to metals, semiconductors require a more
complex potential-energy function to provide for ade-
quate MD simulations. This requirement is due to the
highly directional covalent bonding in these materials,
which rules out the simple central-force representations
used for metals. In addition, torsional effects in semicon-
ductors due to bond overlap lead to three-body forces. In
recent years, many potentials that consider these factors
have been proposed for silicon, including Stillinger and
Weber, ® (SW), Tersoff,”'° Biswas and Hamann, !! Dod-
son, 2 and Bolding and Andersen. !

One of the earliest potentials proposed was the SW for-
mulation,® which adequately modeled the structure of
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both the crystalline and liquid phases of Si. Other au-
thors have applied the SW potential to a wide range of
systems, '* and have shown this potential function to be
quite useful in qualitative studies. The SW potential,
however, provides an inadequate description for under-
coordinated or overcoordinated Si,'* and thus is less use-
ful, for example, for surface studies. The Tersoff poten-
tial has also been extensively applied to MD studies of
Si,%10 and in particular to surface phenomena.'> The
basic Tersoff form of the potential was also chosen by
Bolding and Andersen as the starting point in the devel-
opment of their potential because of “the generality of
the approach and the physical justification for the chosen
form.”!3 Perhaps the most accurate potential function for
Si now available may be that developed by Bolding and
Andersen, !> however, the complexity of this potential,
which includes four-body terms, precludes its extensive
use in MD calculations at present.

As indicated above, the Tersoff potential has been used
extensively in modeling the dynamics of Si surfaces. Par-
ticular emphasis has been given to such defect-mediated
processes at surfaces as sputtering, surface-adatom mi-
gration, and epitaxial growth.!>”!'® Recently, beam-
enhanced epitaxial growth and doping experiments have
motivated detailed MD studies of ion-bombardment-
induced Si surface and near-surface (to =~ 15 layers deep)
defect production, configurations, and subsequent stabili-
ty. 187! Other MD calculations focusing on bulk Si have
tended to examine the static properties of point defects,
for example, vacancy- and interstitial-formation energies.
In the present paper we report MD calculations relating
to the dynamics of bulk-defect formation in Si. In these
studies, we focus on the anisotropy in the displacement-
threshold energy for Frenkel-pair production. A prelimi-
nary account of some of this work has been presented
elsewhere. 1°

One key issue in MD studies of displacement thresh-
olds is the precise definition of a displacement event. A
simple definition was used in obtaining the results we re-
ported earlier, ! namely, that the primary knock-on atom
(PKA) in the silicon lattice is considered displaced when
it exits the tetrahedron formed by the nearest-neighbor
atoms and comes into quasithermal equilibrium with the
surrounding lattice before recombination can occur. (By
quasithermal equilibrium we mean that the total available
kinetic energy is more or less randomly distributed over
all atoms in the computational cell.) Values for the
displacement-threshold energy E,; resulting from this
definition were found to be only about 50% of those
values deduced from radiation-damage studies using elec-
tron bombardment,?® and a different anisotropy was
found as well. Consequently, we have examined the dis-
placement process in more detail and the MD results re-
ported here suggest a ‘“‘natural” separation for stable
Frenkel-pair production. This approach produces much
better agreement with experiment and also correctly ac-
counts for the observed anisotropy. In effect, the simple
definition of displacement often leads to closely spaced
Frenkel pairs, which, we argue, are short lived due to
vacancy-interstitial interactions through the crystal-
strain field; only widely separated pairs persist for
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sufficient time to contribute to the observed damage.

The definition of a displacement event is thus found to
be dependent on the time scale over which the Frenkel
pair exerts its influence on the property being measured.
As indicated, for long-term stability our results suggest a
large separation. We note, however, that for applications
to dynamic processes (e.g., smoothening and roughening
of surface growth,?! atomic mixing at interfaces,?? ion-
bombardment-induced solid-phase epitaxy,?® and sub-
threshold damage processes®*), the simple definition used
earlier for the displacement event may also be relevant.
In this respect we also note that for none of the MD cal-
culations of point-defect production in metals has this is-
sue been discussed (i.e., the question of defect stability
has not been precisely defined in the early studies).

In what follows, we present a description of our
molecular-dynamics simulation technique in Sec. II. The
MD results are given in Sec. III, and these are discussed
in Sec. IV.

II. MOLECULAR-DYNAMICS SIMULATION
TECHNIQUE

The molecular-dynamics computer code written for the
calculations reported here is based on standard pro-
cedures, and thus we briefly highlight only special
features of the present algorithm. Atomic positions are
initialized in the equilibrium sites of the bulk silicon lat-
tice. In general, the atomic velocities are determined by
sampling a Maxwell-Boltzmann distribution correspond-
ing to the desired initial sample temperature. However,
in the present study, the initial velocities were set to zero
to approximate a zero-temperature crystal. We point
out, however, that a significant temperature increase
occurs when a test atom (the PKA) is given a kinetic en-
ergy near the expected displacement-threshold energy
(~15 eV). For our standard computational cell size of
576 atoms, a PKA kinetic energy of 15 eV results in a
temperature rise of approximately 100—-150 K (the lower
value corresponds to a displaced atom with a formation
energy of approximately 6 eV; the higher temperature
corresponds to no displacement).

For the bulk processes described here, periodic bound-
ary conditions were imposed separately on the boundaries
in each of the three Cartesian coordinate directions, re-
sulting in the three-dimensional infinite repetition of the
computational cell. Here, we use the Tersoff potential, °
primarily due to the relative simplicity involved in imple-
menting it in our code, but also because the parameter
values can be adjusted to describe other diamond-lattice
crystals (e.g., C, Ge, SiC). This silicon potential uses
Tersoff’s latest parameter values, which provide a better
description of bond-bending forces than his earlier pa-
rametrizations, "8 while still providing a satisfactory
description of point defects.

The equations of motion are integrated according to a
scheme developed by Smith and Harrison.?> The
efficiency of our code is increased by taking advantage of
the finite range of the Tersoff potential function, i.e.,
force calculations are performed only for those atoms
separated by less than the potential cutoff distance. The
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time increment At is calculated at the beginning of each
time step. The value of At is chosen to be inversely pro-
portional to the speed of the most energetic atom in the
computational cell, with a proportionality constant such
that this atom moves at most 0.05 4 per time step.

Extensive testing of the code was carried out to ensure
that the calculation was properly implemented. The
cohesive energy predicted by the code for Si of 4.63
eV/atom agrees with the experiment and the Tersoff eval-
uation, suggesting that we have correctly implemented
the potential-energy function. Further, during a 5-ps
simulation (typically 1000 time steps), the energy is con-
served to better than five significant figures, indicating
that we are properly integrating the equations of motion.
The results of such calculations are found to be essential-
ly independent of time-step size, and are not significantly
altered when utilizing the corrector step of the Smith and
Harrison? integration scheme (i.e., by increasing the ac-
curacy in the integration procedure). The corrector step
was not used in the calculations reported below since it
requires two force calculations per time step with a corre-
sponding increase in CPU time to complete a simulation.
We did, however, adjust the magnitudes of the atomic ve-
locities after each time step by a multiplicative constant
to provide exact conservation of energy, thereby improv-
ing the integration procedure.

It became evident that the energy-conserving pro-
cedure (ECP) described at the end of the previous para-
graph does not enjoy wide application in the MD com-
munity. We, therefore, elaborate briefly on the ECP
here. A numerical solution to the equations of motion is
said to be accurate to O (¢"), where ¢ is the integrator step
size, when R ~O(t"), where R is the distance in phase
space between the points representing the numerical and
the exact solutions. Further, it is clear that each point in
phase space within a distance R of that representing the
exact solution represents an equally valid solution to the
equations within the specified accuracy. Some of these
points represent solutions that conserve energy; most do
not. The solutions that conserve energy have clear
benefits in certain types of calculations, e.g., those follow-
ing a thermally driven process for long integration times,
and we think of them as being “more accurate,” although
technically they are no closer to the exact solution in
phase space than those within R, which are energy non-
conserving. That our ECP makes a transformation from
a nonconservative solution to a conservative solution
within R is easily proved from the equations relating total
energy to the momenta and coordinates in phase space.
We note that the ECP has no substantial effect on the cal-
culations reported here since the integrations span only a
few picoseconds, but as indicated above it does offer
significant benefits in other types of calculation.

The size of the crystal used in these calculations was 6a
in the [100], 6a in the [010], and 2a in the [001], where a
is the cubic unit-cell lattice constant (5.43 A for silicon)
for a total of 576 atoms. For each calculation the PKA,
which was located at the center of the crystal, was given
an initial velocity in the desired direction. These recoil
energies ranged from 10 to 30 eV, corresponding to an
equilibrium crystal temperature of approximately
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135-400 K. The calculation was allowed to continue un-
til the crystal achieved quasithermal equilibrium and
then continued for an order of magnitude longer in time
to ensure that the observed displacement (or lack of dis-
placement) properly represented the “final” state of the
PKA. The simulation time was typically 5 ps. For each
direction, the displacement of the PKA from its initial
site was determined for several energies resulting in the
determination of displacement distance as a function of
PKA energy.

ITII. RESULTS

A. Displacement calculations

As stated earlier, the displacement of a PKA was
determined for several initial PKA velocity directions.
The primary directions considered in these calculations
were within 40° of the [111] (through an open face of the
nearest-neighbor tetrahedron) and within 40° of the [100]
(i.e., near the center of an edge of the tetrahedron), as in-
dicated in Fig. 1. The directions selected for our calcula-
tions [Fig. 1(b)], do not represent a complete covering of
the entire triangular region available. The selected points
do give a good representation of the central and edge

(a)

(b)

<1171> 111>
FIG. 1. (a) Silicon unit cell with the PKA shown as the
cross-hatched atom 1, which is directed through the shaded tri-
angle 4. (b) Tetrahedral face 4 from (a) showing the crystallo-

graphic directions for which Frenkel defect formation was
simulated.
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center of the triangle, however, and are sufficient to allow
a meaningful comparison with experiment. Calculations
have been performed for a few points nearer the vertices
of the region, but are not reported here since the results
lie outside our focus on simple Frenkel defects. In these
calculations the strong interaction with the neighboring
atoms, which lie at the vertices of the triangle, prevent
displacement of the PKA for energies up to ~30-50 eV
at which point multiple defects are formed. We do not
discuss these events further here.

Plotted in Figs. 2(a), 2(b), and 2(c), respectively, are the
total crystal energy, potential energy, and kinetic energy
versus time elapsed since the initial-energy impulse for an
18.0-eV PKA. The initial PKA velocity vector for these
calculations was in the [0.8447, 0.4744, 0.2476] direc-
tion. The magnitude of the distance (range) of the PKA
from its initial position versus elapsed time is plotted in
Fig. 2(d). The range is seen to rapidly increase to approx-
imately 3.5 A during the first few hundred femtoseconds
of the motion, but the PKA soon returns to the vicinity
of its original position where small-amplitude vibratory
motion ensues. Due to the thermal vibrations excited in
the lattice by the initial-energy impulse, the PKA only in-
frequently visits its precise initial location (i.e., range
equal to zero). However, we point out that although the
range tends to maintain a nonzero value, the vector dis-
placement of the PKA from its initial location averages
zero.

Figures 3(a)-3(d) show results similar to those in Fig.
2, but for an initial PKA energy of 25.0 eV. The range of
the atom from its equilibrium site is shown in Fig. 3(d).
In this case, the PKA is initially displaced approximately
5.1 A but returns to a distance near 4.5 A where it
remains for the remainder of the calculation (3 ps).
Therefore, for this initial velocity direction, no stable dis-
placement results for the 18.0-eV PKA, but an initial en-
ergy of 25.0 eV does lead to a relatively long-lived
(‘“‘stable”) Frenkel pair. Calculations of these types were
performed as a function of PKA energy with initial veloc-
ity vectors in each of the crystallographic directions
shown in Fig. 1(b). Precise identification of these vectors
is provided in Tables I-III.

The calculations of displacement distance versus PKA
energy for the directions shown in Fig. 1 resulted in four
basic types of final-average PKA displacement distance
versus initial PKA energy curves. These are plotted in
Fig. 4. The simplest of these curves (solid curve 4 in the
figure) is for the [0.8447, 0.4745, 0.2476]. For initial
PKA energies less than 18.1 eV for this direction, the
stable displacement distance is zero. At energies higher
than 18.1 eV, the magnitude of the final-average PKA
displacement is about 4.5 A. The relative flatness of the
curve above 18.1 eV indicates that the crystal
configuration for displacement in this direction corre-
sponds to a deep potential well.

The second type of curve (curve B) for the [0.6441,
0.6441, 0.4126] direction is similar to curve 4 in that a
sharp displacement-threshold energy results in a
minimum displacement of 4.5 A. However, at higher en-
ergies, the displacement distance continues to increase
with energy, indicating that the configurational potential

MILLER, BRICE, PRINJA, AND PICRAUX 49

—2645 - T T — T T T
(a)
-2646 |- 4

—2647 | .

—2648 | 1

Total Energy (eV)

—2649 | E

—2650 N . s 2
0 2000 4000 6000 8000 10000

Time (fs)

—2650 v T v — T v T -
(b)

—2655

—2660 |

—2665 | 4

Potential Energy (eV)

~2670 . . . o
0 2000 4000 6000 8000 10000

Time (fs)

207

-
w

Kinetic Energy (eV)
(<]

w

0 2000 4000 6000 8000 10000
Time (fs)

(d)

) 2000 4000 6000 8000 10000
Time (fs)

FIG. 2. The (a) total energy, (b) potential energy, (c) kinetic
energy, and the (d) displacement distance is shown as a function
of time for MD calculation with PK A energy of 18 eV along the
{0.8447,0.4744,0.2476 ) direction.
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FIG. 3. The (a) total energy, (b) potential energy, (c) kinetic energy, and the (d) displacement distance is shown as a function of
time for MD calculation with PK A energy of 25 eV along the 0.8447, 0.4744, 0.2476) direction.

well is not as deep for displacements in_this direction.
Curve C, corresponding to the [0.9848, 0.1228, 0.1228]
direction, shows two distinct displacement distances.
The first is at approximately 2.3 A from the initial PKA
site. Recoil energies in the range of 10.6-17 eV result in
a displacement of this distance (a close Frenkel pair).
PKA energies of 18 eV and more result in a displacement
of least 4.5 A (an extended Frenkel pair). In this direc-
tion there is evidently a fairly deep well at 2.3 and at 4.5
A.

The final type of curve (curve D) for the [0.902,
0.3364, 0.0535] direction is the most complex case. For
PKA energies in the range 2022 eV, there is a plateau at
2.7 A similar to that at 2.3 A for the [0.9848, 0.1228,
0.1228] direction. For energies greater than 22 eV, the
PKA is displaced approximately 4.5 A. We have also ob-

served above-threshold recombination events in the vicin-
ity of 25 eV for this direction, a type of behavior previ-
ously seen by King and Benedek® in MD calculations for
Cu. We find these above-threshold recombination events
to be the fortuitous result of dynamic correlations in
atomic motion at low initial temperatures. This concept
was verified by raising the initial crystal temperature
slightly (to 50 K), which resulted in the elimination of all
such events (see filled circle in Figs. 4 and 9).

B. Formation energies

Formation energies were calculated for a few represen-
tative directions for both close and extended Frenkel
pairs.?® These results are compiled in Table I. The for-

TABLE I. Formation energies of displacement defects.

PKA energy Displacement Formation energy

Direction (eV) (A) (eV)
[0.9962, 0, 0.0872] 15.0 2.25 5.8
[0.9397, 0.2418, 0.2418] 15.0 2.28 5.9
[0.6108, 0.6108, 0.5039] 15.0 4.50 7.8
[0.7041, 0.7041, 0.0915] 20.0 451 7.7
[0.9962, 0, 0.0872] 20.0 4.47 8.2
[0.9397, 0.2418, 0.2418] 22.0 4.37 8.4




16 958

MILLER, BRICE, PRINJA, AND PICRAUX

TABLE II. Calculated bulk displacement-threshold energies for displacement only outside nearest-

neighbor tetrahedron.

6,¢ 6,¢
referenced referenced

Direction to [111] o [100] E,
No. [Ak1] (deg) (deg) (eV)
1 (11 ] 0 0 54.75 90.00 114
2 [0.7041, 0.7041, 0.0915] 30.00 0 45.24 52.42 18.3
3 [100 54.74 60.00 0 0 10.1
4 [0.9397, 0.2418, 0.2418] 57.14 35.97 20.00 0 12.5
5 [0.9402, 0.3364, 0.0535] 45.07 37.07 19.91 51.50 18.6
6 [0.8447, 0.4745, 0.2476] 25.23 37.90 32.36 79.72 18.1
7 [0.9434, 0.3070, 0.1258] 37.39 47.82 19.37 76.41 16.6
8 [0.8881, 0.3251, 0.3251] 27.37 60.00 27.37 90.00 19.1
9 [0.6441, 0.6441, 0.4126] 10.90 0 49.90 82.79 12.1
10 [0.9848, 0.1228, 0.1228] 55.35 47.82 10.00 0 10.6

mation energies of defects with the PKA located in simi-
lar interstitial sites were very close (within 0.2 e€V). The
first two entries in Table I are for interstitials located ap-
proximately one interatomic bond length from the vacan-
cy in a (100) split interstitial configuration (i.e., for the
first entry, atom 1 has moved through tetrahedral face 4
in Fig. 1 and forms a [001] split interstitial with atom 2;
see Fig. 1). The third and fourth entries in Table I are for
the PKA located in a tetrahedral interstitial site. For ex-
ample, the third entry corresponds to atom 1 moving
through tetrahedral faces 4 and B to come to rest in the
tetrahedral site at the opposite corner of the unit cell.
Referring again to Fig. 1, the final two entries in Table I
are for cases where the PK A has traveled almost horizon-
tally across the unit cell through face 4 to form (100)
split interstitials with atoms in the neighboring cell. The
formation energies for these vacancy-interstitial
(Frenkel-pair) defects are seen to range from about 6 eV
for the closer pairs to near 8 eV for the more distant
pairs.

C. Displacement-threshold energies

Collected in Table II are our calculated values for E,
for the ten different crystallographic directions shown in
Fig. 1(b). The values listed in Table II were obtained us-
ing the simple displacement criterion, which requires
only that the PKA be outside its original tetrahedron of
nearest neighbors as the disturbed crystal comes into
quasithermal equilibrium.

Our discussion of Fig. 4 and the calculated formation
energies in Table I indicate, however, that more stable
defects are formed when displacements to ~4.5 A occur.
Accordingly, we have calculated a second set of
displacement-threshold energies in which the defect pro-
duction criterion requires that the “final” vacancy-
interstitial separation be greater than 0.75q, i.e., > 4.1 A.
Results of these calculations are collected in Table III.
We point out that for these calculations we substituted
initial PKA velocity direction numbers 11 and 12 in
Table III in place of direction numbers 1 and 3 in Table

TABLE III. Bulk displacement-threshold energies for displacement beyond % of a cubic unit-cell

width.
6,¢ 0,¢
Referenced Referenced

Direction to [111] o [100] E,
No. [hk1] (deg) (deg) (eV)
1 [0.6108, 0.6108, 0.5039] 5.00 0 52.35 86.83 11.5
2 [0.7041, 0.7041, 0.0915] 30.00 0 45.24 52.42 18.3
3 [0.9962, 0.0, 0.0872] 51.28 64.53 5.00 0 17.0
4 [0.9397, 0.2418, 0.2418] 57.14 35.97 20.00 0 21.0
5 [0.9402, 0.3364, 0.0535] 45.07 37.07 19.91 51.50 220
6 [0.8447, 0.4745, 0.2476] 25.23 37.90 32.36 79.72 18.1
7 [0.9434, 0.3070, 0.1258] 37.39 47.82 19.37 76.41 18.0
8 [0.8881, 0.3251, 0.3251] 27.37 60.00 27.37 90.00 19.2
9 [0.6441, 0.6441, 0.4126] 10.90 0 49.90 82.79 12.2
10 [0.9848, 0.1228, 0.1228] 55.35 47.82 10.00 0 18.0
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FIG. 4. Four typical types of calculated displacement dis-
tance vs PKA energy curves for the directions indicated for the
(111) direction [Eq. (9)]: 4 is the [0.8447, 0.8447, 0.2476], B
is the [0.6441, 0.6441, 0.4126], C is the [0.9848, 0.1228,
0.1228], and D is the [0.9402, 0.3364, 0.0534].

I1. The change of initial velocity direction by 5°, which
results from this substitution, was required to avoid
direct, head-on collisions between the PKA and lattice
atoms lying at a distance 5.3-5.4 A in the original direc-
tion numbers 1 and 3.

D. Analytical expressions for describing
crystal anisotropy

In order to provide a more general description of our
displacement-threshold-energy results, and to facilitate
comparison with experimental data, we provide analyti-
cal expressions for the angular dependence of E; near the
two crystallographic directions {111) (through the open
face of the nearest-neighbor tetrahedron) and (100). For
polar angle 6 measured from the (111), E;(6,¢) may be
expanded as

E (8,8)= 3 sin*"0cos(3nd) 3 Q% sin?*6 , (1)
n=0 k=0

where the Q3 are expansion coefficients and the three-
fold symmetry in ¢, the azimuthal angle around (111), is
explicit in the expression. A vector to one of the
nearest-neighbor lattice sites [atoms 2, 3, or 4 in Fig. 1(a)]
determines the reference for which ¢=0. For values of 6
near {111), Eq. (1) can be approximated by

E;=Q3+Q9sin’0+ Q| sin*0 cos3s+Q} sin*0 , )

where terms of order sin>@ and higher have been neglect-
ed.

Equation (2) provides an expression for E;(6,¢) accu-
rate to order sin*0, the coefficients of which can be evalu-
ated from our molecular-dynamics calculations of E; for
several directions near (111). Averaging Eq. (2) over a
cone of angular radius 6,, yields

__ 9
3(1—cosb,,)
0
L9
5(1—cosb,,)

(E;)=Q3+ [2—cosb,,(sin%8,, +2)]

{£[2—co0s0,,(sin’f,, +2)]

—sin*g,, cos,, } . 3)
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Similar expansions may be written for other symmetry
directions, in particular for the ( 100). For polar angle 6
measured from the ( 100), we expand E;(6,¢),

E (0,¢)= sin*0cos2/¢ 3, Py, sin?*6, (@)
1=0 k=0

where the P}, are expansion coefficients for this case, and
the twofold symmetry in ¢, the azimuthal angle about
(100), is explicit in the expression. The reference for
¢ =0 is set by a vector to one of the two nearest-neighbor
tetrahedron sites (here for direction [100] from atom 1
this vector is from atom 1 to atoms 2-3). For values of 8
near [100], Eq. (4) is approximated by

E,;(0,6)=P3+ P93 sin6+ P} sin’6 cos2¢ , (5)

where terms of order sin®8 and higher have been neglect-
ed.

Similar to Eq. (2), Eq. (5) provides an approximate ex-
pression for E;(6,4) accurate to order sin’f, the
coefficients of which can be evaluated from molecular-
dynamics calculations of E; for several directions near
(100). An average of Eq. (5) over a cone of angular ra-
dius 6,, yields
P

— po
(Eq) P°+3(1—cos0,,,)

[2—cos0,,(sin%F,, +2)] .  (6)

E. Close Frenkel-pair formation

As noted earlier, for the PKA energy range considered
here, there are two typical PKA displacement distances
that correspond to close and extended Frenkel pairs (see
Fig. 4). The criterion used for the displacement-
threshold energy for close Frenkel-pair formation is that
the crystal reaches quasithermal equilibrium with the
thermalized PKA outside of its original tetrahedron of
nearest neighbors. The MD values for E; based on this
criterion in Table II with 6 <40° were used to fit the ex-
pansion coefficients of the truncated series about the
(111) [Eq. (2)]. A least-mean-square error fit of Eq. (2)
to these data points results in

E;(6,¢)=11.4+80.95sin%0—5.04 sin30 cos3¢
—194.65in%0 , (7

where the coefficient values are in eV. Equation (7) is
only valid for 6 <40° since the small-angle expansion of
Eq. (1) was fit to data with 0 in this range. Predicted
values for E; from Eq. (7) are compared with our initial
MD values in Table IV. The rms deviation of the analyt-
ic results from our molecular-dynamics result is 1.2 eV,
and the maximum relative difference between a value cal-
culated with the MD code and the value predicted by the
analytic expansion is 15%.

Equation (7) is plotted in Fig. 5 for 6<40° and
0<¢ <360°. The variables x and y of the plot are related
to 6 and ¢ by x =sin0 cos¢ and y =sinfsing. The figure
shows the dependence of E; on azimuthal angle to be
small, as is expected from the coefficients in Eq. (7); also,
E, exhibits a maximum value at an intermediate value of
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TABLE 1V. Close Frenkel pairs: Comparison of molecular-
dynamics values E; with those obtained from the analytic ex-
pressions of Egs. (7) and (8).

(111) expansion (100) expansion

MD calculated Analytic Analytic

value value A® value A?
(eV) (eV) (eV) (eV) (eV)
114 114 0.0 b

18.3 18.8 —0.5 b

10.1 b 10.1 0.0
12.5 b 14.1 —1.6
18.6 b 14.2 44
18.1 19.8 —1.7 20.6 —2.5
16.6 15.7 0.9 14.1 2.5
19.1 20.3 —1.2 17.8 1.3
12.2 14.0 —1.8 b

10.6 b 11.1 —0.5

4MD value) — (analytic value).
®The analytic expression is not valid for these directions
(0> 40°).

6 between 0 and 40°. For the coefficients of Eq. (7), the
maximum in E; occurs at 0y(¢), where
sinf,=0.456—0.010cos3¢, or 6,~27°, and E,(6,)
~19.8—0.5cos3¢.

A similar fit of Eq. (5) to the MD values shown in
Table II for those points for which 8 <40° allows the
evaluation of the expansion coefficients of the truncated
series in the {100) [Eq. (5)]. The resultant equation is

E;(0,¢)=10.1+35.27 sin’0—2.605 sin’0 cos2¢ , (8)

with coefficient values again in eV. This equation is also
only valid for 8 <40°.

A comparison of the analytic values of E; calculated
from Eq. (8) with the MD value of Table II is given in
Table IV. For the valid directions, the rms deviation be-
tween analytic and molecular-dynamics results is 2.3 eV

111 Close

Eq6,¢)

FIG. 5. Analytic representation of the displacement energy
E, about the (111) direction for close displacements [Eq. (7)].
The independent variables x and y for this plot are the indicated
functions of @ and ¢. Thus, the figure corresponds to a projec-
tion onto a (111) plane of the polar plot of the magnitude of E,
on a unit sphere.
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with a maximum relative difference between the MD
values and the corresponding value predicted by the ana-
lytic expression of 24%. Figure 6 shows the three-
dimensional plot of E; about the (100) direction from
Eq. (8). The displacement threshold monotonically in-
creases with 6 while the dependence on ¢ is slight.

The analytic approximation for the average bulk
displacement-threshold energies (E;) [Eqs. (3) and (6)]
were used to determine (E,) values for the (111) and
(100) with angles 6,, of 30° and 20°, respectively. This
resulted in an average bulk displacement energy of 17.5
eV in the (111) direction and 12.2 eV in the (100)
direction. Directly, these values will be compared with a
model proposed by Hemmet and Stevens?’ (HS), which
incorporates these specific averages.

F. Extended Frenkel-pair formation

In contrast to the close Frenkel-pair-formation thresh-
olds analyzed above, extended Frenkel-pair formation is
defined with the final location of the PKA at least three
quarters of a cubic unit-cell width (~4 A) away from its
original site. This definition follows naturally from calcu-
lated results such as those shown in Fig. 4. For this case,
the MD values of E; in Table III with 6 <40° were used
to obtain values for the expansion coefficients of the trun-
cated series in the (111) [Eq. (2)]. These extended
Frenkel-pair-formation threshold values were not always
determined to the same precision as those for a simple
displacement from the nearest-neighbor tetrahedron.
(The tabulated E,; values without a decimal point in
Table III are accurate to ~1.3 eV.) The values reported
in Table III are the lowest recoil energies that resulted in
a PKA-vacancy separation greater than three quarters of
a cubic unit-cell width (~4 A). Evaluating the expansion
coefficients in Eq. (2) for the data of Table III for (111)
for 6 <40° results in

E,;(6,6)=10.6+64.1sin’0—4.545in°0 cos3¢
—126.9sin*0 , 9

100 Close

FIG. 6. Analytic representation of the displacement energy
E, for close displacements about the (100) direction [Eq. (8)].
The variables x and y are the indicated functions of 6 and ¢.
Thus, the figure corresponds to a projection onto a (100) plane
of the polar plot of the magnitude of E; on a unit sphere.
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with coefficient values in eV. Predicted bulk
displacement-threshold energies from Eq. (9) are com-
pared with the MD values in Table V. For these direc-
tions, with 6 <40°, the standard deviation of the analytic
result from the MD results is 0.9 eV, and the maximum
relative difference between a value calculated with the
MD code and the corresponding value from the analytic
expansion is 9%. A three-dimensional plot of Eq. (19) is
given in Fig. 7. The shape of the surface shown in Fig. 7
is qualitatively similar to that given for the near displace-
ment threshold (Fig. 5), but the displacement threshold in
Fig. 7 exhibits a weaker dependence on both 8 and ¢.
The maximum in E; occurs now at 6Oy(¢$), where
sinf,=0.503—0.013 cos3¢, or at 6,~ 30°, which is little
changed from the earlier result for close Frenkel pairs.
Also, E;(6,)=18.7—0.6 cos3¢.

The MD values in Table III for the (100) are also
used to obtain expansion coefficients of the corresponding
truncated series in the (100) for those points for which
0 <40°. The resultant approximate equation is

E;(6,4)=17.4420.95sin’0+15.65sin’cos24 ,  (10)

where the coefficients are in units of eV. Predicted bulk
displacement-threshold energies calculated with Eq. (10)
are compared with the corresponding MD values in
Table V. For those directions with 6 < 40°, the standard
deviation of the analytic result from the MD result is 1.5
eV and the maximum relative difference between a value
determined with the MD code and the value predicted by
the analytic expression is 17%. .

Equation (10) for the (100) threshold-energy surface is
plotted in Fig. 8. In contrast to the other expressions for
E,; [Egs. (7)-(9)], the surface in Fig. 8 exhibits a strong
dependence on ¢ with minima for E; at $=90° and 270°
and maxima at 0° and 180°. The maxima correspond to
directions lying closest to the two near-neighbor
tetrahedron sites on either side of the (100) (see Fig. 1).
The average bulk displacement-threshold energies (E, ),

TABLE V. Extended Frenkel pairs: Comparison of
molecular-dynamics values for E; with those obtained from the
analytic expressions of Egs. (9) and (10) and values.

(111) expansion (100) expansion

MD calculated  Analytic Analytic

value value A? value A?
eV) (eV) (eV) (eV) eV)
11.5 11.3 0.2 b
18.3 19.4 —1.1 b
17.0 b 18.0 —1.0
21.0 b 21.0 0
22.0 b 20.0 2.0
18.1 18.6 —0.5 21.1 —3.0
18.0 19.6 —1.6 19.0 —1.0
19.2 19.8 —0.6 20.3 —1.1
12.2 12.5 —0.3 b
18.0 b 18.0 0

*MD value) —(analytic value).
"The analytic expression is not valid for these directions
(6> 40°).
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111 Far

FIG. 7. Same as Fig. 5 for far displacements for the (111)
direction [Eq. (9)].

from Eq. (3) for the (111) and Eq. (6) for the (100) for

angles 6,, of 30° and 20°, respectively, have been calculat-

ed from the numerical coefficients in Eqgs. (9) and (10).

This resulted in an average bulk displacement energy

through the open face of the nearest-neighbor tetrahed-

?m o)f 16.2 eV along the {111) and 18.6 eV along the
100).

IV. DISCUSSION

A. Formation energies

There seems to be no reliable experimental data on
point-defect formation energies,”!* but theoretical esti-
mates®® 73° based on the local-density approximation of
density-functional theory suggest that for the tetrahedral
interstitial 5-6 eV is required while 4-5 eV is required
for the hexagonal interstitial. Tersoff has calculated the
formation energies for isolated vacancies and interstitials
for the potential function utilized in the present calcula-
tions.® He finds a value of 3.7 eV for the isolated vacancy
and values from 3.8 to 5.9 eV for the interstitial, depend-
ing on its lattice location, with 4.7 eV for the split inter-
stitial observed in our calculations. Kitabatake and
Greene'® obtain similar values for vacancies and a fairly
similar range of values for interstitials near the Si(001)

Eq (6,4

FIG. 8. Same as Fig. 6 for far displacements for the {100)
direction [Eq. (10)].
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surface, also using the Tersoff potential. We note that
with only nearest-neighbor bonding, as is the case for the
Tersoff potential used here, the limiting value for the
combined formation energies of the isolated vacancy and
interstitial should not be greater than twice the cohesive
energy of the crystal (9.2 eV here).

The Frenkel-pair formation energies, which we give in
Table I, reflect the sum of formation energies for the iso-
lated vacancy and interstitial, plus any interaction energy
between the two point defects. The last two entries in the
table thus represent essentially isolated point defects
since in such case the formation energy should be 8.4 eV
(3.7 + 4.7 eV from the discussion above). The first two
entries in Table I, in contrast, show a considerable attrac-
tive interaction, i.e., AE~2.5 ¢V =(8.4—5.9 eV). In
this latter case, the Frenkel pair is expected to have a lim-
ited lifetime due to the attractive force represented by the
2.5 eV of “binding energy.”

B. Displacement thresholds

The evaluation of displacement-threshold energies
through MD simulation is, in principle, a simple pro-
cedure. The calculation is made complicated, however,
by the lack of a precise simple definition of just what con-
stitutes a displacement event. We began our investigation
of the displacement phenomenon using what we con-
sidered to be the simplest possible definition of a dis-
placed atom. That is, when a PKA is displaced outside
the tetrahedron of its four initial nearest-neighbor atoms
and then comes into quasithermal equilibrium with the
surrounding lattice before recombining with the resultant
vacancy, a displacement event is said to have occurred.
Our calculated E;(6,¢) surface using this definition does
not agree well with the corresponding map extracted by
Hemment and Stevens?®?’ from experimental electron-
induced radiation damage in silicon.

As indicated above, this simple definition of displace-
ment often leads to close Frenkel pairs. In view of the
dependence of Frenkel-pair formation energy on
vacancy-interstitial separation, such close pairs are likely
to recombine in a time short compared with characteris-

50 K Crystal

Displacement (A)

Time (fs)

FIG. 9. Comparison of the calculated displacement distance
vs time for a 25-eV PKA for an initial crystal temperature of 0
K with the corresponding result for a temperature of 50 K.
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tic measurement times. As a result, closer examination of
the details of the displacement processes predicted by our
calculations, and as displayed in part in Fig. 4, suggests
that a model displacement event should require at least a
4-A separation of the vacancy and interstitial in order to
lead to a stable defect. This new definition which incorp-
orates the notion of defect stability (or lifetime) improves
the agreement between our calculations and the analysis
of experimental data provided by HS. Discussion of re-
sults obtained using each of the displacement models is
presented below.

1. Close Frenkel-pair formation

Our simplest criterion for atomic displacement in the
silicon lattice requires only that the PKA be displaced
from the interior of the tetrahedron defined with the four
nearest neighbors at its vertices. This definition allows
the formation of Frenkel pairs separated by approximate-
ly one bulk interatomic bond length, as typified by the
first two entries in Table I. These defect pairs, which we
label as close Frenkel pairs, probably persist only for a
relatively short duration both due to the proximity of the
individual defects and to the attractive nature of the ac-
companying strain field, as indicated by the formation en-
ergies of Table 1. To verify this we have estimated E,, the
energy barrier to recombination for these close Frenkel
pairs, using a simple form of transition-state theory.!®
Our calculations provide an upper bound to E, of 0.1 eV.
At 80 K, the lowest temperature at which experimental
measurements have been reported,?’ this value for E,
suggests an average lifetime for these defects less than 0.2
psec. This result supports our argument that the limited
lifetime of these defects has prevented experimental ob-
servation of them. Since such energy barriers have been
shown to be sensitive to precise details of the potential
function (see, e.g., Wang and Rockett!'®), this conclusion
should be viewed as tentative.

The anisotropy of the displacement-threshold energy
E;(6,4), which results from this simple displacement cri-
terion, was analyzed in Sec. III, and average values for
E;, (E,), were obtained for conical regions of 30° and
20° centered on the (111) and {100) directions, respec-
tively. These average values for E; can be directly com-
pared with the HS model?® developed to explain the an-
isotropy of the measured electron-induced radiation dam-
age (carrier-removal rates”*!) in silicon. For this model
HS obtain values of (E;)(111)=22 eV and
(E,)(100)=26 V.2 In contrast to the results presented
by HS, our MD results for ( E; ) (Sec. II1 E), based on the
simple definition of a displacement event, show a different
pattern of anisotropy and are lower than those deter-
mined by HS.

The comparison between the anisotropy map obtained
in the present work for the formation of close Frenkel
pairs and that obtained by HS to explain the observed an-
isotropy in electron-radiation-damage studies supports
the notion that the close paris are short lived. That is, in
order to produce Frenkel pairs that are sufficiently stable
to lead to measurable radiation damage, the initial
vacancy-interstitial pair must be separated by a greater
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distance than required by our simple displacement cri-
terion.

2. Extended Frenkel-pair formation

The inconsistencies between our results and those of
HS (which show excellent agreement with experimental
carrier-removal rates?’3!), suggested that we examine the
energy requirements of the Tersoff potential function for
producing extended Frenkel pairs. Typical results from
these calculations are shown in Fig. 4 where we have
plotted the separation of the PKA and its associated va-
cancy as a function of PKA initial energy, for four initial
PKA momentum directions. The plotted data clearly
show that for the PKA energy range considered, two dis-
tinct vacancy-interstitial separation distances are favored.
The first distance, approximately 2.3 A, or a bulk intera-
tomic bond length, corresponds to Frenkel pairs with for-
mation energy ~ 6 eV (Table I). The second distance, ap-
proximately 2 of the width of the cubic unit cell, corre-
sponds to Frenkel pairs with ~8-eV formation energy
(Table I), and thus to nearly isolated vacancy-interstitial
pairs.

The E; surface obtained when we require this second
distance as the criterion for stable displacement was de-
scribed in Sec. III. The average values obtained from this
map for comparison with HS are (E;)(111)=16.2 eV
and (E,;)(100)=18.6 eV. These values are still
significantly lower than those obtained by HS (particular-
ly in Ref. 27), but the anisotropy is correctly identified
and our values change in the proper direction with the
consideration of defect separation (stability) factored in.

Although the vacancy and interstitial in the extended
Frenkel pairs defined here are almost isolated (from an
energetic point of view), nevertheless at a separation of
only 4.5 A they are sufficiently close that one can easily
imagine rapid recombination through thermal motion. It
is not clear, however, that continuing the exercise of in-
creasing the PKA energy and Frenkel-pair separation
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will lead to better agreement between our MD results and
those of HS, particularly since increasing the separation
would be expected (at some point) to lead to decreasing
anisotropy. The present results may in fact be the best
achievable with the Tersoff potential. We are reluctant to
proceed further along these lines in any case, since the
PKA energies we have already considered are near those
which will lead to multiple displacement, thereby further
complicating the analysis.

V. SUMMARY

We have presented here dynamical calculations of sim-
ple defect production in silicon using a realistic
potential-energy function, which reflects both the direc-
tional nature of the atomic bonds as well as the forces
due to bond bending. The formation energies which we
obtain for several configurations of the resultant Frenkel
pair provide a measure of the thermal stability of these
defects, and suggest a criterion for the production of
stable defects. Comparison of our calculated E;(6,¢)
surface for stable defects with the corresponding surface
extracted by Hemment and Stevens from experimental
electron induced radiation damage shows general agree-
ment in shape, although our values are only about % of
the experimental ones.

The Tersoff potential was used in the present calcula-
tion and the results highlight both the strengths and
weaknesses inherent in the use of such potentials and in
calculations of this type. Directional effects seem to be
faithfully reproduced by our calculations, while absolute
values for the displacement energies are underestimated.
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