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We discuss a generalization of the conventional bosonization procedure to the case of current-current
interactions which have a natural representation in terms of current instead of fermion-number-density
operators. A consistent bosonization procedure requires a geometrical quantization of the Hamiltonian
action of 8'„on its coadjoint orbits. An integrable example of a nontrivial realization of this symmetry
is presented by the Calogero-Sutherland model. For an illustrative nonintegrable example we consider
transverse gauge interactions and calculate the fermion Green function.

I. GENERALIZED BOSONIZATION BASED ON JV„

The method of bosonization' has proved to be a power-
ful tool for studying a great variety of one-dimensional
systems of interacting fermions. However, the applicabil-
ity of the conventional bosonization technique is restrict-
ed by such necessary requirements as a linear fermion
dispersion and the locality of a four-fermion interaction
which can be written solely in terms of density operators
p (q)=g ~&o'I' (p+q) Il (p), where the subscript
a =(R,L) labels chirality. Due to the commutation rela-
tions

H= ,' f—dx—e t)„'++ ,' f dx-, dx, dx, dx4% (x, )+(x, )

X V(x] x2 x3 x4)4(x3) p(x4)

(1.2)

Since the Hamiltonian (1.2) conserves the number of par-
ticles one can construct a required set of "bosonic"
operators from various fermion bilinears. 'Il(x) %(x').
According to Ref. 2 one can choose the following basis of
operators:

[p (q),p (q')]=aq5 .5(q+q')
W(x, q)= dr e'e"4 r+ —4' r ——

2 2
(1.3)

every Hamiltonian bilinear in p (q ) can be represented as
a quadratic form in terms of free bosons. Then the solu-
tion of the model can be easily achieved by means of the
Bogoliubov transformation. It is supposed to yield an
asymptotic long-wavelength description of a wide class of
four-fermion interactions including long-ranged ones.

In a wider sense a bosonization procedure can be un-
derstood as a mapping of the fermion Hilbert space to a
space of variables obeying commutation instead of an-
ticommutation relations. In view of that one might ask
whether there exists a formulation in terms of some vari-
ables of "bosonic" nature which would remain valid at all
scales.

Apparently, to perform a consistent bosonization of
more general Hamiltonians which would be correct away
from the long-wavelength-scaling limit one has to enlarge
the algebra of relevant operators. This stems naturally
from the necessity to take into account higher-order spa-
tial derivatives in Hamiltonians of the general form

It can be readily seen that operators (1.3) obey the com-
mutation relations

[ W(x, q), W(x', q')]=2i sin —,'(x'q —xq') W(x+x', q+q')

(1.4)

corresponding to the infinite dimensional algebra W„,
which is a quantum deformation of the classical algebra
w„of area-preserving (symplectic) diffeomorphisms of
the plane (x,q).

This algebra can also be understood as a particular lim-
it of the trigonometric form of the SU(N) algebra at
N —+~. Notice that in the case of a finite chain of
length N lattice counterparts of operators (1.3) do form
the SU(N) algebra.

This algebraic structure finds numerous applications
which include quantum mechanics of fermions on the
first Landau level, combinatorics of Laughlin wave func-
tions, topologically massive (2+1)-dimensional gauge
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theories, two-dimensional turbulence of an incompressi-
ble fluid, ' and two-dimensional gravity.

In the context of one-dimensional classical (quantum)
Hamiltonian dynamics the above-mentioned two-
dimensional manifold is realized as a phase space of a sin-

gle particle. accordingly, phase-space-volume-preserving
diffeomorphisms correspond to canonical (unitary in the
quantum case) transformations.

The physical meaning of 8' operators can be easily
clarified by expanding W(x, q) into a series
W(x, q) =g," &

W'(q)x' '/(s —1)!. A simple analysis
shows that the label s can be naturally identified with the
conformal spin of the field W'(q).

In the case of a finite chain the mode index q =2mn /N
runs over N distinct values. In the case of a finite density
of particles one may distinguish between left- and right-
moving particles. The two ("left" and "right") algebras
are isomorphic to each other. Then the algebra of, say,
"right" fields Wz (q) resulting from (1.4) gets a nontrivial
central extension.

[ W'(q}, W' (q')] = [(s —1)q' —(s' —l)q] W'+' '(q +q')

+ +5(q +q')5„c(q), (1.5)

[W (q), W'(q')]= —q'W'(q+q'),

[W (q), W (q')]=(q —q')W (q+q')

(1.6)

+ (kFq —
q )5(q+q') . (1.7)

One can readily recognize the operators W (q) obeying
the Virasoro algebra (1.7) as current densities
rr„(q)=g~&o(p+q/2)'Il (p+q)%(p). In a proper nor-
malization the central charge c corresponding to the case
of free fermions is equal to 1.

To proceed with a consistent quantization of Hamil-
tonians expressed in terms of generators of the infinite
algebra (1.5} one can apply the so-called method of
geometrical quantization. " Recently it was shown that
this method generalizing a coherent state representation
provides a regular quantization procedure for the case of

where the dots denote contributions of field with spins
ranging from s+s' —4 to zero. The c-number term pro-
viding a central extension to the algebra (1.5) appears in
the same way as a conventional Schwinger anomaly in
the right-hand side of (1.1). For a forrnal derivation of
the c-number term in (1.5) one has to redefine the W gen-
erators: 8'z(q) —+Wz(q) —g~&o(p+q/2)' 'n(p) where
n (p) is the Fermi distribution function. A total anomaly
obtained by a summation over all Fermi points cancels
out.

Note that chiral 8'„algebras appear naturally in the
theory of edge states on boundaries of quantum Hall
effect (QHE) droplets, the number of independent species
being equal to the number of closed boundaries. '

Now we consider more concretely, the algebra of
"right" current and fermion number densities. The spin
1 field W'(q) obeys the Abelian Kac-Moody algebra (1.1)
and can be identified with the fermion density operator
W'(q) =ptt (q) while the spin 2 field W (q) has commuta-
tion relations

I.= (e~igtd, g H~qi)—

=i f do tr(uIB u, B,u] )
—tr(HQ),

0
(1.10}

where u (cr =0}=u(x,q) and u(o = ~ )=uo =const.
Note that the first term in (1.10) depends exclusively on
the value of u (o",x,q;t) on the boundary o =0. The use
of the cocycle construction enables one to write down the
Lagrangian (1.10) in a totally covariant form.

A definition of the so-called Moyal bracket [, ] MB ap-

pearing in (1.10) refiects the complexity of commutation
relations (1.4)

[ A, B]MB=2sin —,'(B„B —8 r), )

X A(x, q}B(x',q')~„

Despite numerous potential applications of the above for-
malism a geometry of 8'„orbits remains quite unknown.
Some attempt to get a first insight based on the finite N
orbits of SU(N) was undertaken in Ref. 7.

However, one can easily obtain a local equation of
motion for the phase space density,

B,u+ IH, u]Ms=0 . (1.12)

In the case of free fermions the equilibrium solution of
(1.12) is merely uo(x, p)=8(kF —p ). To consider small
deviations from the equilibrium state one can choose the
parametrization u (x,p)=8(kF2(x) —p ) which leads to
the approximation called the collective field theory. '

Comparing this parameterization with the most general
expansion

affine Lie algebras. '

In the framework of this approach one has to derive a
covariant Lagrangian of the system in terms of variables
taking their values on coadjoint orbits of the underlying
algebra. An arbitrary element of the orbit Q can be
represented by the projection operator into some
coherent state

~
4 )

Q =I+)&+l=gPg',

g =exp i f dq dx P(x, q)W(x, q)

where P = ~0) (0~ is a projection operator into a reference
state ~0) belonging to the orbit. By construction one al-
ways has Q =Q and the orbit is specified by the condi-
tion trQ=1 where the trace symbol stands for the in-

tegral over phase space coordinates, tr= fdq dx. The
so-called symbol of an arbitrary operator 0 is given by its
average over some coherent state, (4'~O ~'Il ) =tr(QO).

A natural parametrization of the coadjoint orbit of
W can be obtained in terms of the phase space density

u(x p)= fdr dq e'"~ ' ('Pl W(r q)l+) .

In terms of this variable the Lagrangian acquires the
form
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u (x,p) =e(kF —p')+ g 5(p —akF )p (x)

+ c) 5(p —
akim )[m (x)—ak~p (x)]+

(1.13)

we conclude that in the framework of the collective field
theory one can use an approximate identity

1
m ~(x)= akF +—.B„p~(x) .

22
(1.14)

II. CALOGERO-SUTHERLAND MODEL

A remarkable example of a nontrivial realization of the
W„symmetry is provided by the famous Calogero-
Sutherland model of one-dimensional fermions with
long-range forces

H = ' fdx %—t( —c) +co x )4

+ —,
' fdx dx'4 (x)%(x} %t(x')4'(x') (2.1)

A, (A, —1)
(x —x')

[or V(x)-(L sinx/L) in the compact case]. This
model manifests a surprisingly simple solution which al-
lows one to consider the Hamiltonian (2.1}as some kind
of a "statistical" interaction between fermions (compare
the discussion of one-dimensional spin models with 1/x
exchange in Ref. 14).

It was pointed out by Sutherland' that every state of
the model (2.1) can be represented in the form

H=W +co W' .0 2 (2.4)

Obviously, the set of mutually commuting operators
I, = WD commute with (2.4) and constitute a complete set
of integrals of motion of the Calogero problem. '

nihilate the ground state W„' ~0) =0 and reveal its intrin-
sic symmetries. On the other hand, acting by the modes
W„' with n )s —1 on the ground state, which appears to
be the highest weight vector of the W„representation,
one creates all excited states of the form (2.2),
W„' ~0) = ~excitation).

Notice that the central charge c appearing in the com-
mutator of W (q) is still equal to 1 and in the scaling lim-
it the only effect of the 1/x interaction is a renormaliza-
tion of the Fermi velocity u~~u~A, .' An apparent simi-
larity of the functions (2.2) and the variational Laughlin
wave functions proposed to describe ground states and
low-lying excitations of the v =A, (for odd integer A, )

yields a simple explanation of the reported high sym-
metries of Laughlin states. '

The nonlinear construction (2.3) demonstrates the fact
that the model (2.1) describes an analog of a "statistical"
interaction and can be understood as a one-dimensional
counterpart of the two-dimensional anyon model. In
fact, the Hamiltonian (2.1) does result from the anyon
Hamiltonian with a statistical parameter equal to e=n A,

if all particles are placed on the same line.
It appears to be crucially important that, like the free

fermion case, the Hamiltonian (2.1) can be written as a
linear form in generators (2.3),

N

%(x„.. . , x~)= g (x;—xj) P(x), . . . , x~)
i (j

N

Xexp ——co g x; (2.2)

III. CURRENT-CURRENT INTERACTIONS
IN D DIMENSIONS

where P (x„.. . ,x~ ) is a symmetric polynomial, the
ground state corresponding to P( [x; J ) = l.

It readily follows form the results of the previous stud-
ies' ' that the Hamiltonian (2.1) can be simply expressed
in terms of the operators

As an instructive (nonintegrable) example of an oc-
currence of W symmetries we consider ferrnion interac-
tions bilinear in current operators,

H pN=Q [ W'—(0)—kr'W' (0)]

W„'= fdr 4 (r) id, —(A, ——1)fdr', 4 %(r')
s —1 +—,

' g f dq W (q)D &(q) W&( —q) . (3.1)
aP

X r "%(r), (2.3)

where a proper normal ordering is assumed. It turns out
that the operators (2.3) provide a nontrivial realization of
W„.

The necessity to use the "covariant" deriv-
ative i d„—(A, —1)f—dr'4 %(r')/(r r') instead of-
the usual one can be easily deduced in the first quan-
tized formalism. In the space of many-body wave
functions the covariant derivative acts as
g;&J(x, —xj ) 'c) g; &J(x,. —x. )' . Being applied to

any of the functions (2.2} this operator leaves the result in
the same set of functions, while an ordinary derivative
has this property for A, = 1 only.

One can also see that all modes with 0~ n (s —1 an-

The Hamiltonian (3.1) provides an example demonstrat-
ing a relevance of the subalgebra of W„ formed by
W'(q) and W (q). Indeed the only bosonic description
of (3.1) which remains valid at all scales can be performed
in terms of current and not fermion number densities. To
treat the model (3.1) one has to carry out the geometrical
quantization of the Virasoro subalgebra of W„similar to
that described in Ref. 19 in the context of the two-
dirnensional conformal field theory.

In general, the matrix D &(q) couples N ) 1 Fermi
points all together. As another generalization allowed by
the Lagrangian formalism one can also consider retarded
interactions corresponding to a frequency-dependent ver-
tex D &(co,q).

The equation of motion for the phase space density
(1.13) reads as
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Bru (x,p)=pB„u (x,p)

+p(kFB —c}„')Jd 'D
tt(

— ') p( ',p)

+ dx dpppD px x

X u tt(x ',p')B„u (x,p) . (3.2)

[p (q),p&(q')]=SD(n q)5 P(q+q'),
[vr (q),p&(q')]=(n q)5 ~ (q+q'),

[~ (q), ~p(q')]=5 tt((q —q')n )m. (q+q')

+ —,', SD5 tt5(q+q')

(3.5)

(3.6)

=q co qp+ —(kt;q q)D—(co,q)
aa

(3.3)

In accordance with the previous discussion one obtains a
long-wavelength limit of the expectation value

(p (co, q )p (
—m, —

q ) ) simply by putting p equal to kF in

(3.3).
The formulas (3.2) and (3.3) can be used also for a per-

turbative computation of expectation values of any func-
tionals F [u ] representing various correlation functions

( W"(q, t) W (q', t')). Furthermore, in some cir-
cumstances the bosonization scheme can be generalized
to the case of higher dimensions. Such a development of
a conventional bosonization of density-density interac-
tions was proposed in Ref. 20 and recently developed in
Ref. 21 and also discussed in Refs. 22 and 23.

The basic assumption put forward in Ref. 21 is the ex-
istence of a Fermi surface obeying the Luttinger theorem.
It can be considered as an extended object having infinite
number of degrees of freedom corresponding to the Lut-
tinger volume-preserving diffeomorphisms. Fluctuations
of the fermi surface are associated with the collective
modes of the system (particle-hole excitations) which con-
stitute the entire low energy physics. This conjecture is

supposed to be essentially weaker than a statement about
the applicability of the Landau-Fermi-liquid theory.
Therefore it may facilitate an informative analysis of non-
trivial non-Fermi-liquid states.

The key elements of the construction are commutation
relations of the D-dimensional analogues of the W gen-
erators,

s —1

W'. (q)= g
pEA

p+ n
2

x [ql"(p+q)+(p) —5(q) «(p) ) ] .

(3.4)

Here the unit vector n is a normal to the Fermi surface
"patch" A of the area So —A ' (A «k~) centered at
the point k . Formally one should first construct a prop-
er bosonization scheme for the case of X—(k~/A)
coup1ed Fermi points and then tend X to infinity.

It was shown in Ref. 22 that a straightforward general-
ization of (1.1), (1.6), and (1.7) for p (q)= W'(q) and
~ (q)=W (q),

This nonlinear equation can only be treated perturbative-
ly. In the long-wavelength limit one can neglect the last
term in (3.2) as a higher-order gradient correction. The
residual linear equation enables to determine a propaga-
tor of the field u (q,p;co) = f dx dt e'~" ' 'u (x,p; t),

(u (q,p;co)u (
—q,p; —co))

X [(n q)k~ —(n q) ], (3.7)

can only be derived if all moments lie inside a squat box
with the size A~~ along the normal to the Fermi surface
being much less than the size A~ in the tangent direction.
Otherwise, one cannot neglect four-fermion terms in the
right-hand side of (3.5)—(3.7) and the above algebra gets
spoiled.

In the absence of any cutoff introduced by hand, one
might think that this condition can be fulfilled dynami-
cally if due to the specific features of the interaction ver-
tex D t3(co, q) the following relations among transferred
energy and momentum hold:

q)( «qJ (3.8)

D"„(co,q ) =

p v
2 gpv q q

q
(3.10)

gq +iy-
q

demonstrates an overdamped pole at co-iq . It was
suspected for a long time that the interaction (3.10)
changes the behavior of fermions drastically with respect
to the free case in both three and two dimensions.

In the long-wavelength approximation corresponding
to the equality (1.14) a fermion operator can be represent-
ed solely in terms of W' (q),

N
%(r)- g exp[ik~(a). r+i@ (r~~~)]O (r~},

a=1

W' (q)iq r

(2~}D n q
(3.11)

Notice that these relations obviously fail in the case of
the random-phase approximation (RPA) screened long-
ranged density-density interaction V(q) —1/q with
a &0. The vertex dressed by the RPA bubbles

V( )q
1+g (co, q) V(q)

where P (co,q)=1 —
q /co (at q «co) is a scalar polar-

ization operator, develops a pole characterized by the
dispersion co-q' at small q. Moreover, in the case of
Coulomb interaction (a=2) recently considered in Ref.
24, the collective mode acquires a finite plasmon gap and
then is no longer relevant in the low-wavelength limit.
Thus the applicability of the method to the case of long-
range density-density interactions remains questionable.

However the conditions (3.8) certainly hold in the case
of the RPA-summed effective current-current interaction
governed by the transverse vector polarization

g „(co,q)=y(co, q) q+io(~, q)co. In the gapless metal-
lic state [y(co, q)=const;o(co, q)-l/q] the effective ver-
tex
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The explicit form of the ordering operator 0 (r~} neces-
sary to maintain anticommutativity of operators at equal

r~~
=r n is strongly dependent on dimension. In particu-

lar, in two dimensions one can use the operator
0 (r) =exp[i fdr'arg(r —r')lV' (r')], which is a counter-
part of the one-dimensional Jordan-Wigner factor
0 (r ) =exp[in al dr'4 (r')%(r') ].

IV. ONE-PARTICLE GREEN FUNCTION

Proceeding along the lines proposed in Refs. 21 and 22
and assuming for simplicity a spherical shape of the Fer-
mi surface, one arrives at the integral representation of
the one-particle Green function,

G(r, t)=(%(r, t)% (0, ))
da) dq eiq r iso—t)—g exp ikF(a}r N—

(2~) +'q~~ [c0—q~~+SD —,', (krq~~
—

q~~ )8(m, q)+i5]
(4.1)

Taking the limit of N ~ ~ and keeping the first nonzero term in the 1/N expansion one obtains the formula

dn e r dcodq (1—e'~' ' '}D(co,q)G(r, t)—, . exp
(2~}D ' n r —t+i5 (2~) +'

(co —n q+i5)
(4.2)

where D (co, q) denotes a diagonal matrix element of the
operator D &(co,q).

Notice that the formula (4.2) generalizes the result ob-
tained in Ref. 27 for the case of 1 &D & 2 by the method
of asymptotic Ward identities" based on the conjecture
of a dominant rule of forward-scattering processes. The
consideration in Ref. 27 was restricted to the case of local
interactions. On the basis of the above observation we
expect that their analysis could be extended to the case of
long-range interactions in D & 2+A, , the upper critical di-
mension being determined by the exponent A, which
governs the asymptotics D(co, q)-max(co, q) at small
co, q.

We shall concentrate on the D =2 case first. Then the
integral over the transverse transferred momentum q~
yields

2

Jd 'q~D(co, q)- (4.3)

3/2 3
G(e)- exp

E'
(4.5}

which coincides with the result of the eikonal approxima-

Other integrations in the exponent give the factor
—exp[ gr~~/max(~t ——

r~~ ~,rj )] which shows that the
integrand in the residual integral over the Fermi surface
is strongly peaked at n parallel (or antiparallel} to r.

Calculating the Fourier transform of (4.2) at energy
and momentum close to the (Luttinger) Fermi surface
(s=O,p =kr) one obtains the expression

G(e, p)- J r dr sinker

l E'f g 1'/~ f~0(pr } . 2 2/3

t —r +i5
(4.4)

In particular, at p =k~ and a~0 we recover the asymp-
totic

tion and exhibits a behavior drastically different from
the Fermi-liquid one.

In the three-dimensional case the integral (4.3) behaves
as lnco which means that D =3 is a critical dimension for
the interaction (3.10). Our simplified consideration leads
to the conclusion that the one-particle Green function
has Luttinger-type features, G(e)-e '+" where rt-g .
However we stress that in contrast to the D =2 result
(4.5} the latter estimate can be strongly aff'ected by
neglected terms. A more precise analysis is needed to es-
tablish the D =3 behavior reliably. One can also obtain
correlation functions of more than two fermion opera-
tors using the same technique.

V. CONCLUSIONS

We observe that a heuristic attempt to accomplish a
consistent bosonization of one-dimensional fermions with
nonlinear dispersion and nonlocal interactions encounters
such an algebraic structure as a central extension of W„
realized in terms of fermion bilinears. To proceed with a
Lagrangian description one has to find a proper parame-
trization of coadjoint orbits of W„. The orbit parame-
trization in terms of the phase space density leads to a
generalization of the collective field theory. ' It also pro-
vides a regular way to derive corrections to results of the
conventional bosonization due to higher gradient terms
which become important away from the scaling limit.
The Calogero-Sutherland model, presenting an example
of a nonlinear realization of W„, allows a simple con-
struction of integrals of motion in terms of generators of
this algebra.

The bosonization procedure based on W„can also be
extended to higher dimensions by generalizing the ap-
proach of Ref. 21. We discuss current-current interac-
tions mediated by a transverse gauge field as a physically
relevant example where the Virasoro-type subalgebra of
W„occurs. On the basis of this consideration one can
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establish the status of the eikonal approximation earlier
applied to this problem. It corresponds to the neglect of
higher order gradient terms and gives essentially the
same results as a conventional bosonization as well as the
method of "asymptotic Ward identities. "
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