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Conductivity of a coupled two-channel dirty Tomonaga-Luttinger model is calculated from the
Mori formalism. We find that the conductivity becomes enhanced as the interchannel interaction
is turned on even when the interaction is repulsive. This effect is opposite to those from the 2kz
charge-fluctuation coupling in systems with the channel separation < 1/kp, and is considered to
come from the suppressed charge-density-wave fluctuations.

Recent studies of quantum transport in mesoscopic
systems have brought to light many unusual features
unexpected for classical systems.! The conductance
quantization? in the ballistic regime and the univer-
sal conductance fluctuation® exemplify these in a two-
dimensijonal (2D) system.

Quasi-one-dimensional (1D) systems, on the other
hand, have been constructed with recent nanostructure
technology and are called quantum wires. In one dimen-
sion, the electron-electron interaction can play a crucial
role, which may be analyzed by what is called g-ology,*©
which is also extended to treat, e.g., the Coulomb
blockade.” When only the interactions corresponding to
the forward-scattering process are relevant, the system
is reduced to the Tomonaga-Luttinger model. The con-
ductivity of the dirty single-channel Tomonaga-Luttinger
model has been discussed by Luther and Peschel for spin-
less fermions.® They find that the conductivity for T — 0,
which converges to a finite value for noninteracting elec-
trons, diverges for attractive electron-electron interac-
tions, and converges to zero for repulsive interactions due
to the charge-density-wave (CDW) correlation. The sup-
pression of the conductivity here can be attributed to the
pinning of the CDW, which is enhanced (suppressed) by
repulsive (attractive) interactions. Recently Fukuyama,
Kohno, and Shirasaki have examined the effect of long-
range Coulomb interaction on the conductivity by mak-
ing the g parameters wave-number dependent.® The ef-
fect of the long-range interaction is found to appear as
a weak temperature dependence of the critical exponent
(v in 0 ~ T7 at low temperatures) for the conductivity.
These studies have concentrated on the case of single-
channel systems.

In this paper, we look into the conductivity of two-
channel systems as a model for coupled quantum wires.
We shall show that, surprisingly, the conductivity be-
comes enhanced by the interchannel (repulsive or attrac-
tive) interaction.

We consider the two-channel Tomonaga-Luttinger
model with short-range intrachannel and interchannel
electron-electron interactions with finite impurity densi-
ties. We take the two channels (a and ) to be equivalent,
and we also assume that the interchannel electron tun-

0163-1829/94/49(23)/16852(4)/$06.00 49

neling is absent for simplicity. To concentrate on the
many-body effect here, we assume that the system is
short enough for the effect of the Anderson localization
to be neglected as is done in previous studies,®® although
the problem can become crucial for long 1D systems.? We
take A= kg = 1 in this paper.

The two-channel 1D system of interacting electrons
with electron-impurity interaction is modeled by a phase
Hamiltonian,

H = HO + Himp, (1)

H, = Hcharge + Hspinv (2)

Hoparge = / d2(Ap{[V6a(2)]? + [V83(z)]?}

+C{[Pa(2)]* + [Ps(2))*}
+2BV0,(z)Vés(z)), (3)

Hupin = / (A, {[Va(@)]? + [Véa(2)]2}
+C{[Ma(2)]? + (s (=)]?}), @)

where 6, (z) [¢,(z)] is the charge (spin) phase of electrons
in channel v (= a,f), P,(z) [II,(z)] is the momentum
conjugate to 0, (z) [¢.(z)].

The coefficients are given by A, = (vr/47)(1 + 3g),
A, = (vp/4m)(1 — g), B = vrgag/m, C = mvp(l — g),
where g (gog) is the intrachannel (interchannel) coupling
constant of the forward-scattering processes and v is the
Fermi velocity. Here we have neglected the backward-
scattering and umklapp-scattering processes, which have
large momentum transfers.

The interchannel interaction enters as a charge-charge
coupling o« vpgap VO (z)VOs(z). The charge-density op-
erator in the Tomonaga-Luttinger liquid is originally ex-
pressed as

0. (<)

N,(z) = ZT + % cos[2kpz + 0, (z)] cos[¢, (z)].

(5)
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When the spatial separation of the two systems is of the
order of less than 1/kr, the coupling ( ~ cos[f,(z) —
05(z')]) of the 2kr CDW fluctuations will couple the
phases of the two channels.®° By contrast, we assume
here the opposite case of the separation larger than 1/kp,
so that we are left with the V8, (z)V6g(z) coupling. In
other words, we neglect the interchannel backward scat-
tering. We shall return to this point later.

We can then diagonalize the charge part of the Hamil-
tonian Hcharge as is done for the electron-hole system in
a study of the excitonic phase by Nagaosa and Ogawa for
a two-channel Tomonaga-Luttinger model,'° by a linear
transformation,

0s = —=a(a) 2 05(2)) (6)

These charge modes are gapless with linear dispersions,
in which the velocities are given by

v = vp4/1+ 39 £ 4ga3. W)

Now we turn to the calculation of the conductivity.
We assume that electrodes are attached to one of the
two chains to measure the conductivity. The impurity-
scattering part of the Hamiltonian Hjn, is defined, for
each of the two channels, by

Hmp= > Y /dwN,,(z)u(x —z¥), (8)

v=a,f 1

where u(x — z}) is the potential of the impurity at z¥ in
channel v.

Following Gotze and Wolfle for the Mori formalism for
the conductivity,!' we can calculate the relaxation time
T in the second order in Hjnp. Since we assume no inter-
channel hybridization we can calculate 7 for each channel,
where 7 is the same for the two equivalent channels.

In the Tomonaga-Luttinger model, the conductivity
J

(Pa(0,)pa(0,0))ox (e~ 0a®eba@)y

— e~ {(6+(1)=6.4(0)]%)/4 ,—([6- ()~0-(0)]*)/4
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o0 = n.e?r/m*, with m* being the effective mass and
n; (ne) the density of impurities (electrons), is given in
terms of the density-density correlation function N as

o =o00/F(T), 9)
ImN (2kz + g,
F(T) = lim S RN CEE+a0) g
41[’1)%.01——)0 p w

Here 0y = n.e?ry/m* is the conductivity of a noninter-
acting system with 7o = vp/(n;u?) with u = u(zkr).
The density-density correlation function is defined by

N(q,w) = i/ooo dt e"“"/d:c €' ([p(z,t), p(0,0)]), (11)

where () represents the thermal average, and the density
for a two-channel system is expressed as

p(z) = pa(x) + pﬁ(fE),
po() =D [l (@)puze () + Hel. (12)

Here v, is the annihilation operators of right-going (i =
1) or left-going (i = 2) electrons, with spin ¢ in channel
v. In general we obtain

lim y° N (Zkr +g,w) _ 1 /w dt(p(0,)p(0,0)).

w—0 w - —27
(13)

Although p(z) = po(z) + pg(z), we can readily
show that the cross term of the correlation function,
(pa(0,t)pg(0,0)), vanishes. This implies that, when we
attach the electrodes to both channels, the total current
will simply be twice the value for the case in which the
electrode is only attached to one channel.

As for the diagonal terms,

~ew{-o [\/C/(Ap+B>+ﬁ/(Ap—B>] [ awererer == b,

where n(w) is the Bose distribution function and wr =
vr/A (A is the real space cutoff) is the cutoff frequency
of the order of the Fermi energy. As evident from this,
both 6, and 6_ are relevant.

Finally the quantity F' (proportional to the resistivity)
becomes

F(T) = i/w dt
w/7/3T Jo
— cos(wt)

x exp[—[z +G(a.lgaal)] [ do
fn(w) + e~/ |

x cos{(2 + G(g, |9ap])] tan™} (wpt)}, (15)

|
with the effective coupling

G(9,19apl) = /(1= 9)/(1 + 39 + 4gap)

+\/(1—g)/(1+3y—4gaﬁ) (16)

2
~2y/(1 - g)/(1 + 39) [1+2(—g‘-"’—) ]

1+ 39

(I908] < 1). (17)

The above equation is the key result of this paper.
The conductivity is determined by G(g, |gag|) x (1/v4 +
1/v_), which is independent of the sign of g,g, with the
dependence
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0 o ' ' '
G(g7 Ig ,3|) < 0’ (18) 101 ]
dg F 9=09
0G(9,lgasl) _ ,
0|gagp|

Surprisingly, the conductivity turns out to be more en-
hanced for increasing interchannel repulsion g,g, while
the intrachannel interaction g reduces the conductivity
as expected from the single-channel (gos = 0) result for
the spinless fermions.® The temperature dependence of
0 /0o numerically calculated in the absence of the inter-
channel interaction for various values of the intrachannel
interaction g (Fig. 1) confirms that the conductivity for
T — 0 converges to zero for g > 0, converges to a finite
constant for g = 0, and diverges for g < 0.

In the presence of the interchannel interaction gog with
a fixed g in Fig. 2, 0 /09 is indeed seen to increase with
Jag, in which the effect is more pronounced for lower tem-
peratures. This result might naively seem to be an effect
of the attraction due to the interchannel repulsion, i.e., in
coupled channels, one can evoke an effective attraction,
—dg, in the channel a as arising from a bubble diagram
(in the lowest order) of channel 3. However, we wish to
stress the following point: if we look at Eq. (16), G can-
not be given as a single-channel formula with a shifted
value of g — g — dg. This implies that the enhancement
of the conductivity is intrinsically a two-channel effect.

In fact, the physics involved in the enhanced conduc-
tivity may be understood as a result of the quantum-
mechanical suppression of CDW fluctuations: we can
show by looking at the correlation functions in the two-
band g-ology that the CDW fluctuation is suppressed
when the interband interaction is turned on. This will
weaken the CDW pinning due to impurities, resulting in
the enhanced conductivity.

An interesting point to be noted is the following. There
is an anticorrelation that superconductivity (SC) is en-
hanced when diagonal orders are suppressed, which is
well known in single-channel systems and approximately
holds in two-channel 1D systems as well.!° In this sense,
the enhanced conduction appears to occur concomitantly
with an approach to an SC regime, even in two-channel

10' E
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FIG. 1. The result for the conductivity o/cgo for the single
channel with intrachannel interaction ¢ = —0.15, 0, 0.2, 0.4,
0.6, 0.8 with vanishing interchannel interaction gog = 0.
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FIG. 2. The result of the conductivity /oo for the two in-
teracting channel systems for various interchannel interaction
gop = 0.9, 0.81, 0.45, 0 from the top for a fixed intrachannel
interaction g = 0.9.

systems. The SC regime in purely repulsive (two-band)
systems might sound peculiar, but two of the present
authors have shown that a parameter regime where SC
dominates does indeed exist for repulsive intraband and
interband interactions in the two-band system, although
a different situation with inequivalent chains is consid-
ered there.!? Thus the normal-state transport as unrav-
eled here complements the study of superconductivity in
such systems.

As mentioned in Ref. 9 the typical values of the pa-
rameters in the case of GaAs quantum wires are n ~
2x 10 /cm?, m* = 0.067my, and the single-channel cor-
responds to the value of the width of the wire W ~ 400 A.
These values correspond to the cutoff energy wp ~ 100
K. Then the effect of the interchannel interaction on the
conductivity may be observable around the usual experi-
mental condition of T' approximately a few K. A possible
experimental situation to observe the effect would be two
quantum wires, either laterally or vertically coupled with
a short separation.

An interesting possibility, then, is to have a current-
carrying wire on top of another wire, where the second
wire is controlled by either doping or a back-gate elec-
trode. Then the conductivity of the first wire should be
modified when the electron density in the second wire is
changed. To be more realistic the effect of hybridization
in coupled quantum wires will have to be studied.

We can also envisage a completely different phe-
nomenon when the spatial separation d of the two sys-
tems is varied across the value 1/kp (~ 80 A in quantum
wires). The coupling of the 2kp CDW fluctuations will
lock the phases of the two channels (out of phase for the
repulsive interchannel coupling) for d < 1/kp, thereby re-
ducing the conductivity due to the CDW pinning. In the
coupling, J cos[fy(z) — g(z')], we can put z ~ =’ when
V0/60 < kp and the coupling constant is J ~ Ko(2kpd)
when the Coulomb coupling is integrated over ¢, with
K, modified Bessel’s function, being a rapidly decreas-
ing function.® We can thus expect a crossover from the
suppressed conduction for d < 1/kp down to the en-
hanced conduction for d > 1/kp. We can alternatively
make the kp’s in the two channels different by tuning the
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carrier densities, where the 2k coupling will vanish.

It is also an interesting future problem if the effect
found here persists in two dimensions. The present for-
malism for the two-channel system can be extended to
multichannel cases in a straightforward manner by intro-
ducing higher-dimensional matrices. To investigate the
way in which the system crosses over to two dimensions,
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we will again have to incorporate the effect of hybridiza-
tion.

We are much indebted to Professor H. Fukuyama and
Dr. H. Kohno for illuminating discussions. Valuable com-
ments from Professor A. Shimizu and Professor F. Ko-
mori are also appreciated.
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