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We present quantum-mechanical calculations of conductance oscillations produced by modulating an
applied-potential step V3 in one of the branches of a multiply connected system. We show that these os-
cillations arise from partial reflections of the wave function at the sharp steps defining the different po-
tential regions. Quantum interference between the different branches is shown to be negligible in spite of
a great deal of coherence present in ballistic multiply connected systems.
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FIG. 1. Two 2D semi-infinite electron gases connected by a
constriction. A rectangular infinite-repulsive potential obstacle
is deposited in the center of the constriction. The potential V;
inside the branch of the structure can be varied independently,
for i = 1 and 3. Shaded areas are forbidden for electrons.

In a recent paper, ' Joe and Ulloa have reported calcu-
lations of conductance oscillations in quantum ballistic
narrow channels produced by modulating an applied
transverse potential along one of the branches of a multi-

ply connected region. They suggested, "These aperiodic
oscillations arise as a quantum-inference effect between
phase-shifted branches of the wave function in the struc-
ture, similar to the lag effects described by Boyer."
However, we show in this Comment that conductance os-
cillations as a function of an applied transverse potential
in one of the branches of a multiply connected system are
due to partial reflections of the wave function at the
sharp steps defining the difFerent potential regions, and
interference effects between branches of a multiply con-
nected region are negligible. These resonances occur
when an integral multiple of half the Fermi wavelength
coincides with the length of the potential barrier.

Figure 1 is a schematic drawing of the system which is
similar to that described in Ref. 1. Two two-dimensional
(2D) semi-infinite electron gases are connected by a con-

striction. A rectangular infinite-repulsive potential obsta-
cle is deposited in the center of the constriction, so that
incident electron waves are forced to pass through two
branches before they recombine at the other end of the
channel. The potential inside each of the uniform sec-
tions of the constriction is constant. A potential barrier
with uniform height V3 is placed in the top branch. In
our model, the potential V, inside the branch of the struc-
ture can be varied independently, for i = 1 and 3 as shown
in Fig. 1, allowing us to study diverse physical situations.
For simplicity, the potential in the shaded areas in Fig. 1

is infinite. We solve the Schrodinger equation in every
uniform section shown in Fig. 1 by an eigenfunction ex-
pansion. Matching the wave function and its normal
derivatives at the boundaries between the difFerent sec-
tions, a system of linear equations for the expansion
coefficients can be found. We solve this system numeri-
cally, and use the solution to calculate the conductance at
zero temperature. Details of this procedure are found in
Refs. 3 and 4.

Our numerical results are shown in Fig. 2 at a fixed
Fermi energy EF=9.4 meV, as a function of potential
barrier V3. In Fig. 2(a) we have plotted conductance G
versus potential barrier V3 along the top branch of the
structure. Conductance oscillations induced by a chang-
ing potential V3 are clearly seen. Oscillations become
sharper for larger LT values, and the variation of the
channel length L, for a fixed LT has no noticeable effect
on these oscillations, even if L, =Lr (not shown here).
These results in Fig. 2(a) are in qualitative agreement
with the work of Joe and Ulloa. ' However, they suggest-
ed that these oscillations are produced by quantum in-
terference between voltage-shifted states in the different
branches. In the following, we will show in Figs. 2(b) and
2(c) that interference effects between the different
branches of the structure are negligible, and the oscillato-
ry structure is due to the reflection at the edges of the po-
tential barrier V3 in the top branch of the constriction.
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To show the interference effects on conductance G of
the constriction, we have calculated G, and G3, where G,
is the conductance of the ith branch when the other is
completely closed in the constriction. The differences be-
tween 6 and 6, +G3 are shown in Fig. 2(b), where
66 =6—(G, +G3). Notice that the values of 56 are so
sma11 that interference effects between two branches of
the constriction are negligible, i.e., G=6&+G3. These
are in overall agreement with the results of the earlier
studies. Thus Fig. 2(b) demonstrates that conductance
oscillations are not due to quantum interference between
two branches of the constriction.

We argue that conductance oscillations produced by
modulating a potential barrier V3 along the top branch of
the structure in Fig. 2(a) are due to the longitudinal reso-
nances arising from partial reflections of the wave func-
tion at the edges of the potential barrier V3. Resonant
transmission occurs if the barrier length L~ is approxi-
mately an integer multiple of half the longitudinal wave-
length k=h[2m(E& E„——V3)] ', leading to oscilla-
tions on the conductance plateaus. Here, E„+V3 is the
subband energy in the top branch of the structure closest
to EF from below. The resonances are more numerous
for a longer barrier length Lz as the resonance condition
can be satisfied more times. The ratio between the bar-
rier length L~ and the longitudinal wavelength A. of the
top branch of the structure can then be written as
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In Fig. 2(c) we display the comparison between the pre-
dicted ratio changes as a function of V3 in Eq. (I) (solid
line) and the calculated peak positions in Fig. 2(a) (dots),
indicating the resonance condition in the top branch of
the structure. Notice that the solid curve fits the dots
very well in Fig. 2(c). This good agreement demonstrates
that conductance oscillations produced by modulating a
potential V3 along the top branch of the structure are due
to longitudinal resonances arising from partial reflections
of the wave function at the edges of the potential barrier
V3.

In conclusion, we have shown that quantum interfer-
ence between two branches of the present model makes a
negligible contribution to the conductance and that con-
ductance oscillations produced by modulating a potential
barrier V, are due to reflections at the sharp steps
defining the different potential regions in the top branch
of the structure. Finite temperature broadening of the
Fermi surface would tend to smooth out the fine struc-
ture shown in Fig. 2(a), making it disappear when kT

0.0

exceeds the separation of the resonances. Smooth barrier
edges tends to reduce the reflections at the edges of the
potential barrier, deteriorating the resonance condition.
A rounding of the corners has the same effect. There-
fore, observation of these oscillations in conductance is
difficult, due to the potential barrier generated by gate
bridges will not be a perfect step function.
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FIG. 2. EF=9.4 meV, Lz =300 nm, L l =1.2L~, L = 1.4L&,
8'=100 nm, and W; = 8'/3, i =1,2, and 3 for all curves. (a)
Conductance 6 vs V3 for V, =0. (b) The difference between G
and 6&+63 as a function of V3, where bG=G —(G, +63). (c)
Predicted [solid line, Eq. (I)] and calculated [dots, (a)] ratio be-
tween the barrier length L& and the longitudinal wavelength A,

of the top branch of the structure vs V3.
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