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We propose a method for using reflection high-energy electron-diffraction (RHEED) measurements to
determine step-adatom kinetics during growth by step flow. Analytical results are obtained for the ada-
tom sticking coefficients at the steps in terms of the steady-state in-phase RHEED specular intensity at
two distinct misorientations. Calculated results based on estimated values for these intensities in the
step-flow regime indicate the presence of a pronounced barrier at the down step, providing support for
previous conjectures. Extension of these results to lower temperatures, including the region below the
critical temperature where the majority of RHEED studies reported have been made, should be possible
but will involve calculations of a more complicated nature.

I. INTRODUCTION

There has been a great deal of work in recent years'
concerned with elucidating various aspects of growth on
vicinal semiconductor surfaces during molecular-beam
epitaxy. The kinetic equation originally introduced by
Burton, Cabrera, and Frank? (BCF) for growth at low su-
persaturation and near-equilibrium conditions has been,
with appropriate modifications, the basis for much of this
work.® Here, as is also the case with computer simula-
tions, * it has been necessary to make informed guesses re-
garding the boundary conditions at the steps.’”’ A
variety of choices has been proposed. The most general
choice is for unsymmetric conditions at the up- and
down-steps.>® More frequently, explicit results are ob-
tained using absorbing boundary conditions. This choice
is problematic in the context of a macroscopic descrip-
tion, for which this condition is taken operationally to
mean that the adatom density vanishes at the steps.’™’
Further, when step motion is considered, "*'!° this condi-
tion is inconsistent since the density profile across the ter-
racses, including the terminating steps, must be anisotrop-
ic.

At present there appear to be only a few general rules
that can determine the choice of step boundary condi-
tions, and even these are not ironclad. Thus the stability
criterion!! that the up-step collects adatoms more
effectively than the down-step, i.e., that there is a barrier
to hopping down, has been questioned.'? This cannot be
inferred from growth experiments, since the latter are
two dimensional and other criteria must be considered as
well.!* Also, impurity effects in real experiments can al-
ter the criterion as formulated for the modified BCF one-
dimensional models. %! It would clearly be very useful
to be able to establish a link connecting current experi-
mental capabilities and step boundary conditions, and
that is the specific purpose of this paper.

We must emphasize here, as we will do again in Sec.
1V, that we cannot verify the procedure we propose at
this time by direct comparison with experimental data.
What we are able to show is that this leads to reasonable
qualitative results, within the context of the BCF descrip-
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tion, and that further refinement and extension of these
results in conjunction with experimental inquiry are war-
ranted. In Sec. II we briefly discuss the reflection high-
energy electron-diffraction (REED) experimental results
that are required. We relate these results directly to step
boundary conditions in Sec. III, obtaining explicit results
in the context of the BCF equation for step-flow condi-
tions; our choice of the latter is due to the relative analyt-
ical simplicity of this case, but it would be possible to ex-
tend these results to lower temperatures where moving
step and islanding effects cannot be neglected.>*!1° A
discussion of the results obtained, and their limitations,
together with our conclusions, follows in Sec. IV.

II. RHEED EXPERIMENTAL INPUT

RHEED is now a routine diagnostic procedure for the
in situ study of molecular-beam-epitaxy growth kinet-
ics.!® Despite its ubiquity, there remain questions con-
cerning the comparison of data with theory, and here we
choose to directly compare the step surface density, or
the adatom density for step-flow conditions, with the in-
phase (Bragg) intensity.*!” Remarkable agreement be-
tween experiment and simulation results reported in the
recent literature dictate this choice.*!” Direct compar-
ison of the results we obtain with real data will not be
made, since the theoretical model we choose is for the
case of step flow, whereas almost without exception the
RHEED data reported in the literature are for tempera-
tures at or below the critical temperature signaling the
onset of intensity oscillations due to islanding. A further
problem, of less serious nature, faced by the theorist is
that RHEED data are generally reported in arbitrary
units (a.u.) without a displayed intensity scale, so that ac-
cess to raw data is necessary.

For a given misorientation, which we represent here as
a /L where a? is the site density and L the terrace length,
the measured in-phase RHEED specular intensity ap-
pears to correlate quite well with the step density or,
equivalently, at step flow conditions, adatom density
across*!7 the terrace, so that we have
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I,(t)= 4, fldx[l—Zﬁ(x,t)] 2 , 1) strength, the _st_eady-sta7te-modiﬁed BCF equation and
0 boundary conditions are

where I;(t) is the specular intensity for fixed a;=a/L;,
A; is also a constant for fixed «;, and 7i(x,?) is the (di-
mensionless) adatom density® on the terraces. The con-
stant A; has been considered to be independent of the
temperature in previous work,*!” but this is not essential
for what follows. The important consideration here is
that A; takes into account the complex interplay between
surface morphology and the diffraction processes in a sys-
tematic way that allows for reproducibility at fixed
misorientation and beam flux.

Equation (1) is the basis for what follows. Since 7 (x,t)
contains information concerning the boundary condi-
tions, we will be able to relate the latter to the intensity
through this relationship, and this is done in Sec. III. As
we have shown previously, >~ it is possible to formulate
the boundary conditions explicitly in terms of the stick-
ing coefficients at the steps, and thus Eq. (1) allows us to
directly express I, in terms of these quantities. Since we
expect the step kinetics to be asymmetric, i.e., to differ at
the up- and down-steps, Eq. (1) then relates the two stick-
ing coefficients to the intensity at a fixed time, but this re-
lationship also involves the unknown 4;.

Two possibilities for simultaneously eliminating the un-
known A; and obtaining two independent equations re-
lating experimentally determined I; to the two different
sticking coefficients suggest themselves. First, using 7,(0),
I;(ss), and I;(eq), where the last two of these denote the
values in the steady state and relaxed, equilibrium state,
the first of these can be used to normalize the last two
and remove A;. This offers the advantage of using mea-
surements at a single temperature and misorientation.
However, in describing the equilibrium state extreme
care regarding the detachment process at the steps is re-
quired, since this is no longer overwhelmed by the none-
quilibrium processes that dominate in the high supersa-
turation environment that the source beam creates. To
avoid such complications this first approach will not be
considered further here. An alternative approach, which
we adopt in what follows, is to consider I;(0) and I;(ss) at
fixed temperature for two distinct misorientations, using
the former in each case to normalize the second and
thereby eliminate A;. Since the sticking coefficients most
likely will depend on temperature, it is necessary that the
temperature remain the same at each misorientation. In
Sec. III we determine expressions for the two sticking
coefficients in terms of I, =1,(ss)/1,(0).

III. STEP STICKING COEFFICIENTS

In previous work>~7 we have shown that the boundary
conditions for the modified BCF equation can be ex-
pressed in terms of the step sticking coefficients S, and
S; at the left, ascending (up) step at x=0 and at the
right, descending (down) step at x =L, respectively, for a
terrace of length L whose coordinate runs from 0<x < L.
For a nondimensionalized adatom density #a(x,t)
=Dn(x,t)/JL? and X=x/L, where D is the adatom
diffusion coefficient on the terrace and J the source beam

n, +1=0, (2)
—hgn =n,, x=0, (3a)
hyn=n,, x=1, (3b)

where we now drop all overbars. The values of h; are
given, 37 in dimensionless form here, as

h;=(8;)2—S;,)"'(2/7'?), j=0,1. 4)

As is usual in describing two- (and three-) dimensional
phenomena with a one-dimensional model, we do not ex-
pect a precise quantitative description of the actual sur-
face kinetics from Egs. (2)-(4). However, we do expect
that these equations reflect the main qualitative features,
and it is in this spirit that we continue and regard our
final results.

Solving Eq. (2) together with the boundary conditions,
and using this result directly in Eq. (1), we find

I}M?=1—(h,+hy+hhy/a;)""
X[2a;+2(ho+h)+hoh, /6a;] . (5)

For two distinct values of i, Eq. (5) then allows us to
determine kg, i, in terms of «;, I;, for any distinct set of
values of these quantities. The resulting equations for 4,
h, are both lengthy and complicated, and need not be
written out here since they are implicit in Eq. (5). This
equation can be solved, e.g., for &, in terms of a;, I}'/?,
and h, giving

hy=[2a;,—ho(1—1}'*)+2h,/3]
X[(1=I)(1+hy/a;)—(2+hy/6a;)] 7!
=F(a;,I;,hg) , (6)
and A is then determined by solving
Fla,1,,hy)=F(ayl,,hy) (7)

since the step kinetics should be independent of the
misorientation for, e.g., .- <a; <& so that diffusion is
the primary migration mechanism.

IV. CONCLUSIONS

Equations (6) and (7) are the primary results of this pa-
per, and provide the basis for determining step sticking
coefficients from RHEED data. As discussed earlier,
data relative to the step-flow conditions described by
these equations are not available to us, since the primary
use of RHEED has been to study the oscillations that
occur below the critical temperature, where step flow
does not occur. Because of this, we restrict ourselves
here to demonstrating the plausibility of the above results
by using values of I; inferred from results in the literature
near and at the critical temperature®!” together with ex-
pected extrapolated changes at increased temperatures
and variations in misorientation. Even without the a
refinements in the BCF model required to obtain qualita-
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tively more precise results [e.g., the numerical factor in
Eq. (4) is clearly a model-dependent artifact], this should
allow us to answer the important open question of wheth-
er there is a barrier at the descending (down) step.

We consider GaAs(001) with misorientations of about
1.6° and 2.3° corresponding to a; = 5; and a,= x; it then
follows that I,>I,, and we take I}’2=0.70 and
I172=0.66 as reasonable estimates for the step flow*!” at
some undetermined temperature above the critical value
in the step-flow regime. For these values we solve Eq. (7)
to determine h,, and then h, follows from Eq. (6). We
find A;=0.80 and 4,;=0.10, and then from Eq. (4),
S,=0.83 and S;=0.09. As we have emphasized above,
the quantitative aspect of these results is only approxi-
mate given their model dependence and the values of I;
used to determine them. Still, the qualitative aspect
remains creditable, and very clearly indicates the ex-
istence of a barrier at the down-step. This is a very im-
portant conclusion that agrees with recent results based
on an a priori assumption of a barrier.

The results obtained here can serve two purposes.
First, they provide the motivation for consideration of
the more analytically formidable case, below the critical
temperature, where islanding occurs®®!® and terrace
morphology plays a more significant role in determining
the RHEED signal than at step-flow conditions when
only adatoms are present. In the latter case, as we men-
tioned earlier, results obtained with the one-dimensional
model used here and in many other studies!'™ >3 114
cannot be given a strict literal interpretation. In this re-
gard, the sticking coefficients should be considered as a
coarse-grained® average across the steps which on a true
substrate, as encountered by a RHEED beam, are of a
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two-dimensional character. The sticking coefficients
determined above are therefore not true sticking
coefficients, which will vary across the step due to surface
tension effects associated with local curvature.'® In this
case then, the RHEED experiment serves the purpose of
providing a basis for determining the boundary condi-
tions to use with the one-dimensional model.

In conclusion, we show how the above interpretation
of our results can be extended to the probabilistic model'
that has been used to study terrace size distributions both
analytically and by simulation. In this model the migra-
tion on the terraces is not explicitly described, and the
terrace size evolution is determined solely by the proba-
bility p that a deposited adatom is incorporated at the
up-step (or at the down-step with probability [1—p]).
The probability p in the steady state is given by the ratio
of the flux at the up-step to the deposited flux, so that
from Egs. (2)-(4)

p=ho(1+Lhia Who+h +hohja™ ). (8)

For the cases considered here, ;= & and a,= 5, we find
p=0.65, and 0.62, respectively. The dependence of p on
a is explicit in Eq. (8), and is a consequence of the
enhancement of recapture with increased terrace length.
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