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Exact solution for the charge soliton in a one-dimensional array of small tunnel junctions
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An exact solution for the single charge soliton, in a one-dimensional array of N gated junctions with

equal junction capacitances C and equal gate capacitances Cg, is presented. Analytical expressions for
the total energy, as well as the injection threshold voltage of a charge soliton in a biased array, are de-

rived. Based on the exact solution, we analyze the sects of X and Cg/C on the charge soliton, to pro-
vide an understanding of the existing experiments.

Recently, the study of the charge soliton in a one-
dimensional (1D) array of small tunnel junctions has at-
tracted much attention. ' In a single small tunnel junc-
tion, having capacitance Cz such that the charging ener-
gy e /2CJ exceeds the characteristic energy kItT of
thermal fiuctuations, it is found that Coulomb blockade,
a suppression of single charge tunneling, dramatically
reduces the current at voltages V & e/2CJ. A 1D array
of small tunnel junctions consists of many such small tun-
nel junctions, fabricated in series, with the regions {the is-
lands) between them being controlled by gate voltages
through gate capacitances. These devices' have the ad-
vantage of minimizing environmental effects, i.e., each
junction inside the array is electively decoupled from the
parasitic capacitance and conductance of the leads by its
high-resistance neighbors. Also, it is a very useful system
to study the time and space correlations between tunnel-
ing events in small tunnel junctions. As a result of these
unusual properties, it is predicted that a charge soli-
ton, a core of electronic charge on one of the islands,
could be formed inside the 1D array.

Originally, the charge soliton solution was deduced by
solving the electrostatic problem for single-electron tun-
neling in 1D arrays. For a 1D array of N junctions, one
needs to solve a set of 2% —1 linear equations for the cor-
responding voltages (or equivalently, the charges) on the
N junctions and N —1 gate capacitors. In the literature,
there appear two di8'erent approaches, one of which uses
the infinite chain approximation, ' and the other which
is a numerical approach. ' Our purpose here is to pro-
vide an exact analytic approach.

In the infinite array' approach, one deals with a sim-
ple 1D array, where the junction capacitances
C& =C2 = . =Cz =C and the gate capacitances
O'"=O' '= . - O' "=C . Concentrating on the po-
tential y,. (i =1,2, . . . , N —1) on each of the individual
N —I islands, and assuming an infinitely long chain so to
simplify the N —I electrostatic equations into one recur-
sion relation, one obtains an analytical expression for
Iy,. J. Explicitly, the potential of an arbitrary island j as
a function of the distance" j-k from the kth island, in
the case where there is an excess electron on the kth is-
land, takes the form'

(la)

where the symbol 00 emphasizes that it is a result for an
infinite array, and

C,l+ Cg
A,=in, C,s =QCs+4CCs .

eff g

When Eqs. (la) and (lb) are applied to a finite array, ' it
is assumed that near the edge of the array the charge soli-
ton will induce an image (the antisoliton). Such an inter-
pretation extends (la) into an expression of the potential

(lb)
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We note that (1) is known to be correct in the NA, »1
limit, ' but it is not clear what kind of error it will pro-
duce when applied to the case of a finite array not satisfy-
ing the condition NA, »1. In the other approach, ' one
solves the 2N —1 linear equations numerically without
any presumptions. In both approaches, the charge soli-
ton profile for the electrostatic potential I p, I was
identified. Nevertheless, the validity of (1) is not easily
checked directly by a detailed study of the numerical
solution of the 2N —1 linear equations. In fact, (1) has
been widely used as the foundation for understanding the
electrostatic problem for single-electron tunneling in 1D
arrays of junctions without discussion of its validity.

The work presented in this paper demonstrates that
the electrostatic problem for single-electron tunneling in
1D arrays of N junctions can be solved exactly and
analytically. This enables us to identify the range of va-
lidity for the simple soliton solution (1).

Consider a 1D array of N small junctions, with capaci-
tances C„C2, . . . , Ctt, and tunnel resistances
R „Rz, . . . , Rz, biased with a voltage V. The islands (to-
tal number N —1) between N junctions are connected
through capacitors C"',C' ', . . . , C' ", biased with
gate voltages U„U2, . . . , Uz, . We assume that
R; »ht/e, which ensures that the wave function of an
excess electron on an island is localized there.

We adopt the semiclassical model' to describe the
ID array. In this model the voltage V across the jth
junction (or capacitor) is a classical variable calculated by
V. =C.Q, where Q. is the charge on the jth junction.
Existing approaches to the problem develop a set of
N —1 linear equations for the voltages f V, I. The key to
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—
( Cg +2C)

t'ai

+Cy 2= n, e —CV,

Cq; i
—(C +2C)y;+Cy, +, =n, e

(2a)

(i =2, 3, . . . , N —2), (2b)

our approach is to rewrite these equations as equations
for the island potentials [y; ); this enables us to obtain an
exact analytic result. Thus we describe the state of the
system at a given time by a set of 2N —1 variables

[ V, q, , pter —i ni nz x —iI where n, is the
number of excess electrons on the jth island. These vari-
ables obey 2X —1 linear equations resulting from the
charge conservation law and KirchhoFs laws. For
the simple case, where C, =C2 = . =CN =C and

Cg Cg Cg Cg and where one is not in-
terested in the relationship between the gate potential q
and gate voltages [U;), the latter become hidden vari-
ables, and the 2N —1 equations can simply be reduced to
N —1 linear equations in the following form:

CpN z
—(C +2C)V ~ i=n~, e . (2c)

eMq= —n,
C

(3)

where we use a double bar for the matrix, and a single bar
for the column. Explicitly, (3) stands for

We note that in the infinite array approach, ' one
neglects the boundary equations (2a) and (2c) and only
(2b) is retained. On the other hand, in the numerical ap-
proach, Ben-Jacob, Mullen and Amman and Ammen,
Ben-Jacob, and Mullen studied the linear equations for
the [ V, J instead of for the [ p; I.

To facilitate our discussion, (2) is written in its matrix
form

D 1 0 0
1 D 1 . 0
0 1 D 0

0 0
0 0
0 0

n, e/C —V

n2e/C

n, e/C

0 0 0 D 1 0
0 0 0 . 1 D 1

0 0 0 0 1 D
fN —

1

ntv 3e/C

ntv 2e /C

n~ )e /C

where D = —2 —C /C.
We find that (4) can be solved analytically, and the re-

sult is

@=M 'ne/C = Rne/C—, (5)

where the element of the symmetric matrix R is given by

cosh(N —
~j i

~
)A,

—c—osh(N i —j)k-
2sinhk, sinhNX

R
V (6)

where A, is given by (lb).
Equation (5), supplemented by (6), is a key result of this

paper. Once a charge profile [n; I is known, we can use
(5) to determine the potential profile [y, I. In the follow-
ing, we analyze the single charge soliton case, where there
is no charge on any of the islands except that a single
charge appears on the kth island, i.e., n, =5,-k. In this
case for a 1D array of N junctions with bias voltage V, (5)
reduces to a simple form for the potential y (k, V) of an
arbitrary electrode j as a function of the distance from
the kth electrode,

q&+(k, V) = ——R.„—VR, ,
e

where R k is given by (6). Equation (7) is an exact solu-
tion for a single charge soliton in a biased 1D array of N

small junctions with equal junction capacitances C and
equal gate capacitances C . Some comments are in order
in the following.

First, using (6) we rewrite the V=O case of (7), in a
form suitable for comparison with the existing theory un-
derlying (1), as

x(k)— e cosh(N —
~j —

k~ )I,—cosh(N —j—k)A,

C„ sinhNA,

—2NA,

=pj"(k, A, )+ z [y"(k, i,)+y"(k, —
A, )],

e
—2NR J

(8)

with C,s and y (k) given by (lb) and (lc), respectively.
For an array satisfying NA, »1, it is a good approxima-
tion to neglect the second term on the right-hand side of
(8), and it reduces to the injtnite array result (lc), i.e.,
p,. (k) does not depend on the number N of junctions in
the array. Also, the result given by (8) is consistent with
the results of Ref. 2(b) but it is also in a form which is
easier to use. Second, for a 1D jtnite array which does
not satisfy NA, » 1, &p. (k) can no longer be approximated
by the form of (lc). In fact, a direct comparison of (8)
and (lc) in the C «C limit shows that the smaller the
value of C /C, the larger the differences between the two
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forms. Third, (8) represents a potential profile for a
charge soliton with the peak value (j=k) as

e coshNA, c—osh(N —2k)A,

~.a sinhNA,
(9)

+sinh '[—,'sinhk A, ] I . (10)

From (10), it is straightforward to show that b, k =b,~
bk ~21n2/A, for NA, &&1, and b,„~0 for A, ~O. As an
example, in Fig. 1 we illustrate the peak potential (9) and
the peak width (10), as a function of N for a charge soli-
ton in a 1D array with k = 1 and C~ /C =0.001, 0.01, and
0.1. The figure shows that for large values of N (the
specific number depends on the value of Cg/C), the peak

From (9}, it is straightforward to observe that
yk(k}=yN „(N k)—, and qk(k) increases with increas
ing k and reaches a maximum value—(e /C, s )tanh(¹L/2} at k =N/2 for N even; for N odd,
there are two equivalent maximum values—(e/C, ~}[(coshNA. —cosh', }/sinhNA, ] at k =(Nk1)/2.
The width of the charge soliton, defined by the j —k
value at which (8) is reduced to the half of (9}, can be
directly evaluated from (8) and (9) as

b, k =N ——
[ sinh [—,'sinh(N —k }A,]

1 I —] ) ~

potential and the peak width have weak dependence on
X, and the infinite junction approximation is good. In
general, the smaller value of Cg/C, the larger the depen-
dence of the peak potential and of the width on X.

We are now in a position to evaluate the free energy of
the biased 1D array with a charge soliton, by means of
the exact solution (5). The free energy of the biased 1D
array with a charge soliton at the kth electrode takes the
form

N —1

F(k)= g [y (k, V)]
2 i ]

N

+ —g [q)~(k, V) —q), ,(k, V)] —eV, (11)
i=&

where the first term on the right-hand side is the total
charging energy for the gate capacitors, the second term
is the total charging energy for the junctions, and the last
term is the work done by the bias voltage in transferring
an electron. Using (8), after some lengthy algebra, we ob-
tain from (11)

e sinh(N —k)A, sinhk A,

C,z sinhNA,

sinh(N —k)A,

sinhNA,

1.2
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e sinh(N —3k/2)A, +sinh(N —k/2)A,
V, =

2C& cosh(N —k/2)A,
(13)

Equation (13) is an interesting result. By using (13) one
immediately finds that d V, /dN & 0 and 1V, /dk &0. This
implies two facts: (1) for fixed values of C and C, an ar-

ray of larger N will generally have larger V, ; and (2) once
a charge soliton is injected into the array, it will have no
difficulty in traveling through (with increasing k) the ar-

ray. Furthermore, in the M, » 1 limit, (13) reduces to

One can directly observe from (12) that F(k) =F(N —k)
for V =0, and this symmetric property disappears once
VPO.

The injection of a charge soliton from the voltage
source to the kth island of the array is energy favorable
when F(k}—F(0}is less than zero, and vice versa. Thus,
the threshold energy V, for the injection of a charge soli-

ton onto the kth island can be obtained by equating
F(k) —F(0)=0, with the result

4.0-
V, (NA, »1)= (1+e "~),

2C,~
(14)

0.0
0

I

40
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60

FIG. 1. The characteristics of a single charge soliton in a 1D
array of X small junctions, with the extra charge on the Srst is-

land; (a) peak potential (yj- ' at j =k, in units of e/C); and (b)
peak width, as a function of N. From top to bottom,
Cg/C =0.001, 0.01, and 0.01, where C is the junction capaci-
tance and Cg is the gate capacitance.

which is previously known in the literature' for the
k =1 case. Apart from the fact that our expression (14)
is more general, we also know that (14) is an upper limit
to the value of V„since we have shown already that
d V, /dN & 0. In Fig. 2, we plot Y, vs N for k =1 case for
several arrays with C /C =0.001, 0.01, and 0.1.

Experimentally, data for the threshold voltage V, for
14 different arrays with N ranging from 15 to 53, are
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FIG. 2. The theoretical values of the threshold voltage V, (in

units of —e/C) for injecting a charge soliton into the first island
of a 1D array of N small junctions, as a function of N. From top
to bottom, Cg /C =0.001, 0.01, and 0.1; C is the junction capaci-
tance; and Cg is the gate capacitance. Symbols are experimental
data taken from Table I of Ref. 6.

presented in Table I of Ref. 6. The data show that in
general the arrays with larger numbers of N tend to have
larger values of V, . This behavior is consistent qualita-
tively with what we have identified from our exact result
(13) as discussed above. Obviously, at this stage it is not
possible to make a quantitative comparison between our
theoretical result (13) and the experiments, since the ex-
act values of C of the samples are unknown and they
may have some kind of inhomogeneities. On the other

hand, the present theory may provide a useful estimate
for the values of C if one assumes that the samples are
ideal 1D array of junctions with equal C and C~. For this
purpose, in Fig. 2 we plot the data of Ref. 6 by dark dots.
The figure shows that to fit the ideal model of 1D array
junctions having equal values for C and Cg, for those
junctions having small values of N (from 15 to 23), the ra-
tio of Cg/C should be in the range of 0.01—0.1, while for
large N (from 33 to 53) arrays the ratio should be in the
range 0.001-0.01. In other words, if the ratio C lC falls
in these regions, then the experimental data of Ref. 6 can
directly be understood by the present theory.

In summary, in this paper we have presented an exact
solution (5) for the potential profiles of a biased 1D array
of N gated junctions with equal junction capacitance and
equal gate capacitance. Based on (5), an analytical ex-
pression (7) for a single charge soliton in a biased 1D ar-
ray is derived. In addition, we have analyzed the peak
potential (9), the peak width (10), and the threshold volt-
age (13) for the single charge soliton as a function of the
number of junctions N in the array and the capacitance
ratio Cs /C. It is also shown that the commonly used ex-
pression (14) for the threshold voltage is an upper limit.
The qualitative behavior that, in general, the arrays with
larger number of N tend to have larger value of V, shown
in the experimental data of Ref. 6, is consistent with what
we have identified from our exact result (13).
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