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Full charge-density calculation of the surface energy of metals
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We have calculated the surface energy and the work function of the 4d metals by means of
an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In
this approach the kinetic energy is calculated completely within the atomic-sphere approximation
(ASA) by means of a spherically symmetrized charge density, while the Coulomb and exchange-
correlation contributions are calculated by means of the complete, nonspherically symmetric charge
density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the
convergence and the accuracy of the linear-muffin-tin-orbitals (LMTO) method and the ASA in
surface calculations. We find that the full charge-density functional improves the agreement with
recent full-potential LMTO calculations to a level where the average deviation in surface energy
over the 4d series is down to 10/0.

I. INTRODUCTION

During the last years one has seen a number of sys-
tematic studies of the surface energies and work func-
tions of simple and transition metals by means of o,b

initio total energy calculations. These include the full-
potential linear-muffin-tin-orbitals (LMTO) slab calcu-
lations by Methfessel et al. and the Green's function
calculations by Skriver and Rosengaard. 4 In the com-
parison between the two sets of calculations for the 4d
transition series it was concluded that the Green's func-
tion technique based on the atomic-sphere approximation
(ASA) gave surface energies in excellent agreement with
the full-potential results, especially for the late elements
in the series.

It is natural to extend the LMTO surface calculations
to the actinide-metal series by including f states in the
basis set. However, when the Green's function technique
was applied to the light actinides, it was found that the
surface energy of the two first actinides, Ac and Th,
were slightly negative. Similarly, when f states were in-
cluded in surface calculations for the 4d series the excel-
lent agreement between the ASA based technique and the
full-potential calculations disappeared, as may be seen in
Fig. 1 where we compare calculated and experimentally
derived surface energies. The fact that the failure was
particularly pronounced at the beginning of a d or f tran-
sition series, where the charge density at the boundary
of the Wigner-Seitz sphere is relatively large, pointed to
an inadequate evaluation of the Coulomb and exchange-
correlation contributions to the total energy.

An essential aspect of the LMTO Green's function
technique which is based on the work of Andersen and
co-workers is the ability, within the ASA and in
the tight-binding representation, to generate the Green's

function matrices for a real, two-dimensional interface by
a simple and efficient procedure. In addition, the ASA al-
lows an efficient and accurate determination of the kinetic
energy and, according to the agreement with the full-
potential calculations, apparently also of the Coulomb
and exchange-correlation energies if, as was shown in Ref.
2, one goes one step beyond the ASA and includes an in-
terlayer monopole-dipole contribution.

Based on the observations above one is led to improve
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FIG. 1. Comparison of surface energies of the fcc (111)
surface for the 4d elements using s, p, d and s, p, d, f orbitals
in an ASA calculation. The semiempirical values by de Boer
et al. (Ref. 6) are also shown.
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the ASA total energy functional without sacrificing the
efBciency of the Green's function technique. One pos-
sibility is to abandon the ASA completely and develop
a localized Korringa-Kohn-Rostoker (KKR) scheme for
surfaces, ~ which will improve the description of the one-
electron energies. Here, we follow a diHerent route where
the idea is to retain the ASA as far as the potential and
the calculation of the kinetic energy are concerned and
use the spherically symmetric atomic potential to gener-
ate a complete, nonspherically symmetric charge density
which in turn is applied in the evaluation of the remain-
ing terms of the total energy. Such a procedure may be
expected to work well because the kinetic energy is vari-
ational in the potential and because an accurate charge
density may be obtained from an ASA potential. Fur-
thermore, Svane and Andersen~e used essentially the ap-
proach proposed here in a successful calculation of four-
center integrals and the cohesive energy of Si.

Apart from obtaining a more accurate description of
the simple and transition metals, our aim is also to gen-
eralize the LMTO-Green's function method to treat real
f-electron systems such as the light actinides. The re-
sults of the actinide calculations will be presented in
a forthcoming publication. Here, we describe the full
charge-density functional and present a series of calcula-
tions of the surface energies of the 4d transition metals,
the results of which are compared with the full-potential
calculations.

II. ENERGY FUNCTIONAL

In this section we shall present a full charge density-
functional (FCD), which is based on a spherically sym-
metric atomic-sphere potential and which preserves the
important aspects of the ASA. Within the local density
approximation we define

@FGD[n(r)] = ) .TAsA + F[n(r)]
R

where

TASA = &X & Ck Ao f' V g P d f'
4z. s

n(r) the electronic charge density, and e„, the exchange-
correlation energy density.

A. Charge density

Now the question arises how to construct an accurate,
nonspherically symmetric crystal charge density which
may be used to evaluate the functional (3). This prob-
lem. was considered by Andersen et at. , who used a
multicenter expansion within the tight-binding LMTO
formalism and showed that for silicon the charge den-
sity constructed &om the output of an LMTO-ASA cal-
culation was in excellent agreement with that obtained
in a linear augmented plane-wave full-potential calcula-
tion. Furthermore, Svane and Andersen showed that
the four-center integrals and the cohesive energy of silicon
could be obtained with a high degree of accuracy &om an
ASA potential, and they attributed the remaining small
deviation &om other first-principles calculations of the
cohesive energy to the use of the atomic sphere rather
than the proper atomic cell in the evaluation of the total
energy functional.

Here, we follow an even simpler procedure and con-
struct the cell charge density by a one-center expansion
rather than the multicenter expansion used by Ander-
sen et at. However, we shall eventually evaluate the
functional F[n(r)] by integration over the proper atomic
cells. The one-center expansion of the charge density in
an ASA calculation may be written

ASA (r) ) nASA (r)Y (r)
L

(4)

PL ni, (r)YL, (r) for r inside W-S cell
n r

0 otherwise,

where L is short-hand notation for (l, m) and YL, is a
real harmonic. In the ASA the charge density is normal-
ized within the atomic sphere and, hence, generally only
known in this region of space, but it may easily be cal-
culated beyond the atomic radius. In the present case,
we assume that the L components of the charge density
(4) are defined within the whole Wigner-Seitz (W-S) cell,
i.e., 0 ( r & S~, where S~ is the radius of the sphere
which circurnscribes the W-S cell. A realistic, nonover-
lapping charge density may now be defined by

is the kinetic energy per site evaluated in the ASA and

P[v(r)] = f v, t,. (r)v(r)dr+—
1 n(r) n(r')

drdr'

+ c„,nr nr dr. (3)

In these equations E~ is the Fermi level, N+(e) the
site-projected one-electron state density, S the atomic
Wigner-Seitz radius, no ' (r) the l = 0 component of
the electronic charge density at the site R, V+&(r) the ef-
fective one-electron. potential corresponding to the ASA
energy functional, v,„t(r) the potential from the nuclei,

where

ni. (r) = nl. (r) + b(,oO(r —S)a(1 —S/r), (6)

0 is the step function, and b the Kronecker symbol.
In (6) we have in the range S ( r ( Sc, i.e., at the
outer corners of the W-S cell, added a quadratic, one-
parameter correction to the spherically symmetric part
of the ASA charge density in order to ensure proper nor-
malization of the charge density within the W-S cell. By
means of this simple functional form the charge density
remains continuous and continuously di6'erentiable at S
and the single parameter a may be determined by the
condition
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n(r)dr = n (r)dr,
-S cell S

which ensures that the W-S cell contains the proper num-
ber of electrons.

B. Cell integration

To integrate within the W-S cell we use the so-called
shape function technique, i 'is which was recently imple-
mented by Drittler et al. in their development of a
full-potential Korringa-Kohn-Rostoker multiple scatter-
ing method. An alternative scheme to treat interstitial
integrals has been proposed by Savrasov and Savrasov.
Here, we apply the original version of the method and
define the following shape function

1 for r inside W-S cell
cr r

0 otherwise,

which may be expanded in terms of real harmonics

C. Evaluation of E[n(r)]

F' = &...,HQ.")1+&.„.t ')+ E.'.[ '), (14)

where we indicate that the intercell energy contribution
depends on the multipole moments Qg of all other cells.
The multipole moments of the charge density are defined
as

We shall now explain in detail how the different terms
in the F functional (3) may be calculated. If the total
charge density is assumed to be the sum of nonoverlap-
ping charge densities belonging to different cells as given
in (5) or (12), the electrostatic part of the functional
may be separated into intracell and intercell contribu-
tions. Furthermore, the total electrostatic and exchange-
correlation energy may be divided into contributions F
belonging to the cell at R and the functional evaluated
as the sum over cells F = P F . For simplicity, we only
give expressions for the contribution corresponding to the
cell centered at the origin, i.e.,

o (r) = ) ol, (r)YL, (r),
L

where the partial component oL, (r) must be determined
by numerical angular integration

a (4~)"'
2l+1
(4~)'~'
2l+1

p l

n r Yj, rdr
R'-S cell
Sc

AL T' P df',

or(r) = f o(r)Yr(r)d0. (10)

-S cell
f(r)dr = cr(r) f(r)dr

As a result, the charge density defined in (5) may be
written as the expansion

n(r) = cr(r) ) ng(r)YI, (r)

= ) nl, (r)YI, (r),

where the partial radial functions

nL, (r) = ) C~, ~„nL,. (r)crL, "(r)
LI Ill

are given in terms of real-harmonic Gaunt coefficients
CL, L„and the partial components of the shape function.

In order to achieve the required accuracy, especially for
larger I values, the integration in (10) requires a careful
consideration of the angular mesh points. In the present
calculations we have chosen an angular mesh which re-
flects the symmetry of the W-S cell.

By means of the shape function any integral over the
W-S cell may be transformed into an integral over the
sphere which circumscribes the cell, i.e. ,

where we have kept the atomic radius S in the expressions
to make contact with the earlier ASA results.

The calculation of the electrostatic intercell energy
contribution is a well-known problem and has been
treated by many authors in different ways. Here,
we follow the work of Gonis et al. , in spite of the fact
that their technique has problems in terms of l conver-
gence, which we shall return to in the next section. It has,
however, the advantage of being formulated in terms of
well-known quantities, such as multipole moments and
LMTO structure constants.

If two cells are "far enough" apart their interaction
energy may be given by the conventional Madelung en-

ergy of nonoverlapping charge distributions. However,
for neighboring cells, i.e. , for cells which are intersected
by the bounding sphere of the cell at the origin, a cor-
rection term is needed. Thus, the intercell interaction
energy belonging to the cell at the origin may be written

~.,„~&Q"&)= —~).Q' ).~, (R')Q"
R,.

+~&.i.,[(Qi ))

Here, Sl, I. (R) are the conventional, i.e. , unscreened,
LMTO structure constants and the last term the "near-
field" corrections given by Gonis et al. ,

«.i.,HQi)) =
I

L I L' L l
I

0 +( I 1)" I R„X QLr, glr I «birr i+ir ) glrr I rrr (2R )Q&„,
7
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rewritten in terms of real harmonics. In (17) R„runs
over the neighboring cells de6ned above.

The intracell energy may be determined by solving the
l-dependent Poisson equation or by a numerical integra-
tion using the following formulas:

+ — I, rrdr,

where

and

(2o)

Note that the multipole moments given in (15) may be
expressed in terms of the function QoL (r) defined above as
Qo&

—Qo&(Sc). Finally, the exchange-correlation energy
of the cell at the origin may be expressed in the local
density approximation as

~c
E„,[n ] = e„,[n (r)]n (r)r drdA.

0
(21)

D. Spherical cell model

To make contact with the earlier ASA description, us-

ing the new formalism discussed above, one may de6ne
a spherical cell model (SCM) in which the W-S cells co-
incide with the atomic spheres of radius S. In that case,
the shape function is given by

graphs which are crucial for the accuracy of the calcu-
lation: the cutoff value of the partial wave expansions of
the shape function (9) and the cutofF value of the double
I sum in the correction (17). The latter was studied in
detail by Gonis et al. , and they found that the outer
sum (over L) in (17) is convergent only if the inner sum
(over L' and L"') is already carried to convergency, and
that without the correction bE;„t„no convergence could
be achieved.

We have performed test calculations for an fcc lattice
with a homogeneous charge density in the form of an
evaluation of the electrostatic (Madelung) energy of the
system. The results are shown in Fig. 2, where they
are scaled so as to recover the Madelung constant, which
equals 1.8 for nonoverlapping spherical cells, while the
exact value for an fcc lattice is 1.79175. In the calcula-
tions we assumed l' ""= l ""+10 in the l summations
in (17). First, it is seen, in agreement with the obser-
vation by Gonis et al. , that no convergence is achieved
without the correction, and second, that a satisfactory
convergence is achieved for l = 30 for the inner l suIn
and l = 20 for the outer sum. These values have,
therefore, been used in the surface energy calculations
to be presented later. We note that the calculation of
the near-6eld correction is very time consuming and that
it typically contributes less than 2% to the surface en-
ergy, the reason being that only the difference between
the correction in the bulk and at the surface contributes.

The partial wave expansion of the shape function (9) is
strongly oscillatory and the convergence towards a step
function is rather slow. However, the quantities derived
&om it by integration are quite well behaved, as may be
seen in Fig. 3 where we show the intercell, intracell, and

1.805

o.(r) = (4rr) '~'op(r)

1 forr&S
0 otherwise, (22)

ann —————————————ASA result ————————————-1 ann
~ %P%JIJ - ————~

and nL, (r) = nL, (r) = n& (r) for r ( S. Furthermore,
the integrations giving the multipole moments (15), the
intracell energy (18), and the exchange-correlation en-

ergy (21) should be carried out over the atomic sphere
of radius S. If we assume that the overlap between the
spherical cells may be neglected, i.e., we ignore bE;„t„in
the calculation of the intercell energy (16), the model
obtained in this way describes an ASA calculation in
which the nonspherically symmetric output charge den-
sity is used to evaluate the energy functional (1). Finally,
the previously used ASA functional Inay be obtained if
only the spherically symIDetric charge density is retained
and the higher multipole moments, except the monopole-
dipole Madelung contribution, are neglected.

1.795

1.790-

1.780
0
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8

lmax
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r

1.785-
without the overlap corrections

with the overlap corrections
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E. Convergence of the partial wave expansions

There are two parameters in the formulation of the
electrostatic energy terms given in the previous para-

FIG. 2. Convergence test for the electrostatic energy of
an fcc lattice with a homogeneous charge distribution using
(16,18) as a function of the maximal 1 value used in the calcu-
lation. The total energy is scaled so as to yield the Madelung
constant of the lattice (n = 1.79175 for an fcc lattice).
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FIG. 3. Convergence test for the intercell, intracell, and
exchange-correlation surface energy contributions in Ru. The
results are plotted relative to their converged values as a func-
tion of the maximal l value used in the expansion (9) of the
shape function.

FIG. 4. The calculated Qc, t multipole moments for p, d,
and f states in the surface layer of the fcc (111) face of the
metals Rb through Ag. The symbols correspond to the spher-
ical cell results, while the results of the Wigner-Seitz integra-
tion are indicated by solid lines. For comparison we indicate
by the broken line the dipole. moment obtained in the spd cal-
culations. The functional form of the relevant real harmonics
is given at the top of the figure.

exchange-correlation contributions to the surface energy
of a Ru fcc (111) surface. Thus, a reasonable accuracy is
achieved already for l „=8 —10.

III. RESULTS AND DISCUSSION

With the formalism presented above we may now ad-
dress the question of the accuracy of the ASA for surfaces
and inter alia discuss the related problem of basis-set
convergence of the LMTO. To do this, we show in Fig. 4
the z components of the p, d, and f multipole moments
in the surface layer of the fcc (ill) face of the 4d ele-
ments. The moments are calculated by (15) assuming
either a spherical cell model or a W-S cell in which case
one applies the shape function expansion (13). The figure
shows that the spherical cell model reproduces the trends
observed in the multipole moments, although the magni-
tude of the d and f moments is somewhat overestimated
in this model.

In Fig. 4 we show for comparison the dipole moments
obtained when the LMTO basis set is restricted to spd
orbitals. It is seen that the main result of including f
orbitals in the basis set is to increase the dipole moment
at the surface. This is to be expected, because the extra
basis functions allow the charge density to become less
spherically symmetric and thereby develop larger mul-
tipole moments. Since the ASA as used in the surface
calculations is dined to include a negative inter-
layer monopole-dipole (Madelung) contribution to the
total energy, the increase in the dipole moment upon in-
clusion of the f orbitals is directly responsible for the
low ASA spdf surface e-nergies shown in Fig. l. On the
other hand, it was exactly this inclusion of the monopole-

dipole energy (with the reduced dipole moment of an spd
calculation) which was the reason for the excellent agree-
ment between the ASA-spd results and the full-potential
calculations. Thus, the inclusion of f orbitals in the
LMTO basis set destroys this agreement and calls for
the functional described in Sec. II.

The functional F[n(r)] may be partitioned according
to (14) and in Fig. 5 we show those contributions to

2.0
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— ~ +.+ Q Eintracell

X—X—-X Q Einterceil
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Rb Sr Y Zr Nb Mo TcRu Rh Pd Ag

FIG. 5. Nonspherical contributions to the surface energy
of the fcc (111) face of the 4d series. We plotted the differ-
ence between the FCD and ASA results for the intercell and
intracell Coulomb terms as well as the exchange-correlation
energy.
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the intercell, intracell, and exchange-correlation energy
which go beyond the ASA. For the intercell contribution
this means all terms except the monopole-monopole (ss)
and monopole-dipole (sz) terms while for the two latter
it means all terms except the (ss) term. The contribu-
tions are calculated by means of the shape function tech-
nique and the correction (17) is included. As expected
&om the variational properties of the functional, there
is a high degree of compensation between the intracell
and the exchange-correlation energy and the correction
to the ASA functional is, therefore, essentially that of the
intercell Madelung contribution. Since this term. is pro-
portional to the products of multipole moments, among
which the dipole moment provides the dominant contri-
bution, the observed trend of the sum of the nonspherical
energy contributions agrees with our expectation based
on Fig. 4, i.e., it follows the square of the difference be-
tween spd and spdf dipole moments.
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A. Surface energy

When all the nonspherically symmetric contributions
to the functional are added to the (ASA spdf) -curve in
Fig. 1 we obtain the surface energies shown in Fig. 6.
The results labeled (FCD-spdf) in the figure and listed
in Table I correspond to integration over the W-S cell
and include an spdf basis. They are expected to repre-
sent the best possible estimate of surface energies that
may be obtained by means of a spherically symmetric
atomic-sphere potential. It is seen in the figure that the
spd and spdf results are close to each other as they should
be for systeins without occupied f states. Since the indi-
vidual contributions to the energy in the spd calculation
are not completely converged in terms of the partial wave
expansion this agreement is essentialy due to the sepa-
rate variational properties of the kinetic energy and the
F[n(r)] functional. The surface energies in the SCM are
somewhat larger than the results of the complete calcu-
lations and the diHerence seen in the figure is essentially
a measure of the error caused by the integration over
spheres rather than over the proper Wigner-Seitz cells.

The most rigorous test of the present calculation is the

FIG. 6. Comparison of our final FCD surface energies for
the fcc (111) surface for the 4d elements using s, p, d and
s, p, d, f states to the full potential slab calculation by Meth-
fessel et al. (Ref. 1).

comparison with the full-potential results of Methfessel et
al. In this test one should note that Methfessel et al. use
a triple spd basis, and for that reason one should compare
their surface energies with the (FCD-spd) results in Fig.
6. Furthermore, in contrast to the present Green's func-
tion technique, the full-potential calculations are nonrel-
ativistic, relax all core states, include the efFects of a 4p
semicore, and allow for a relaxation in the position of
the surface layer. On the other hand, the Green's func-
tion technique treats the surface as a truly semi-infinite
structure and does not rely on the slab supercell geom-
etry used in the full-potential calculations. With these
difFerences in numerical technique in mind it is gratifying
to see that the agreement between the two sets of calcu-
lations is now such that the mean deviation in surface
energy over the 4d period has fallen from 18% to 10%.

TABLE I. The atomic Wigner-Seitz radii 8, corresponding to the experimentally obtained
equilibrium lattice spacings, the calculated surface energy p, and the calculated work function R'
of the 4d metals. The present theoretical results have been calculated by the full charge-density
functional including spdf orbitals and integration over Wigner-Seitz cells by the shape function
technique.

S, (Bohr)
p (eV/atom)
~ (~/m')
W (eV)
W (eV)
W (eV)

Rb
5.197
0.13
0.10
2.19

Sr
4.494
0.43
0.43
2.22

2.18 2.38

Y
3.761
0.96
1.37
3.29
3.46
3.21

Zr
3.347
1.08
1.94
4.05
4.38
4.07

Nb
3.071
1.25
2.67
4.30
4.63
4.33

Mo
2.992
1.36
3.06
4.65
4.98
4.50

Tc
2.840
1.23
3.11
4.98
5.15
4.86

Ru
2.791
1 ~ 29
3.34
5.11
5.33
5.11

Rh
2.809
1.27
3.24
5.26
5.44
5.11

Pd
2.873
0.93
2.27
5.33
5.53
5.30

Ag
3.005
0.47
1.05
4.56
4.67
4.57

Full potential LMTO calculations, Ref. 1.
LKKR calculations using spdf g orbitals, Ref. 24.
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B. Work function 6.0 I I I I I I I I I

Within the LMTO-ASA Green's function technique
the work function may be calculated as

W = AQ —Ep, (23)

where E~ is the Fermi level of the bulk crystal with the
ASA energy zero and DP the electrostatic barrier at the
surface. Both quantities are affected by the size of the
basis set and, in addition, AP is affected by the choice of
functional. Since neither of the two obeys a variational
principle one would expect an accurate estimate of W
to require absolute convergence in both terms. However,
it turns out that a certain amount of cancellation takes
place and as shown in Refs. 2—4 one may obtain excellent
values for the work functions of metals even with the ASA
functional and the conventional minimal Spd basis.

In his basis-set convergence test of the ASA for the
5d transition metals Crampin 4 points to two sources of
errors in the calculated work functions, (a) the deter-
mination of the Fermi level by integrating partial state
densities and (b) the cutoff of the expansion of tails from
neighboring sites. He Ands that the combined effect in
an spd calculation is to overestimate the Fermi level in
the worst case, i.e. , in the 5d metal Ir, by as much as
1.2 eV and according to (23) this would lead to a low
work function. The effect on the work function, however,
is more than compensated by an underestimate of the
magnitude of the dipole moment, cf. Fig. 4, which leads
to an overestimate of the surface dipole since the dipole
contribution to AP is negative. Crampin concludes that
work function calculated by means of the usual minimal
spd basis is overestimated by up to 0.7 eV or 15% in the
5dr series.

In the present technique, the Fermi level is determined
by a direct count of states in the calculated band struc-
ture and does not suffer from the errors introduced by
integrating partial state densities. Therefore, the ASA
results reported in Ref. 4 correspond to somewhat lower
Fermi levels and slightly higher work functions than those
of Crampin. 2 In addition to the effect mentioned by
Crampin, the cutoff in the tail expansion affects the
charge density and hence the exchange-correlation poten-
tial p, ,(S) at the Wigner-Seitz sphere. As a result the
entire band structure including the Fermi level is lowered
when f partial waves are included in the basis. To quan-
tify, Crarnpin finds that the Fermi level in Rh, Pd, and Ag
goes down by 0.70 eV, 0.54 eV, and 0.45 eV, respectively,
relative to p,„,(S) if f states are included. The compara-
ble shifts in the present calculation are 0.61 eV, 0.38 eV,
and 0.19 eV to which one should add the corresponding
changes of 0.30 eV, 0.27 eV, and 0.21 eV, respectively, in
the exchange-correlation potential at S to find the efFect
on the calculated work function. Owing to the cancella-
tion which takes place in (23) the net result is to make the
work functions calculated by Crampin with an spd basis
appear somewhat better converged than those reported
in Ref. 4.

In Fig. 7 we show the work function of the fcc (ill)
face of the 4d elements calculated at various levels of
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FIG. 7. Calculated work functions of the fcc (111)surface
for the 4d elements using s, p, d and s, p, d, f states. The avail-
able single-crystal experimental data are also shown.

IV. CONCLUSION

We have studied the accuracy with which one may
use the LMTO method in conjunction with a spheri-
cally symmetric potential to calculate surface proper-
ties of metals. In the study we use a functional where
the kinetic energy is calculated completely in the ASA
while the Coulomb and exchange-correlation energies are
calculated on the basis of the nonspherically symmetric
charge density generated within nonoverlapping, space-
filling Wigner-Seitz cells from the ASA potential. We And

that although individual terms may not be completely
converged the variational properties of the total energy
functional and that of the kinetic energy lead to a sur-
face energy of the fcc (ill) face of the 4d metals which is
in close agreement with recent full-potential calculations.
In addition, we 6nd that the improved functional leads to
a similar improvement in the calculated work functions.

approximation. In the comparison one notes that the
spherical cell model, which corresponds to the previous
ASA calculations, ' overestimates the work function by
up to 0.5 eV. More importantly, however, one sees that
when the integration over the proper Wigner-Seitz cell is
included the results of the spd and the spdf calculations
agree to better than O. l eV. The present work functions
are in perfect agreement with the results obtained by
Crampin as may be seen in Table I. This is to be
expected since the layered KKR technique is close to
the present in its use of the ASA. The present results fall
on the average 0.2 eV below those obtained by Methfessel
et al. , which may be considered satisfactory in view of
the differences in numerical technique.
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