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Absorption spectra of perfect and imperfect Si/Ge superlattices

B. M. Adderley, R. J. 'burton, and M. Jaros
Department of Physics, The University of Newcastle Upon Tyne, Newcastle Upon Tyne, United Kingdom

(Received 19 November 1993)

We present a comparative study of the absorption spectra for a series of systems with a 50:50
Si/Ge content. These are as follows: a random alloy, a perfect interface Si&Ges superlattice, and
the same superlattice with random alloy layers between the volumes of Si and Ge. It is found that
the presence of any random structure reduces the peak absorption (just above the band gap) by an
order of magnitude. Evidence is also given that experiment should be able to detect the difference
in the absorption coefficient, between structured and random arrangements of atoms.

I. INTRODUCTION

Recently, much theoretical and exp erimenta14
work has been performed to investigate the properties
of short period Si/Ge superlattices. This effort has been
pushed by the desire to find a direct gap Si-based crys-
tal. Such a possibility was 6rst expressed by Gnutz-
man and Clausecker, and has been confirmed &om other
sources. ' As is usually the case, initial theoretical de-
velopment has been based on ideal structures. ' This is
a situation that is never observed in real structures.
Given that the individual layers of the superlattice are
themselves only a few monolayers thick, even a small de-
gree of disturbance at the interface represents a substan-
tial deviation from the ideal case. Recently, it has be-
come apparent that the interfacial layers in some systems
exhibit ordering along directions other than the growth
direction. The existence of either ordered or random
alloy interface layers means that the perturbing potential
is actually three dimensional. Consequently, changes to
the band structure in the directions parallel to the in-
terface must also be considered. Accounting for this will
allow us to make a direct estimate of the effect of such
an imperfection in this type of crystal. In this study, we
shall investigate the effect of having alloy layers at the
superlattice interfaces. The position of Si and Ge atoms
in these alloy layers mill be entirely random. More detail
about the creation of such layers is given later.

It has also been argued that, for small period het-
erostructures, their effect on any external perturbation
will be just that of an alloy containing the same concen-
trations of atom type. Thus, we perform a calculation
using a structure where Si and Ge atoms are randomly
placed in the lattice, but the ratio of Si to Ge atoms is
kept the same as that for the superlattices. We can then
use the features shown by the random a11oy to discuss the
differences introduced by the presence of ordered struc-
ture. Vfhat is the effect on the spectral shape and its
magnitude? Can we lay down guidelines that will indi-
cate, for materials of different structural and symmetry
properties, what changes we might expect?

In general, it is difficult to determine the absorption
coefficient o. accurately from either a theoretical or ex-

perimental source. A great deal of computation time
is required for theoretical calculations. The sum over
wave vectors in the Brillouin zone being of particular
concern. In experimental situations the spectra obtained
from photoluminescence studies (etc.) suffer because
they often also detect processes other than those of di-
rect interest here. For instance, a measurement, made by
Zachai et al. , that was originally reported as evidence
for an increased oscillator strength in a Si/Ge superlat-
tice structure has now been shown to be a feature due to
point or line defects in a bufFer layer. o 2i

We calculate o, via the imaginary part of the suscep-
tibility y. A full-scale empirical pseudopotential calcula-
tion is performed to find Im[y j. This calculation gives
us the ban3structure that we can use to determine both
the density of states and joint density of states (propor-
tional to n) of the materials under consideration here.
It also gives us the matrix elements for optical transi-
tions. In the case of the perfect superlattice the presence
of a "one-dimensional" potential produces an allowed di-
rect transition with an energy comparable to that of the
phonon-assisted transition. The ordering of these transi-
tions is dependent upon the distribution of strain in the
system. The direct transition to the zone-folded minima
being lowest for systems grown on Ge-rich substrates,
while the phonon-assisted transition is lower in energy
for Si-rich substrates. However, when we introduce alloy
interface layers, the now "three-dimensional" potential,
allows the no-phonon transition to the in-plane minima,
thus relaxing the criterion that a Ge-rich substrate is es-
sential for direct gap materials.

In this paper, we, therefore, study the effect on the
electronic properties of superlattices, of the presence of
random alloy layers at the interfaces between Si and Ge
layers. The superlattices are grown on Si substrates and
the calculation is performed at 0 K.

II. CALCULATION DETAILS

All the data required to determine the linear suscepti-
bility, and hence the absorption coefficient o., was calcu-
lated using the empirical pseudopotential method. In a
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previous publication, this method has been compared
in detail to results &om ab initio methods. Principally, in
comparison to local density approximation calculations
performed using cASTEp (Cambridge Serial Total Energy
Programs), good agreement was found. Hence, we can
expect that our results for the optical spectra near the
band gap energy are as accurate as those found using
other theoretical methods.

%e have used potentials constructed in the manner of
Friedel, Hybertsen, and Schluter2 who have shown that
the transition energies in a Si40e4 superlattice strained
to a Si substrate are in good agreement with those pro-
duced by a self-energy quasiparticle calculation (See Ta-
ble IV of Ref. 24) The range of other computational cal-
culations attempted includes tight binding, zs ab initio
pseudopotentials, ' and. linear-muon-tin orbitals. 8 It
is worth pointing out that the absolute magnitude of the
fundamental gap remains uncertain in both the first prin-
ciples and semiempirical calculations. As for the former
they —with the exception of the many-body formulation
which is not applicable to problems such as ours involving
a large unit cell—do not predict the correct bulk gaps. In
semiempirical methods such as ours one needs to know
the value of the strain-induced splittings. Unfortunately,
there is no source of suitable empirical data. Thus the
gaps reported in semiempirical calculations vary depend-
ing on the choice of this splitting. This, in addition to the
usual uncertainty of order 0.1 eV, accounts for the large
variation of the predicted gaps in the literature. Our
aim is, therefore, to focus on relative values (changes) in
the magnitude of the fundamental gap as a function of
changes in composition, order, and other parameters.

For the random alloy and imperfect interface cases,
the calculation was performed using a supercell of 1000
atoms to model the crystal. At present, a cell of larger
dimension than this is impractical due to the amount of
computation time required. The supercell calculation is
described in detail by reference. 2 To restrict the com-
putation time to a minimum a number of modifications
were made, but before we can examine these savings we
need to brie8y discuss the background to the supercell
calculation.

A. The supercell calculation

We expand the supercell wave functions Q in terms of
a complete set of eigenfunctions 8 g corresponding to a
suitable host material (here Si). Thus,

where Ho is the Hamiltonian of the host material and
V the difference in potential between the supercell and
the host. By substitution and suitable manipulation we
arrive at the secular equation,

A„g(E„g —E)b„„hing + ) A„g—(k'+ G'~v~k+ G)

which we solve by matrix diagonalization. Finally, the
matrix elements A (k'+ G'~V~k+ G) can be written

) a„',&, (G')a„~(G) v, (g) ) exp
SC Gcg

+vs(g) ) exp's & —v (g) ) exp*s' . (5)
1 g To

Here Osc is the volume of the supercell, v„v~, v and
the potentials and positions of the Si, Ge, and

host atoms, respectively, and g is the superlattice recip-
rocal lattice vector,

g = k' —k+ G' —G.

When calculating the structure factorssP of (5), a sum of
exponential terms must be found. In the host material,
and in planes of the supercell composed entirely of a sin-

gle species of atom, the atoms are arranged in a regular
grid. Correspondingly, the sums become just a simple
geometric series. For the random interface superlattice
the number of disturbed planes is approximately one half
and we can, therefore, save a factor of about 4. The most
substantia. l saving we can make occurs when we realize
that the term in square brackets in (5) is only depen-
dent on the difference in plane waves, G' —G. Thus,
for any individual value of k' —k, it is only necessary to
calculate this term for the set of different values G' —G.
In a similar manner we only need to evaluate the square
brackets at different values of k' —k. This saving is small
because we use only 38 values for k. However, an extra
saving can be made by using time reversal symmetry to
eva.luate terms at k —k'. Finally, we can cut off the po-
tential at ~g~ =20 (units of (27r/a), where a is the lattice
constant). Its form for both Si and Ge tends rapidly to
zero for large values of ~g~, and is less than 10 s times
the maximum positive potential, at this point.

B. Expressions used to calculate y

where The expression used to calculate the resonant first or-
der electronic susceptibility is

(2)

n is the band index, k the wave vector, and G the recip-
rocal lattice vector. The Schrodinger equation is

2 p, n f
(x) I . i ~ - )- e pv&cv(pe~ pcc)

~ Vhm2+2g
vc 0 cv

e

m~ Vu)2'

(Hp + V)0 = Ee, (3) where
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(E, —E„)—cu —ip,„,

and p" is the matrix element between valence subband
v and conduction subband c, for polarization p. p„„ is
the steady-state population of subband v, V the volume
of the crystal, and ru the Geld &equency. p„„and p„are
given by

(Qa)

(9b)

where

IPI2
&ac&ce I

452m~a~

FIG. 1. Band structure of the perfect Si5Gez superlattice.
I' is the zone center and X, M, and P the points on the zone
boundaries in the (100), (110),and (001) (growth) directions,
respectively.

is the square of the Rabi flopping frequency and p (U) is
the thermal equilibrium population of subband v. Note
that p,„=p„, and p, = ~...p = ~„.T2" is the dipole

lifetime, which indicates the loss of phase coherence be-
tween the eigenfunctions of bands v and c, and T~ the
recombination time into band v.

III. PERFECT INTERFACE SisGes
SUP ERLATTICE

Our Grst calculation is that for an idealized system in
which all planes parallel to the interfaces contain only
a single species of atom. %e model a double period of
SisGes, i.e., 20 atoms (or 5 lattice constants) strained to
a base of the same number of periods of Si. With all
perfect layers the calculation at each superlattice wave
vector can be performed in a few minutes, allowing us to
sample a large number of such points.

The energy range we investigate is &om 0.7 eV to 1.5
eV. This range will cover from at least 100 meV below the
threshold &equency to at least 500 meV above this value,
for all the structures considered in this work. Having
set this range we can use it to restrict the computation
time of the absorption coefficient by cutting the number
of subbands used in the calculation. It turns out that
the band structure of this superlattice is such that it
is only necessary to include the four uppermost valence
subbands and the lowest six conduction subbands. Here

10'-

A. Band structure and matrix elements

Figure 1 shows the band structure of our perfect su-
perlattice. I' is the zone center and X, M, and I' the
points on the zone boundaries in the (100), (110), and
("'I1) (growth) directions, respectively. All subbands
s iown are spin degenerate. As we shall be interested in
the absorption coefficient near the band edge we restrict
our sampling zone to a volume close to the superlattice
Brillouin zone center. The size of the Bnllouin zone is
—0.2 & K, &0.2, —1.0 & K, K„&1.0 2x/a. We sample
over all K, but restrict to —0.2 & K, K& &0.2. As we
shall be able to use the symmetry properties of the matrix
elements in calculating a, for this case, we can also re-
strict our sampling volume to one irreducible segment. In
total we sampled 33000 random points in such a zone,
which equates to 412000 points in the whole zone.

C

~ 7K

E0

Q

10-10

10"—

Q) V2-C l
Y2-C2
V2-C3

+ Vl-C l
Vl-C2
Vl-C3
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I I I I
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Energy(e V)

FIG. 2. The momentum matrix elements for transitions in-

cluded in our calculation of a at the Brillouin zone center I'.
V1 is the highest lying valence subband and cl the lowest ly-

ing conduction subband. For all transitions the lower marker
indicates that the z-type polarization has a breaker matrix
element.
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C. The absorption coe6icient

M

0

~ W

A

~ W0
I

10 20 30

Energy (eV)

I

40

FIG. 6. The joint density of states for a perfect interface
Si5Ge5 superlattice grown on Si.

of the contribution to the density of states Rom the re-

gion around the zone center (I'). As the joint density of
states is directly related to n, si we can use it as a guide
in our calculation of cr. In Fig. 7, we show the joint den-

sity of states calculated using all 100 subbands, and also
using only those subbands we will use in the calculation
of a (lower curve). We see that in the energy range we

shall calculate cr over (0.7 eV to 1.5 eV), the two curves
are almost identical. Hence we can assume that we have
included all subbands necessary for the calculation of n

For low field strengths the absorption coefBcient o. is
connected to the susceptibility y via the expression

(d
Iiil g (—(d; (d )

n, oC

where n is the background refractive index due to bound
electrons. Using (7) and (11) we obtain Fig. 8. Here the
electric field strength is set to 1 Vm ~ and the p to 3
meV. ss For this structure the direct band gap energy was

found to be 0.98 eV and we see that for both a„(solid
curve) and cr„(dashed curve), the onset of absorption
is at this energy. The tail at lower energies for o; is

due to our use of a constant p. Below the single photon
resonance, p should decrease so that a tails off to zero
much faster than is shown here. At energies close to the
band gap it is the p polarization that dominates because
the uppermost valence subbands are derived ft. om the
bulk heavy-hole band. Only when the energy becomes
resonant with lower lying valence subbands (derived from
either light-hole or split-off bands) do we see cr increase
significantly for the p, polarization. Note that a =o,»
due to symmetry considerations.

IV. IMPERFECT INTERFACE SisCe&
SUP ERLATTICE

For this calculation we use a supercell that extends
five lattice constants in the directions parallel to the in-

terfaces and two superlattice periods, i.e., 5 times the
lattice constant, along the superlattice axis. This volume
contains 1000 atoms of which 400 are in the interface lay-
ers. Ideally, one would wish to use a larger supercell in
order to keep periodic e8ects to a minimum. However,
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PIG. 7. Joint density of states for a perfect interface Si5Ce5

superlattice, near the threshold energy. The lower curve is
from a calculation performed using only the subbands in-

cluded in the calculation of the absorption coefficient n. In
the energy range that we examine o. the full and partial cal-
culations match.

Energy (eV)

FIG. 8. The absorption coefficient n for a perfect interface
SisGes superiattice (grown on Si). The band gap is 0.98 eV
and o; increases steeply at this energy. Just above the band
edge a 5 x 10 m
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Si Interface Ge

(a) jE 3L 31 . I E

(b)

(c) gl iE iE . iE il
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FIG. 9. Possible interface configurations. (a)—(c) are con-
sidered in this study and are as follows: (a) the ideal interface,

(b) the presence of a Si atom in a Ge layer, and (c) the pres-
ence of a Ge atom in a Si layer. Configuration fd) represents
"islanding" and is not included as it is taken to occur much
less frequently than (a)—(c).

~ M
N

Q
A

I

—10 —5 0 5

Energy (eV)

I

10 15

the amount of computation time required restricts us to
a 1000 atom cell at the present time. The superlattice is
strained to a Si substrate that also contains 1000 atoms.

The interface atoms are randomly assigned to be Si or
Ge. By using an initialized routine are ensure that the
atoms are allocated to Si or Ge, in the same orderfo, r
every superlattice k point sampled. The three interface
configurations considered in this study are shown in Figs.
9(a)—9(c). Configuration (d), "islanding, " was considered
to be very much less likely and was, therefore, not used.

When we examine the band structure for this material,
Fig. 10, we find that the subbands are closely separated
in energy and show little dispersion with wave vector
throughout the Brillouin zone. This means that to cover

FEG. 11. Density of states for an imperfect interface Si5Ges
superlattice. We model 1000 atoms of the superlattice (400 of
which are in the interface layers), grown on a volume of 1000
Si atoms.

the same energy range as for the perfect superlattice it is
necessary to include 90 subbands (30 valence and 60 con-
duction) in the calculation for n We al.so have to sam-
ple throughout the Brillouin zone. The first reason for
this is the small dispersion described above. Second, this
structure does not have the symmetry properties that al-
low us to calculate u from the sum over wave vectors
in only a single irreducible segment. Unfortunately, it
required three hours of computation time for each super-
lattice wave vector (M = 10,Nsp = 38), so in total we

sampled 3200 points.
Figure 11 shows the density of states for our imper-

fect interface superlattice, strained to Si. Figures 12 and
13 show the joint density of states. In Fig. 13, we see

N
~A

0

X

FIG. 10. Band structure of a SisGes superlattice with ran-
domly configured interfaces. Subbands in both the valence
and conduction bands are closely spaced in energy and show
little dispersion with wave vector. Consequently, we must in-
clude many subbands in the calculation of u and integrate
over the entire Brillouin zone.

~ t+I
N
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A

~W0
I I
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Energy (eV)
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l
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FIG. 12. Joint density of states for an imperfect interface
Sip Ge5 superlattice.
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FIG. 13. Joint density of states for an imperfect superlat-
tice, near the band gap energy. A calculation using a re-
stricted number of subbands (dashed curve) makes no dif-
ference over the energy range in which we shall examine the
absorption coefBcient.

4.0

that our reduction in the sum over subbands to 90 (see
above), &om 380 (Nsp x M), leaves the joint density of
states unchanged in the energy range we shall calculate
o; over. Both the density of states and joint density of
states for this case are very different &om that of the
perfect case. Obviously the reason for this is the differ-
ence in their band structure. Between these two cases the
main differences are that the dispersion with wave vector
is much higher in the perfect case, and that the subbands
are generally much closer to each other (in energy) for the

FIG. 15. Relative magnitudes of the squared optical matrix
elements with p polarization, at the Brillouin zone center, as
a function of energy for an imperfect interface SisGe5 super-
lattice strained to a Si substrate. The transitions at lower
energies are strictly forbidden in the ideal case.

imperfect case. We should also remember, and this will
be a signi6cant factor, that for the perfect superlattice
we did not sample over the whole of the Brillouin zone.

The absorption coeKcient is shown in Fig. 14. Imme-
diately we see that the size of a has decreased by an order
of magnitude. This is because a, at the absorption edge,
is due to transitions at the zone center, the strength of
which decreases with the amount of disorder present in
the structure. 23 We can clearly see that the absorption
is due to processes occurring in this region of the Bril-
louin zone by examination of Fig. 15, which depicts
the relative magnitudes of the optical matrix elements
at I'. Our absorption curve "envelopes" this histogram.
Finally, we point out that our absorption edge and mag-
nitude of a are in good agreement with both theory and
experiment.
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& so-
C0~ 25-
V

U
O 2.0

0 1.5—

x pol.

z pol.

0
v3 10

0.5—

0.0
I I l I I

0.7 0.8 0.9 1.0 1.1 1.2
I I

1.3 1.4 1.5

Energy (eV)
FIG. 14. The absorption coefBcient o. of the imperfect su-

perlattice. The magnitude has decreased by an order of 1
compared to the perfect case, due to a weakening of the zone
center matrix elements.

V. 50:50 Si/Ge ALLOY

Finally, we perform a calculation with a 50:50 alloy of
Si and Ge, on a Si base. Both the alloy and the base
volumes contain 1000 atoms, and the positions of the Si
and Ge atoms in the alloy were randomly assigned. In
fact, the number of Si and Ge atoms was also randomly
assigned and this turned out to be 512 Ge atoms and 488
Si atoms. What we wish to achieve here is a comparison
between various structures that contain the same ratio of
Si and Ge atoms, i.e. , under experimental conditions will
it be possible to differentiate between the signals from
ordered and disordered structures?

In a similar calculation to the disordered interface case
we used M = 10, Nsp ——38 and 90 subbands in the calcu-
lation of a. Again it was necessary to sample throughout
the whole of the Brillouin zone, but here only 1500 sam-
pling points were required for convergence of the sum for
n (in the energy range we considered). We can clearly
see the reason for this by examining the band structure
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FIG. 16. Band structure of the 50:50 Si/Ge alloy. As with
the random interface superlattice subbands are closely spaced
in energy and show little dispersion with wave vector. Note
that the structure from F to P matches that from F to X,
indicating that the atoms of the alloy are in a truly random
arrangement.

FIG. 18. Joint density of states of a 50:50 Si/Ge alloy. This
closely resembles the joint density of states for the imper-
fect superlattice structure and we might, therefore, expect
the properties of the alloy to be similar to those of the super-
lattice.

of the alloy, Fig. 16. Due to the truly random arrange-
ment of atoms in the alloy the band structure is identical
for I' to P and I' to X, i.e., the symmetry has increased.
Hence, many points in one region of the Brillouin zone
now also describe the response in other regions, and the
sum over wave vectors correspondingly decreases.

Figure 17 shows the calculated density of states for
our alloy. It is immediately apparent that this is almost
identical in form to the density of states for the imperfect
interface superlattice. This gives us an indication that
the properties of the alloy will be very similar to those
of the superlattice. Correspondingly, we would expect

the joint density of states to also be very similar, Fig.
18. This is the case, and it is not until we examine a
small energy range that we see the first differences, Fig.
19. In comparison to Fig. 13, the joint density of states
for the alloy starts at an energy approximately 100 meV
higher, i.e., the band gap of the alloy is larger. The rate
of increase is also higher for the alloy at energies close
to the threshold. Finally, the alloy density of states does
not show the step present in Fig. 13 at 2.75 eV. All
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FIG. 17. 50:50 Si/Ge alloy density of states. The alloy
consists of 1000 randomly arranged atoms and is strained to
a volume of 1000 atoms of Si.

FIG. 19. A magnified view of the joint density of states for
the Si/Ge alloy, close to the band gap energy. This detailed
view shows up difFerences from the joint density of states of
the imperfect superlattice and indicates that although the
gross band structure may well be similar, the subband struc-
ture is somewhat difFerent.
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are that the absorption edge is approximately 100 mev
higher in energy for the alloy than the disordered inter-
face superlattice, and that unlike the imperfect superlat-
tice the transition probabilities across the band gap (for
the alloy) are the same order of magnitude as those at
the in-plane minima. For the superlattice this last point
means that the absorption coeKcient remains very low

until we reach an energy approximately 300 meV above
the band edge. We, therefore, predict that experiment
should be able to verify the effect on o. of having an or-
dered structure.

Using the data needed to calculate 0, we were also able
to present calculations of the density of states, and joint

density of states (proportional to o.) for all the structures
considered in this study.
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