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Localization of charged quantum particles in a static
random magnetic field
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We consider a charged quantum particle in a random magnetic field with Gaussian, b-correlated
statistics. We show that although the single-particle properties are peculiar, two-particle quantities
such as the diffusion constant can be calculated in perturbation theory. We map the problem onto
a nonlinear o model for Q matrices of unitary symmetry with renormalized diffusion coefficient for
which all states are known to be localized in d = 2 dimensions. Our results compare well with recent
numerical data.

The problem of a charged quantum particle xnoving
in a static random magnetic field in two dimensions has
received renewed interest recently. For one, the prob-
lem may be considered as a limiting case of a system
of particles interacting via a gauge Beld. Models of this
type have been proposed to describe a state with charge-
spin separation of the conduction electrons in high-T,
superconductors. ' Second, an experimental realization
of a random xnagnetic field due to the pinned vortex lines
of a superconducting layer on top of a semiconductor
heterostructure has been reported recently. ~ Third, the
problem is thought to be relevant for the quantum Hall
eEect in the limit of the half-filled Landau level. '

A number of numerical investigations have been per-
formed, with conflicting results. In Ref. 9 it was argued
on the basis of results of numerical diagonalization on
square lattices of up to 104 sites for zero-average random
flux per plaquette and, in addition, site-diagonal disorder
and a uniform magnetic field that localization can be sup-
pressed by the random flux. In Ref. 5 the conductance
of a square lattice of quantum wires subject to a ran-
dom magnetic flux per plaquette, distributed uniformly
between —Po/2 and Po/2 was calculated numerically (Po
is the fiux quantum). Although no definite conclusion
could be drawn, the results were found to be consistent
with the existence of extended states and a mobility edge.
In contrast, the results of applying the finite size scaling
method of MacKinnon and Kramer to the random mag-
netic field problem reported in Ref. 4 suggested that all
states are localized by a random magnetic field. Since
the localization length for a two-dimensional disordered
system may be very large, it is obvious that nuxnerical
studies of systems of finite size are of limited value in
deciding the principal question whether there exist ex-
tended states in these systems.

In this paper we show that the problem of charged par-
ticles in a static random magnetic field can be mapped
onto a nonlinear o. model of unitary matrices. The latter
model has been proposed for disordered systems contain-
ing random spin scattering centers as well as models fea-
turing random phase fluctuations of the hopping matrix
elements of a tight-binding Hamiltonian. ' Perturba-

tion theory for this model yields a divergent quantum
correction to the conductance in two-loop order. As a
consequence the scaling function in two dimensions re-
mains negative, leading to the result that all states are
localized for these models.

We study the transport properties of a charged spinless
quantum particle (xnass m, charge e) in two dimensions in
a static random magnetic field H(r) = V x A(r) normal
to the plane, as defined by the Hamiltonian

2 g Q
2

H= — A+ A2' SAC 2mC2

where p = —iV is the moxnentum operator and the
Coulomb gauge (V A = 0) has been used (h = 1). The
magnetic field is assumed to be Gaussian distributed and
b-correlated, with vanishing mean and variance in Fourier
space

(2)

Accordingly, the variance of the vector potential is
(A (qgAp( —

qQ) = (1/q2)(h2) 8+&(q) where 8+&(q)
b p

—q qp accounts for the transverse character of the
field (q = q/ ~ q ~). By contrast, an independent random
distribution of phases of the hopping matrix elements
corresponds to a b-correlated distribution of vector po-
tentials given by (A~(q)Ap( q)) = (a )b—&(q). We will
corn.ment on this case later.

Assuming the fluctuation strength of the magnetic
field, (h ), to be weak, we first consider perturbation the-
ory. The standard Feynman diagram language for impu-
rity scattering may be employed, with the impurity line
describing scattering of a particle &om momentum state
( g7+ q/2) into state

(
J7'+ q/2) and a hole &om

~ p —q/2)
into

~

g7' —q/2) being given by

where k = p —p' is the transferred momentum and
vo2 ——e2(h2)/4m c2 is a velocity squared characteristic of
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the strength of disorder. Note that mzz is strongly sin-
gular in the forward direction (p = p '), due to the long
range of the vector potential fluctuations, even though
the magnetic 6eld fluctuations are assumed to be short
ranged. In lowest order the imaginary part of the (ad-
vanced) single-particle self-energy E+(p, E) on the energy
shell (E = p /2m) is given by

to I'&„- is obtained as

1 1
I ~~I —z~ + Dq2 2mNp7. 2

where the diffusion coefEcient D is given by

A ~s' s "&
ImZ —= —= x (dp ')u)„„(0)b

~27- g2m 2m)

= vrNpvp —cot
p 27t 2

(4) —= mvo —cot —(1 —cos P) = mvo .1 2 dp 2 (12)

and v = p/m. Here we have defined the transport relax-
ation time 7t, as

Here, (dp) = d p/(2n), p. p
' = cosP, and No ———is

the density of states. The P integral in (4) is strongly
divergent at P = 0, which may be traced to the contribu-
tion of vector potential ffuctuations in the limit q -+ 0.
A self-consistent treatment of the divergence leads to a
much weaker dependence as discussed below after (23).
Nonetheless, the single-particle relaxation rate 1/2r can
be expected to diverge, which might lead to the genera-
tion of a branch cut in the single-particle Green's func-
tion, as argued in Refs. 1 and 2 (see, however, Ref. 18).
We will show below that the transport relaxation rate
and the diffusion constant are nonsingular, in agreement
with results of a naive perturbation theory. 2 This may
be done by regularizing the infrared divergence in (4) in
a convenient way. We will use a soft cutofF, replacing
cot2 ~z in (4) by ur(P) = cos ~z/(sin ~z + p2), although
the precise form of the cutoff is not important. At the
end of the calculation we take the limit p ~ 0.

Next, let us consider the diffusion propagator I' ("dif-
fuson"), obtained by summing the particle-hole ladder
diagrams

In contrast to x, the transport time 7.t, is 6nite in the
limit p m 0.

In a time reversal invariant system, the coher-
ent backseat tering described by a difFusion pole in

the particle-particle ladder diagrams, the so-called
Cooperon, plays a dominant role. The Cooperon

G&& I (q, ur) obeys the integral equation (5), with v)pp~ (q)
replaced by v)gg, (Q), where k = 2(p —p

' + q), &
' =

i(p ' —p+ qQ, and Q = p+ J7'. The fact that the vec-

tor potential A couples to the particle momentum p [see

(1)], which changes the sign under time reversal, leads

to the relation v)&g, (Q) = —v)pp (q). Correspondingly,
the Cooperon is 6nite in the limit q, ~ -+ 0 and cannot
play any role in bringing about localization in the present
case.

In the following, we map the problem onto a non-

linear o. model of unitary symmetry. The generat-
ing functional for two-particle Green's function of the
retarded-advanced type may be represented in terms of
a functional integral over a supersymmetric field g
(pi, yi, (p2, y2), where )pi, 2 are bosonic and yi, 2 are
fermionic components as

x G „(E )I'„- „-,(q, (u), (5) Z = D exp —Sp+ S1, (13)

where

2 ' - 1
G„-' (E) = E— (6)

where

Sp ———i d r A E+ V'1

2m ) 2
(14)

and p+ ——p + q/2, E~ = E + ur/2. The solution of (5)
may be easily obtained in terms of the eigenfunction of
the operator v)pp (q = 0) (see Ref. 15). In two dimensions
and for

~ p ~=~ p
'

~

one has

and

Si —— i d r(QA( i A —V)Q). —
7AC

with

The 4 x 4 matrix A is diagonal, A = diag(1, 1, —1, —1).
Averaging over the vector potential one Gnds that S1

in (15) has to be replaced by

v)„= vo —v)(P)e '"~
p 2K

(8)
«&0

(16)

and

X-(p) = e*"~

Here, P is the polar angle of p. The leading contribution

where v)& &, is defined in (3), and only long-wavelength
7

fiuctuations are considered (q ( qo). It is useful to intro-
duce the representation of ~& &, in terms of eigenfunc-

tions (7), and to define "density" fields
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„( (u „) ~(
(dp)x-(p)x-(p)G" I

E —
—,P IG"

I
E+ —,p+ q I

2 & 4 2

in terms of which S~ can be written as

SeE - g2 -nP

As usual, the interaction term may be decoupled with the
aid of Hubbard-Stratonovich fields Q„(r), which are (4 x
4) supermatrices of unitary symmetry. The functional
integration over the primary fields may be performed,
yielding

where b„= (X„X cos~)ti), E = 1, 2, we find

1 (
~ = ~p —— (dq) )2 ~p)

x Str [6Q-(q)6Q-( —q)]
Z = D exp —S (19)

+v)p~( i(u+ D(—)q ) Str [6Qp(q)bQp( —q)]

where the efFective action of the Q fields is at first given
by

+—'~, ~
l

—
l & si' [iq, (q)6Q„(—q))) . (26)

2 (mj

S= d p Str ln G

where Str denotes the supertrace and

2

+ i ) u)~x~(p) Q~A

(20)

(21)

As expected, the n = 0 mode is massless and describes
interacting diffusons. The coefFicient of the q2 term is
the bare difFusion constant, Dp ——2v ~, which tends to
zero if the in&ared cutofF is taken to zero. However, the
bare diffusion constant gets dressed by the coupling to
the massive n = +I modes. Indeed, integrating out 6Qi
and 6Qi pro'duces a renormalization term

and e = diag (E + 2, E + 2, E —z, E —
z ). The saddle

point of exp( —S) is at Q„= Q~ l, where Q~ l is
b,S = —— (dq)D()7-

' q' Str [6Qp(q)bQp( —q)],
2 ~p —~z

(27)

p2
=ib„of(dP) i — +image)o~ A A,

2m
(22)

which combined with the bare difFusion term has the ef-
fect of changing the bare difFusion constant Dp into the
renormalized D as defined in (12). The final result for
the efFective action is

so that the Green's function at the saddle point is given
by S=Sp —KNp dq Dq —i~ Str p qb p —q

p2 ~ 1

G(p) = e — + —A
2m 27

(23) (28)

Equations (22) and (2$) are statements of the self-
consistent Born approximation for the single-particle re-
laxation rate —. In contrast to the lowest order ex-

pression (4) for i, which scales with the cutofF p as
|x p, the self-consistent value is given by v'

[—p vp ln (I/Erg)]i~z and, hence, shows a weaker di-

vergence as p -+ 0.
We now expand the action around the saddle point:

We note in passing that the coefficients of terms with
higher spatial derivatives of Q will be renormalized in a
similar way and may be expected to be finite as well.

The expansion (28) of the action in terms of 6Qp serves
to determine the coefFicients of the two terms in the non-
linear o model obtained from (20) by keeping only the
integration over the saddle point manifold:

S = d r( DStr (VQ V—'Q) —2i(d Str (AQ)),4

S=Sp+ — dq dp ~ p p ~ p p+q
TL )TA

x Str[G(p)AbQ„(qQG(p+ q)AbQ (—qQ]

&.~" si~(si) (q)ii) ( q)). (24)

The p integral is only Gnite for the products G G
which are generated by the ofF-diagonal components of
6Q, denoted 6Q. In the limit of small q, ~, using

where the rescaled field Q(r) is constrained by Q2(r) = l.
We have, thus, shown that the problem of a charged

quantum particle in a static random magnetic Geld is
equivalent to a nonlinear o model of interacting Q matri-
ces with unitary symmetry. This model has been. studied
extensively. ' It is known that the Cell-Mann-Low

P function describing the scaling behavior of the dimen-
sionless conductance g (in units of e /b, ) with the length
of the sample is given in leading order for large g by
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(30)

It follows then that all states are localized, and that the
localization length in the weak disorder regime is given

by

( = (o exp(vr go), (31)

where go = mv ~t, /2 = (v /4vo) is the Drude conduc-
tance, and (p vTt . For the case of a b-correlated
distribution of vector potentials the single-particle re-
laxation rate 2 does not show an infrared divergence,
and the nonlinear 0 model may be derived in the usual
way. The more complete derivation given here leads to a
renormalization of the diffusion constant as D = 2DO ——

(4+Noe2{a2)/c ) i, where (a2) was defined after (2).
Our results are in good agreement with the available

numerical data. ' The authors of these papers studied
the lattice version of the problem with the maximum pos-
sible disorder corresponding to vo v. Accordingly, the
typical values of the "bare" conductance go are of order
of unity. However, when approaching the center of the
band (i.e. , when go increases), the localization length was

found to grow exponentially, 4 in agreement with (31).
The finite size scaling analysis5 yields for the localization
length A of a quasi-one-dimensional strip of width M:

A(M) = Mf((/M) . (32)

Calculating the scaling function f(z) by using (31) and
comparing with the known result for the localization
length of a quasi-one-dimensional system, we obtain:

This agrees well with the asymptotic behavior of f (z) as
obtained by numerical means in Ref. 4 for both x && 1 and
z « 1 (see Fig. 1). Scaling behavior of the conductance

g(L/() obtained in Ref. 5 (see Fig. 4 of Ref. 5) is also

compatible with the scaling law g(L) (1/vr) gin((/L)
(( )) I ), which follows from Eqs. (30) and (31).

To summarize, we have shown here that the nonlin-
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FIG. 1. The scaling function f(z), Eq. (32), as obtained

by numerical study of the problem in Ref. 4. The dashed
and dot-dashed lines represent the asymptotical behavior for
z « 1 and z )) 1, respectively, given by Eq. (33).

This work was supported by the Sonderforschungsbere-
ich 195 der Deutschen Forschungsgemeinschaft (A.G.A.)
and by the Alexander von Humboldt Foundation
(A.D.M.).

ear 0 model description of disordered systems with bro-
ken time reversal invariance holds true even in the case
of long-ranged fluctuations of the vector potential when
the single-particle properties are dominated by inft. ared
divergencies. This is true provided the magnetic field
fluctuations are short ranged. In the opposite case of
long-ranged magnetic field fluctuations it is conceivable
that even the transport relaxation rate diverges, signal-

ing a diferent physical regime. One may speculate that
then the topological excitations governing the behavior
in the quantum Hall eKect, where the average magnetic
field is finite and large, will play a role. However, for
short-ranged magnetic field fluctuations the topological
term is absent. Finally, we emphasize that our analy-
sis is restricted to quenched random magnetic fields. To
what extent this model applies to dynamical gauge field

models remains to be seen.
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