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ac Stark effects and harmonic generation in periodic potentials
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The ac Stark effect can shift initially nonresonant minibands in semiconductor superlattices
into multiphoton resonances. This effect can result in strongly enhanced generation of a particular
desired harmonic of the driving laser frequency, at isolated values of the amplitude.

The spectral structure of an atom can be substantially
modi6ed by an intense laser field. In particular, at sufB-
ciently high 6eld strengths the ac Stark efFect can bring
initially nonresonant levels into multiphoton resonances,
resulting, e.g. , in an enhancement of the photoioniza-
tion signal. Recent experiments ' have con6rmed that
ac Stark effects are of central importance for a detailed
understanding of the ionization dynamics. 4 5

If we deal with a periodic lattice, instead of an atom,
atomic levels broaden into energy bands. The question
then arises whether a laser field can similarly be used to
modify the effective band structure in a controllable way,
so as to alter physical behavior. This question is of par-
ticular interest and importance for electron minibands in
semiconductor superlattices, where the miniband struc-
ture itself can be engineered, within wide ranges, by the
design process. Also, the relevant spatial size and en-
ergy scales for these structures are such that the inter-
esting range of electromagnetic &equencies is in the far
in&ared, and there are now sources available which can
probe them with nonperturbatively strong laser fields in
this spectral range. In this paper, we will show that ac
Stark effects play a major role in these systems, as well.
We 6rst outline the necessary theoretical formalism, and
we then demonstrate by simple numerical examples the
practicality of constructing devices which make use of
Geld-induced multiphoton resonances in superlattices for
the selectively enhanced generation of particular harmon-
ics of the driving 6eld.

We consider a particle with effective mass m* moving
in a one-dimensional periodic potential V(x) with lattice
constant a. When this system interacts with an external,
spatially homogeneous, electric field F(t) = E'o sin(a)t),
the Hamiltonian is given by

'R(z, t) = [p —eA(t)]'/2m*+ V(x)

band need be considered, then it is straightforward~
to solve the time-dependent Schrodinger equation: if
&pt, (z) = exp(ikx)vs(z) are the Bloch-wave eigenstates
for the unperturbed lattice, with energy E(k), then the
states

(2)

approximately satisfy the full time-dependent equation
iB gt(szt) = R(z, t)gi, (z, t), provided that q(t), which
labels the periodic part of the Bloch functions v~ltl(z),
is given by q(t) = k —eA(t). Thus, this function q(t)
obeys 3 the classical equation of motion,

q(t) = ef (t).

g(z, t) = exp (i [kz —e (k) t]j u)l, (z, t), (4)

with u)), (z, t) = u)1,(z + a, t) = u)), (z, t + T), and with
"quasienergies" e(k), which specify the effect of time
translation by a full period T. Thus, in the presence of
the external field the energy E(k) is effectively replaced
by the quasienergy e(k) in characterizing the time evolu-
tion of the state labeled by quasimomentum k. Defining
the Floquet functions u~ (z, t) = exp(ikz)u)), (z, t), we can
find the quasienergies &om the eigenvalue equations

This "acceleration theorem" is usually the starting point
for a discussion of carrier motion in semiconductor super-
lattices in high-kequency electric fields.

However, there is another, more general formulation of
this problem. The Hamiltonian (1) is periodic not only in
space, but also in tiine, with period T = 2x/ur. The Flo-
quet theorem then guarantees the existence of a com-
plete set of solutions to the time-dependent Schrodinger
equation of the form

where A(t) is the electromagnetic vector potential:
E(t) = dA(t)/dt B—ecause thi. s Hamiltonian is peri-
odic in x, the wave vector k remains a good quantum
number in the presence of the external field. When
transitions between different bands can be completely
neglected, so that only the dynamics within a single

['R(z, t) —iBt] u), (z, t) = e(k)uI, (z, t),

with appropriate boundary conditions in space and time.
Within the single band approximation quasienergies are
easily determined from the wave functions (2): volt) is al-
ready periodic in space and in time, and the phase grows,

0163-1829/94/49(23)/16605(4)/$06. 00 49 16 605 1994 The American Physical Society



16 606 MARTIN HOLTHAUS AND DANIEL W. HONE 49

on average, linearly with time. The quasienergy is then
given by the average growth rate,

For example, the standard cosine dispersion for a tight
binding band of width W, E(k) = (W/2) cos(ka), yields
quasienergies s(k) = (W/2) Jo(eE'jja/w) cos(ka), with Jjj
the zero order Bessel function.

It is crucial to recognize that the transition from the
classical equation of motion (3) to the quantum eigen-
value equation (5) is not merely a reformulation. The
eigenvalue equation is significantly more general; it pro-
vides a &amework for attacking problems that lie out-
side the scope of a semiclassical treatment. For example,
quasienergies remain well defined if k is no longer an ex-
act quantum number, either because of finite lattice size
or because of lattice imperfections. If the departures from
spatial periodicity are local, e.g. , then (5) is the start-
ing point for an extension of standard Green's function
treatments of spatially local defects to systems subjected
to strong time periodic fields. This reduces the prob-
lem to finite quadratures in terms of the solutions to the
defect-&ee problem. Most importantly, the existence of
dispersion relations s„(k)(where n is a band index) relies
only on the lattice spatial periodicity and the temporal
periodicity of Z(t). Therefore, these quasienergies can
still be defined rigorously even when laser-induced tran-
sitions between unperturbed energy bands are no longer
negligible, so that (3), and therefore (6), become invalid.
Knowledge of the s„(k)implies a nonperturbative under-
standing of inter(mini)band effects. It is this fact, and its
consequences for possible experiments, that we will now
explore in detail.

Figure 1 shows the lowest three quasienergy bands,
calculated numerically, for a model potential V(z) con-
sisting of 20 square wells of width 330 A which are sep-
arated by rectangular barriers of width 40 A and height
0.3 eV. The effective particle mass is chosen as that of an
electron in the conduction band of GaAs, m* = 0.067m
(with m the bare electron mass), and the external fre-
quency as u = 3.0 meV, as an approximate model of
a GaAs/Al Gai As superlattice in a far-infrared laser
field (linearly polarized in the growth direction). If s is a
quasienergy, then so is e+ mu for any integer m. There-
fore, it suffices to consider only a single quasienergy "Bril-
louin zone, " a range of quasienergies of width u. The
bands in Fig. 1 are labeled such that (n, ,

—m) denotes
the representative of the nth quasienergy band which is
shifted down in energy by mu &om that representative
which is connected to the unperturbed nth energy band
for vanishing laser Geld strength.

The first and second energy bands in the unperturbed
model are separated by a gap of 12.93 meV, which is more
than four times the photon energy ~. With increasing
Geld amplitude Eq the bands in Fig. 1 oscillate in width
and almost collapse (apart from an almost degenerate
pair of edge states on top of each band) at values of
eFjja/w equal to a zero of the Bessel function Jo. This is
the behavior characteristic also of isolated bands. But, in
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FIG. 1. Lowest three quasienergy bands for 20 square wells
of width 330 A, separated by barriers of width 40 A and height
300 meV. The particle mass is m' = 0.067m, and the ac
frequency ~ = 3.0 meV. The inset shows a magnified view of
the avoided crossing of the lowest two bands. The third band
is (3,—12); it plays no role here. The split-off states are edge
states (Ref. 15).

addition, interaction between different bands leads to an
ac Stark shift: the lowest band (labeled n = 1) is shifted
down when the field becomes stronger, whereas the first
excited band (n = 2) is shifted up. Then there necessarily
exists a critical field strength where the gap between the
bands approaches 5u, so that we have a field-induced
five-photon resonance. In a quasienergy plot reduced to
a single "Brillouin zone" such a resonance manifests itself
as an avoided crossing of quasienergy bands, as shown in
Fig. 1 for the representatives (1,0) and (2,—5).

At the field strength of an avoided crossing, two bands
are strongly coupled. In a description based on the
original energy bands one would at least have to in-
clude strong multiphoton transitions between them by
higher order perturbation theory. But we can in this case
achieve the nonperturbative ideal of carrying out a trans-
formation from the original system of strongly interacting
energy bands to an equivalent system of noninteracting
quasienergy bands. The eigenvalue equation. (5) already
incorporates the eR'ect of the ac field to all orders, and
even at an avoided crossing there are no transitions at
all between quasienergy states. Nevertheless, multipho-
ton transitions are automatically included in this picture,
since the Floquet states are time-dependent linear com-
binations of the unperturbed band states, with maximal
interband mixing at an avoided crossing. Thus an anal-
ysis of the simple noninteracting description gives precise
information about observable transitions in the physical
system.

A field-induced avoided crossing of quasienergy bands
can have observable consequences. Strong coupling be-
tween different bands, which occurs only near particu-
lar values of the amplitude fo, implies that the charac-
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teristics of the harmonics generated by the periodically
driven lattice should alter dramatically at those values.
To demonstrate this we choose an arbitrary single Flo-
quet state @(x,t) from the lowest band and Fourier de-
compose its dipole expectation value,

(g(t)lxlg(t)) = ) z„exp(—inst).

= E ).I&)(&l+
4 ).[I&+»(&I+ I&)(&+ II]

(8)
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FIG. 2. Fourier coefficients Ix I
of the dipole expectation

value for an arbitrary state in the lowest band of Fig. 1, at
field strengths Ea of (a) 8500 V/cm, (b) 9250 V/cm, and (c)
10 000 V/cm.

Figure 2 shows the Fourier coefficients Ix„l for field
strengths fp below (8500 V/cm), at (9250 V/cm), and
above (10000 V/cm) the avoided crossing. Where
the five-photon resonance occurs, the fifth harmonic is
strongly enhanced. The response at this frequency is
even stronger than it is at the fundamental &equency u.
The most general solution to the Schrodinger equation
is a superposition of all Floquet states, and interferences
can lead to the occurrence of additional &equencies in
the dipole moment (7). However, the principal feature—strong enhancement of the mth harmonic because two
bands are ac Stark shifted into an m-photon resonance—is a general result. This effect can also be found with-
out recourse to Floquet theory by numerically analyzing
the Fourier content of solutions to the Schrodinger equa-
tion at difFerent values of the amplitude tp. The advan-
tage of the Floquet method is that one does not have to
search blindly for large effects as a function of E'0, but
can identify multiphoton resonances immediately &om
a quasienergy diagram. Thus, we now can formulate a
general rule: a possible device for efficient harmonic gen-
eration by electrons in spatially periodic potentials and
strong ac fields should be operated at a critical point of
the quasienergy-quasimomentum dispersion relation, i.e.,
at an avoided crossing of quasienergy bands.

Application of this principle to semiconductor super-
lattices is particularly interesting, because these artificial
lattices can be engineered so as to optimize the effect.
Consider a simple one-dimensional tight binding Hamil-
tonian, which provides a good description of tunneling
between different superlattice wells,
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FIG. 3. Quasienergy bands from the lowest doublet, cor-
responding to electrons of effective mass m = 0.067m in 50
square wells of width 90 A. , separated by square barriers of
height 300 meV and widths alternating between 40 A and 60
A; the ac frequency is ai = 1.0 meV. Two Brillouin zones are
shown. Note that in the presence of the strong laser Beld the
important dynamics are controlled not by the original energy
gap of 1.7 mev, but by the much smaller quasienergy gaps of
0.1 meV (at 2200 V/cm) or 0.2 meV (at 4900 V/cm).

where ( Iji,') j is a set of Wannier states localized in the indi-
vidual wells. This Hamiltonian contains two parameters,
the on-site energy Ep and the hopping strength W/4. If
we now start with a system described by (8), and then
modify either the on-site energy (the well width) of ev-

ery second site, or every second hopping integral (barrier
width), then the unit cell of the periodically repeated
structure consists of two wells, and the original bands
each split into two. In this way it is possible to create
lattices where two bands (or more, if the number of wells
within a unit cell is increased further) are grouped ar-
bitrarily close in energy, so that inter(mini)band effects
play a dominant role even for small applied field ampli-
tudes.

To illustrate this we now use a model potential V(z)
of 50 square wells each of width 90 A. The separating
barriers are 0.3 eV high, and their widths alternate be-
tween 40 and 60 A. As before, the effective mass m*
is 0.067 in units of the bare electron mass. The lowest
doublet for this dimerized system consists of two very
narrow energy bands which are separated by a gap of 1.7
meV; this doublet is in turn separated by the much larger
gap of approximately 100 meV &om the first excited dou-
blet. Figure 3 shows the quasienergy bands that originate
from the lowest doublet, for an applied field of frequency
ai = 1.0 meV. In the two original unperturbed bands (for
Zp ——0) corresponding states (those with the same wave
vector A:) are separated in the reduced zone by an en-

ergy of less than 3 meV. With increasing field strength
the ac Stark effect pushes these two bands further apart,
resulting first in a three-photon resonance (3' = 3 meV)
and the corresponding avoided quasienergy band cross-
ing near E'p 2200 V/cm (see Fig. 3), and then a five-
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FIG. 4. Dipole expectation value Fourier coefBcients for an
arbitrary state st the avoided crossing near 4900 V/cm in

Fig. 3.

photon resonance and the related avoided crossing near
Ep 4900 V/cm. The corresponding enhancement of the
fifth harmonic generation in the latter case is exhibited in
Fig. 4, which shows the Fourier amplitudes of the dipole
moment corresponding to one of the states at this avoided
crossing. These field strengths and superlattice param-
eters are well within practical experimental ranges. In
general, the potential eKciency of harmonic generation
associated with an avoided crossing is determined by its
sharpness (the curvature of the quasienergy as a function
of field amplitude at the avoided crossing; the sharper,
the more efficient), which can be controlled by varying
system parameters.

More than 20 years ago Tsu and Esaki~ realized that

the nonlinear optical response of conduction electrons in
superlattices might find important device applications.
The nonlinearity they considered explicitly was associ-
ated with the nonparabolicity of a single isolated super-
lattice miniband. We have shown that nonlinearities can
be strongly enhanced by interminiband eKects which are
induced by strong ac electric fields. Even in the presence
of these time periodic fields the quantum behavior is sim-

ply and usefully described in terms of a few numbers-
quasienergy and (for finite systems, approximate) quasi-
momentum. Using such a description we have demon-
strated the possibility of employing the ac Stark effect to
tune minibands into multiphoton resonances, and that
this implies the possibility of selectively enhanced gen-
eration of a particular harmonic. The fabrication of su-
perlattices has reached a state of great perfection, and
the first experiments with superlattices in strong far-
infrared laser fields have been successfully carried out, so
it should be possible now to observe and exploit this pre-
dicted effect. More generally, the further investigation of
superlattices in strong ac fields seems highly promising
in terms of advances in both pure and applied physics.
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