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Theory of conduction through narrow constrictions in a three-dimensional electron gas
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An exact calculation of the quantum conduction through a curvilinear constriction in a three-
dimensional electron gas is presented. We show that the conductance behavior presents signi6cant
difFerences with respect to the two-dimensional case. Importantly, we 6nd that the conductance
of a circular point contact deviates from the classical Sharvin result and the conductance per unit
area is not constant except in the limit of macroscopic areas. We show that quantum 6nite-size ef-
fects can be taken into account by a simple semiclassical correction to the Sharvin formula. Recent
experiments and calculations on quantum constrictions formed in atomic-scale point contacts are
discussed.

The discovery of the quantization of conductance of
a narrow constriction in a two-dimensional electron gas
(2DEG) has been a breakthrough in the field of ballis-
tic transport in mesoscopic systems. This phenomenon
is the consequence of the quantization of the transver-
sal momentum of the electrons confined in a constriction
with a width of the order of the Fermi wavelength. The
effect of diferent confining potentials has been the object
of detailed calculations based on Landauer's scatter-
ing approach to electric transport. For a long constric-
tion, the conductance is directly proportional to the inte-
ger number of propagating modes or conductance chan-
nels and increases with the constriction width in steps of
2e2/h each time a new channel opens up. Even in the
case of extremely short constrictions, where the trans-
verse quantization is not well defined, the conductance
shows an oscillatory quantum behavior superimposed
on the classical two-dimensional Sharvin conductance.
This quantum behavior should not be restricted to a
2DEG and was also expected to describe the conduc-
tion in a small metallic point contact. Here, our main
objective is to study the effects of the size and geome-
try on the quantum conductance of a small connecting
constriction between two three-dimensional electron gas
(3DEG) reservoirs. Although the general behavior of the
conductance resembles that of a 2DEG point contact, we
have found significant features in the 3DEG. In particu-
lar, we will see that the classical Sharvin formula for the
conductance of a circular contact is not a good approxi-
mation for finite contact areas in contrast with the 2DEG
case. We will also discuss the possibility of observing
conductance quantization eKects in actual experiments
on atomic-scale point contacts.

Our discussion can be considered as a generalization
to a three-dimensional system of the theory of conduc-
tion in curvilinear constrictions in a 2DEG of Yosefin and
Kaveh (YK). Following YK, we start with the observa-
tion that the &ee Schrodinger equation can be separated
in several coordinate systems. If the boundary of the
constriction coincides with surfaces 8 =const, in one of
these systems quasi-one-dimensional conduction channels
can be defined. As in the 2DEG case, the conductance

G is given by the Landauer formula

2c'=
a &-&-'-

en

where T I is the transmission probability of the subband
mt and the sum runs over the total number of occupied
subbands. In the case of a quantum constriction in a
3DEG each subband is defined by two quantum num-
bers t and m, since the electrons are confined in two spa-
tial directions. We will discuss three-dimensional con-
strictions with hyperbolic geometry (Fig. 1) since this
approximates the shape of the quantum constrictions
formed in actual scanning tunneling microscopy (STM)
experiments. Moreover, by choosing the parameters
appropiately, this geometry allows us to analyze the prob-
lem of quantum point contacts for the short-contact-
constriction case of a circular hole (i.e. , a Sharvin point
contact) .

Spheroidal oblate coordinates (p, t'l, y) can be defined
b 12

45'

FIG. 1. Geometry of connective constrictions with variable
cross section. Two parameters de6ne the hyperbolic constric-
tion geometry: the radius R of its narrowest section and its
asymptotic opening angle 290, which can go from 0 (a cylin-
drical wire) to 90' (a circular hole).
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x = acosh p, sin8cosp,

y = a cosh p sin csin p,
z = asinh pcos8,

(—ao & p, & oo), (0 & 8 & vr/2), (0 & p & 2m. ),

where 2a is the distance between the foci. The constric-
tion is defined by the surface 8 = 6O ——constant and
the radius of the narrowest section of the constriction is

given by R = asin8o (see Fig. 1). Assuming electron
wave functions of the form

4(p, 6, (p) = (coshpsin8} '~'g(p)8(&)C(y),

the Schrodinger equation inside the constriction sepa-
rates into

d2C„,+m'C =0,
d{p

(
—f sin 6 —

2 8=0,
sin 6

(4a)

(4b)

FIG. 2. Conductance G of a quantum constriction as a
function of the area of the narrowest section and the opening

angle of the constriction 80.

+ —a~i+ f cosh p+ 2 g = 0, (4c)
8p cosh p

where m and e ~ are the two separation constants and,
for the electrons at the Fermi level, f = 27ra/A~. From
the azimuthal boundary conditions we have m = integer.
Now, for a fixed azimuthal number m, using Eq. (4b) and
the Sturm-Liouvillei2 boundary conditions S(8p) = 0
and 8(0) = finite, one can determine the set of transverse
functions 8 i(8) together with the corresponding values
of the separation constant (e ~}~—o i 2 . This problem
can be easily solved for 60 —+ 0, i.e., for an almost per-
fectly cylindrical wire of constant section. In this sim-

ple case, we have cylindrical symmetry and (8sge ~)
becomes the set of zeros of Bessel functions. However,
in general, this problem has to be solved by numerical
methods.

Since the Schrodinger equation is separable there is

no channel or mode mixing and the calculation of the
transmission probability T ~ of a wave incident from the
(ml}th left-hand-side channel (p & 0) is reduced to that
of a one-dimensional problem. Moreover, T t can be
calculated exactly from Kemble's method ' and is given

by

T ~
—— 1+exp —e ~

—m —14 —,5t'n.

I

which, except for the (rn —1/4) factor, is the same as
that obtained by YK.

In Fig. 2 we plot the calculated conductance G of a
quantum constriction versus the area of the narrowest
section and as a function of the opening angle of the
constriction 6O. When the opening angle 60 is small
the constriction has an elongated shape and G presents
quantum jumps at integer multiples of 2e /h. As in two-
dimensional long constrictions, these jumps appear ev-

ery time a new quantum channel in the constriction goes
below the Fermi energy. In the three-dimensional case,

because of the azimuthal degeneration of the transverse
modes (electrons with quantum numbers m and —m have

the same transverse momenta) steps of one (m = 0) or
two quantum conductance units can be observed. As the
opening angle increases, the stepped structure smooths
out and when 80 goes to 90' it evolves into smooth quan-
tum oscillations that re8ect an underlying periodicity in

the original stepped structure. It is interesting to note
that, as in the 2DEG case, these oscillations occur ap-
proximately each time the diameter of the contact (i.e. ,

2R) increases by A~/2.
An important result is that the conductance devi-

ates &om the classical prediction given by the Sharvin
formula at small contact areas. Using a semiclassical
treatment Sharvin showed that the conductance of a cir-
cular contact of radius R, in the ballistic regime, i.e.
when R is smaller than the electron mean free path, is

given by

2eGs=
h

(6)

where A is the contact area in units of the square Fermi
wavelength A~, A = x(R/A~)2. In Fig. 3 we have plot-
ted the Sharvin conductance Gg, together with the exact
results for three different angles. As can be seen, even

for the case of a circular hole, the exact result does not
follow Eq. (6).

This result is quite different from that obtained for
a 2DEG in which the small quantum oscillations in the
conductance are superimposed on the classical Sharvin
conductance. The deviation in the 3DEG case arises as
a consequence of quantum finite-size effects. In the clas-
sical limit Ay /R i 0 (i.e. , 2 ~ oo) the asymptotic value

of the conductance G is proportional to the number
of propagating modes. From Eqs. (1) and (5), G can
be written as (2e2/h)N, N being the average number of
modes ml such that e ~

& (m. —1/4) + f2 An analysis.
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FIG. 3. Exact quantum mechanical calculation for three
difFerent opening angles 8p (taken from Fig. 2) together with
the classical result of Sharvin, Gs = (2e /h)sA/g (dashed
line). A clear deviation of the Sharvin conductance from the
exact result is evident. The semiclassical approximation given
by Eq. (8) (continuous line) reproduces quantitatively the
exact quantum results for a circular hole.

G = 2e /h(vrA —L/4),

i.e. , the perimeter correction is half of that correspond-
ing to the cylindrical constriction. The same result is
obtained &om a simple qualitative argument. As a con-
sequence of the quantum uncertainty of the electron wave
in the contact, since the transverse momentum cannot
exceed k~, we have 2Rk~ & 1. Then, we would expect
that the transmission through the contact would be sup-
pressed for B/A~ = 1/(4s) (except a small contribution
coming from the evanescent modes). Then, if we assume
that the conductance is approximately given by Eq. (6)
but with an efFective contact radius B@= B—A~/(4s),
we have

Ap )
G = 7rA

i
1—

4n.R) (8)

of the eigenvalues e ~ in Eq. (4b) within the semiclassical
approximation shows that N mA and t ~ t g
(notice that in the semiclassical limit N does not de-
pend on the details of the constriction geometry). In
other words, the Sharvin result is the leading term in
the asymptotic expansion of the conductance in the limit
A -+ oo.

We can go further than this, however, for we note that,
for a conatant cross section wire, N is given by the average
number of modes with transverse momentum less than
k~ = 2m/A~. In this case, it is well known (see, for
example, Eq. 6.3.54 in Ref. 12) that N is given by
(n.A L/2) where I—is the perimeter of the cross section in
units of Ay. This result holds for rectangular, triangular,
and circular cross sections and presumably holds for cross
sections of any shape. 2 Detailed counting shows that,
for a curvilinear constriction, the perimeter correction
changes as a function of the opening angle. In particular,
for a circular hole, we find

which except for a negligible constant term is the same
as that given in Eq. (7). In Fig. 3 we have also plotted
Eq. (8) together with the Sharvin and the exact results.
As can be seen, except for the weak quantum oscillations,
our semiclassical approximation reproduces nicely the ex-
act results. It is worth noticing that Gnite-size efFects are
also present in the two-dimensional case. ' However, in
a 2DEG, where the conductance is linear with the con-
striction radius, this quantum 6nite-size efI'ect manifests
itself as a slight displacement of the entire curve from the
origin and does not modify the general behavior of the
conductance.

We would like to discuss now some results relevant in
the understanding of recent experiments on atomic-scale
metallic point contacts. By changing the area of the con-
tact, reproducible jumps in the conductance have been
observed in atomic-scale metallic junctions and STM
point contacts at low temperatures. Very recently, a
steplike behavior of the conductance has also been found
in the formation of gold nanostructures by a STM operat-
ing in air at "room temperature. " 0 Molecular dynamics
simulations showed that when the STM tip is receded,
after contact, the tip motion leads to the formation of
a connective constriction which elongates in steps, this
elongation being produced by atomic rearrangements as
the tip retracts. These mechanical instabilities produce
discrete variations of the contact cross section resulting
in discrete jumps in the ballistic conductance. 8 Our
results show that in spite of this fact conductance quan-
tization efFects can be observed experimentally.

For a metallic contact, where A~ is of the order of
the atomic radius rp (A» —harp), the Sharvin formula
would be equivalent to a quantum conductance channel
per atom in the constriction. Since the actual contact
area in the experiments changes in atomic increments,
this would imply jumps in the conductance in the form
of integer multiples of 2e /h even in the cases where the
conductance is not quantized. However, the conductance
per unit area is far from being constant and, therefore,
the conductance per atom is not constant. To stress this
fact, in Fig. 4 we show the conductance per unit area as
a function of the contact area for the two limiting cases
of a cylindrical constriction (8p = 0) and a circular hole

(8p ——m/2). The results for the Sharvin formula and our
semiclassical approximation are also shown. For large
opening angles, an atomic increment in the constriction
cross section would result in a jump in the conductance
which, in general, will not be an integer multiple of the
quantum of conductance. On the other hand, for small
angles, where the conductance is quantized, the jumps
must be in the form of integer multiples of 2e /h indepen-
dently of the number of atoms forming the narrow con-
striction structure. Notice that in this case the number
of quantum channels is directly related not to the num-
ber of atoms but to the number of propagating modes:
An atomic change of the constriction cross section does
not necessarily imply a change in the conductance. In
a typical STM experiment the contact geometry changes
with the tip motion. After tip indentation, the contact
is not long enough to allow conductance quantization.
During the formation of the connective constriction as
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FIG. 4. Conductance per unit area as a function of the
contact area for the two limiting cases of a cylindrical wire
(8e ——0) and a circular hole (8e = z/2). The results for
the Sharvin formula (dashed line) and for our semiclassical
approximation (continuous line) are also shown.

the breaking of the contact. From our discussion above,
this represents the experimental observation of quantized
conductance in metallic point contacts.

In summary, we have discussed some general proper-
ties of the ballistic transport through quantum constric-
tions in a three-dimensional electron gas. We have shown
that the classical Sharvin formula deviates from the exact
conductance at finite contact areas. The nonlinear be-
havior of the conductance arises as a consequence of the
quantum uncertainty of the electron wave in the constric-
tion. We have presented a simple semiclassical formula
that accounts for this quantum finite-size effect. On the
other hand, we have shown that an abrupt change in the
contact area does not necessarily imply a change in the
conductance. Moreover, we claim that the experimental
observation of reproducible jumps of the conductance at
integer multiples of 2e /It reflects the actual quantization
of the conductance.

the tip retracts, the experiments ' show different struc-
tures and jump magnitudes depending on the particular
experiment. As the constriction becomes longer and nar-
rower the conductance should show quantization effects.
As a matter of fact, Pascual et al. have found repro-
ducible jumps at integer multiples of 2e2/h just before
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