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Quenching of resonant transmission through an oscillating quantum well
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The transmission probability of electrons traversing a quantum well subject to a harmonic driving
force Vi cos(ut), matched between two static barriers, is shown to exhibit a rich spectrum of side-
bands in addition to the common central resonance. The intensity of these bands is an oscillatory
function of the driving amplitude Vz and frequency u, with a strong simultaneous reduction of the
transmission probabilities of all bands at characteristic ratios Vi/fuu. It is shown that sucn a quench-
ing is related to a vanishing amplitude of the central band, and analytical results, nonperturbative
in Vj, are presented.

In 1982 Landauer and Buttiker discussed electron
transport through a harmonically oscillating barrier and
showed that such an analysis can provide important in-
sight into the mechanism of tunneling. The particular
property they had in mind was the tunneling time, but
since then a number of other efFects related to oscillating
potentials have been studied. All these effects rely on the
fact that an oscillating potential can transfer an incoming
electron of energy E—the so-called central band —with E-
nite probability to sidebands at E+nRu, where n is an in-
teger and u is the frequency of modulation. For instance,
Jauho2 considered a double-barrier resonant tunneling
diode where either the barriers or the quantum well were
subject to a periodic modulation of their potential, and
by numerically solving the time-dependent Schrodinger
equation he obtained information on the closely related
process of phonon-assisted tunneling. Also, he pointed
out that oscillating quantum wells are much more ef-
fective than oscillating barriers in transferring electrons
into the sidebands. Cai et a/. 4 used a Green's function
approach to numerically study photon-assisted resonant
tunneling through a double-barrier structure for in&ared-
radiation detection. Very recently, Hu et al. 5 proposed
a model of photon-assisted transport through quantum
point contacts, the idea being that while electrons in the
central band do not have an appreciable probability of
tunneling through the point contact, electrons in higher
sidebands do. For the oscillating-barrier turnstile device
based on the Coloumb-blockade effect it was recently
shown that the ultimate accuracy achievable with these
potential new current standards is limited by the for-
mation of sidebands in the oscillating barriers. Finally,
a somewhat different approach based on Floquet states
was chosen by Grossmann et al. and by Holthaus and
Hone to study a harmonically driven double well and
superlat tice, respectively.

In this paper we present analytical results for the trans-
mission probability of an electron traversing a double-
barrier structure where the central quantum well is har-
monically driven by an external force Vi cos((alt). Our
results are perturbative in ~ but nonperturbative in the
modulation amplitude Vq, thus allowing us to access the
regime Vq )) hen. We start by solving the time-dependent
Schrodinger equation for an isolated quantum well, and

then proceed to apply the results obtained to a double-
barrier resonant tunneling diode.

A time-dependent Hamiltonian of the form

H(z, t) = Hp(z) + Vi cos(art),

containing a position-independent oscillating potential,
has already been studied some thirty years ago, 0 and the
wave function solving the corresponding time-dependent
Schrodinger equation was found to be

Q(z, t) = gp(z) exp( —*„')exp[ —i~~ sin(~t)]

= gp(z) exp( —'s ) ) J„(~)exp( —inst),

where J„is the Bessel function of the first kind and gp(z)
solves Hp(z)gp(z) = Egp(z). At first, one might think
that Eq. (2) means that due to the oscillating potential
Vi cos(ut) electrons are being excited to the sideband n
with probability

~
J„(~~)~ . This is, however, not true.

As can be inferred &om the Erst of these equations, an
oscillating potential —uniform in space —simply gives rise
to an overall phase factor to the wave function @p(z, t)
of the unperturbed system, and hence can be eliminated
by a gauge transformation. In order to see any effect
of the oscillating potential, it is therefore vital to restrict
the region of uniform modulation to an area smaller than
the coherence length of the wave functions. We believe
that this may be the reason for some experiments having
failed so far in detecting photon-assisted tunneling.

We consider a quantum well of width d having walls
of finite height V as depicted in Fig. 1, where only the
quantum well is subject to a harmonic modulation of its
potential, but not the adjoining regions. At the interfaces
between the static regions I and III and the oscillating
quantum well II at x = 0 and x = d, respectively, the
wave function (2) and its flux have to be continuous. To
satisfy these requirements, we need to superimpose many
wave functions of the general form (2) inside the quantum
well at energies E+ Lku,
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FIG. 1. A resonant level in a quantum well, oscillating as
Vj cos(~t) and sandwiched between two static regions, splits
up into a central band Io and sidebands I„at E+n~.

Oil(*, t) = ): .Aiiexp(ikII~)+BIIexp( ikII~)

~ ~~V~ '[Z+(l+n)h ]tX g n~~) eXp

where the wave vector of each sideband l is de6ned as
hkII ——+2mll(E + lhol). When matching this to a wave
function in the right region,

This set of equations is still exact. As in the case of
a static quantum well, it has nontrivial solutions only
for some quantized values of the resonance energy E =
(hkroi)2/2mtl. The essential Physics can be caPtured by
studying a symmetric quantum well where Vr ——VIII,
mt = milt, and Al = exp( —s;ltid)Birr holds. Also, we
require that nba && E and nba (& VI —E for all suffi-
ciently populated sidebands, but no further assumptions
are made about the modulation amplitude Vj. In this
limit, the probabilities for the n = k~n~ sidebands will
be the same, and guided by previously found numeri-
cal solutions of Eq. (5) we try an ansatz of the form
At = J„(p~~). In what follows, the parameter p will be
specified such that this ansatz is indeed a solution.

After expanding the wave vectors of the sidebands to
lowest order in Ru as Kr ——rr + zrkun and krr

——krr +
krrhcul, and by employing the quantization conditions for
the eigenenergy of the resonance,

1 = cos(ktid) + sin(kiid)
KI mII

mr krr

'tl(ltr(2:, t) = ) Arri exp(+III+) + Birr exp( —s;Ill+)

i(E+lhau)t
&~X exp
)

k Kr
sin(kttd) — cos(kttd)

I mII mr

the first equation of (5) becomes

(6)

with h+III ——/2mltl(VIII —E —lou), one finds that the
expansion coefBcients of the sideband amplitudes on both
sides of the interface at z = d have to satisfy the following
set of equations,

AIII exp(l('IIId) + BIII exP( s'IIId)

l,n= —oo

I IIkI ~)d
mr krr

II

l k'

I mi miktl p kii

x J -l(r )J -r(s )J (~s ) (7)

). Alt exp('kIld) + BIt exp( ikIld) J~—l(~)
l=—oo

[Atit exp(&lnd) —Brit p( ~lnd)]
mIII

oo

) i "
[AII exp(iklld) —BIr exp( —ikItd)

mrrl=—oo

xJ„,(~~). (4)

A similar set of equations holds for the interface at x = 0.
As usual, for a nondivergent, norrnalizable solution to
exist, the coeKcients Bi and A/~I must all vanish. After
some algebra to eliminate the XII and BII coefficients in
the quantum well, the resulting system of equations for
the remaining coefficients is given by

Now the summations over l and n can be performed ex-
actly by utilizing von Neumann's addition theorems

): J.-l(u)J -l(u)J (pu) = J (pu),
l,n= —oo

) /J„, (u)J„,(a)z„(pa) = n' (1 ——') J„(yu).
l,n= —oo

kiid+ sin(kiid)

kiid + 2~ + (1 — ")sin(ktid)
(8)

It is easily checked that the second equation of (5) gives

With the help of these theorems, Eq. (7) simplifies to
At = [1+n'Ref(p)]J (p~~), and in order for this to be
consistent with our ansatz, we require that the coefficient
of n'fuu, i.e., f (p), vanishes, leading to
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the same answer. Finally, the sideband amplitudes in the
quantum well, A and B ca ' r—
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of this effect is the transmission probability being the
combined probability of entering and leaving the quan-
tum well. Hence, every time the amplitude Io coupling
to the incoming electron vanishes, which is at zeros of
Jo(p~~), a simultaneous quenching of all transmission
channels occurs. In addition to this, a quenching of in-
dividual channels occurs when the amplitude of an out-
going channel vanishes (e.g. , I~i at Vi/fun = 4.12). For
comparison, we also show in Fig. 4(b) the results of a
numerical transfer-matrix calculation for the same struc-
ture (details of which will be presented elsewhere). The
agreement is extremely good, except that in the more
precise numerical solution, maintaining higher orders of
Ru, a small residual transmission probability remains at
the points of quenching. ~2

And finally, Fig. 5(a) shows the transmission proba-
bility T q „„,for an electron incident Ru below the en-

ergy of the quantum-well resonance, which is the example
commonly studied for photon-assisted tunneling. In this
case, photons are necessary to achieve resonant tunnel-
ing, and in agreement with earlier work4 we consequently
observe a strong increase in the transmission probability
of all channels as Vj increases. However, for Vj & ~ we
find that the transmission probabilities start oscillating,
with a simultaneous quenching of all channels when the
amplitude of the n;„= —1 sideband vanishes at roots of
Ji(p~~). Again, the agreement with the numerical solu-
tion of Fig. 5(b) is excellent except for the T i i channel
in the regime Vi ( 7uu.

For all but the diagonal transmission channels we find
the remarkable result that the reflection and transmis-
sion probabilites in each band are virtually identical for
a symmetric double-barrier structure. This supports sim-
ilar findings reported earlier by Jauho for Vi (( hu.

A similar quenching or "coherent destruction" of tun-
neling in driven double-well structures has recently been
discussed by Grossmann et al.s in terms of level cross-
ings of so-called Floquet states. There, as well as in
similar work on driven superlattices, s it is essential to
have at least two degenerate Floquet states, whereas in
our case a single Floquet state —the driven quantum-well
resonance —is sufBcient for the quenching to occur. How-

ever, considering that in our double-barrier structure the
quenching depends on the energy of the probing electron
(i.e. , on the input channel), we speculate that possibly
the continuum of states provided by the open nature of
our system acts as a second Floquet state. To clarify
this, further work is needed.
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FIG. 5. Transmission probabilities in channels n;„-+ n „t
for an incoming electron in the n;„= —1 channel. Here the
simultaneous quenching of all transmission channels happens
when the amplitude of the n = —1 sideband vanishes at zeros
of Ji(p~~); (a) analytical, (b) numerical results.
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In conclusion, we have studied the transmission prob-
ability for an electron to resonantly traverse a double-
barrier structure where the bottom of the quantum well is
oscillating as Vi cos(~t). The sidebands in the transmis-
sion probability, generated by such an oscillation, show a
rich structure which can be understood by considering an
isolated oscillating quantum well. At particular values of
the ratio Vi/hew a simultaneous quenching of the resonant
transmission probability in all sidebands is found. The
analytical results presented are valid even in the regime
Vi )) ~ and show excellent agreement with numerical
solutions. We believe that these results should be mea-
surable with today's experimental technology and may
lead to new detectors for infrared radiation. A central
condition to be met in any such realization is an energet-
ically sufficiently narrow stream of incoming electrons, as
otherwise the effect will tend to be smeared out.

M. Biittiker and R. Landauer, Phys. Rev. Lett. 49, 1739
(1982); IBM J. Res. Dev. 30, 451 (1986).
Antti-Pekka Jauho, Phys. Rev. B 41, 12327 (1990).
N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys.
Rev. Lett. 61, 1396 (1988); B. Y. Gelfand, S. Schmitt-
Rink, and A. F. J. Levi, ibid. 82, 1683 (1989); W. Cai, T.
F. Zheng, P. Hu, and B. Yudanin, ibid. 63, 418 (1989).
W. Cai, T. F. Zheng, P. Hu, M. Lax, K. Shum, and R. R.
Alfano, Phys. Rev. Lett. 85, 104 (1990).
Q. Hu, Appl. Phys. Lett. 62, 837 (1993); R. A. Wyss, C.
C. Eugster, J. A. del Alamo, and Q. Hu, ibid. 63, 1522
(1993); S. Feng and Q. Hu, Phys. Rev. B 48, 5354 (1993).

L P. Kouwe. nhoven et aL, Phys. Rev. Lett. 67, 1626 (1991).
J.D. White and M. Wagner, Phys. Rev. B 48, 2799 (1993).
F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, Phys.
Rev. Lett. 67, 516 (1991).
M. Holthaus, Z. Phys. B 89, 251 (1992); M. Holthaus and
D. Hone, Phys. Rev. B 47, 6499 (1993).
P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963).
R. Courant and D. Hilbert, Methoden der Mathevnatischen
Physik I (Springer-Verlag, Berlin, 1968).
The same result is obtained in the present approach if
higher orders of M are retained when expanding Eq. (5).


