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We study tunneling in semiconductor heterostructures where the constituent materials can have a
direct or an indirect band gap. In order to have a good description of the lowest conduction band, we

have used the nearest-neighbor sp s* tight-binding model put forward by P. Vogl et al. A recursive
Green-function method yields transmission coeScients from which an expression for the current density

may be written down. The method is applied to GaAs/AlAs heterostructures. Electrons may traverse
the A1As barriers via different tunneling states tj'rr and P» (1Imixing). With an applied bias V 0.5 V

electrons may enter the GaAs collector contact in both the I and the X valleys ( I X transfer). We have

studied a number of GaAs/A1As structures. For very narrow barriers there is little I X transfer, but
0

A1As barriers wider than about 25 A act as "IX 61ters, " i.e., most transmitted electrons have been
transferred to the X valley.

I. INTRODUCTION

Tunneling in semiconductor heterostructures has at-
tracted considerable interest over the last decade. A very
important motivation factor has been the progress in ad-
vanced crystal-growth techniques such as molecular-
beam epitaxy. The ability to grow nearly perfect layered
structures has enabled experimental verification of pre-
dictions based on relatively simple theoretical models.
There is also a great interest in making electronic devices
based on such structures.

Most treatments of transport through heterostructures
have been based on effective-mass theory. This is a good
approximation when the different materials that form the
structure all belong to the same category with respect to
type of energy band gap, direct or indirect. An example
of a system with only direct-band-gap constituents is
GaAs/Al„Ga, ,As, provided the Al concentration is

sufficiently low, x (0.4. In a typical experiment, doping
in the GaAs contacts yields a Fermi level EF of the order
of 10—50 meV above the conduction-band minimum E,
at the I point of the Brillouin zone (k=0). Since the
conduction band is nearly parabolic in the range from E,"
to Ez, all the incoming electrons are well described by a
single effective mass m t-(GaAs). Furthermore, the lowest
tunneling barrier is determined by the conduction-band
minimum in Al Ga& „As,which is also at the I point.
Thus the tunneling states, through which electrons with
energy E can traverse the barrier region, are character-
ized by an imaginary wave vector k =i~, where

is determined by the tunneling-barrier height
E(Al„G,a„As) Eand the effec—tive mass

m r*(Al„Ga, As).
For Al concentrations x )0.4, Al„Ga, „Asbecomes

an indirect-band-gap material. The valence-band max-
imum is still at the I point, but the conduction-band

minimum is now E, , close to the X point,
k=2m /aL (100), at the edge of the Brillouin zone. Here
al is the lattice constant of the zinc-blende material.
When indirect-band-gap Al, Ga& „Asis used as the bar-
rier material, it is no longer sufficient to take into account
only the tunneling states that correspond to the
conduction-band minimum at I . Also important are the
states that correspond to the analytical continuation into
the energy gap of real-k states at the conduction-band
minimum near the X point. "I states" and "X states"
may have comparable decay lengths since the lower bar-
rier height of the X states, E, —E, is compensated for by
a higher effective mass. The importance of X states in
tunneling through indirect-band-gap barriers has already
been appreciated in several experiments1-10 and it has
also been studied theoretically by a number of
groups. "

In the present paper, we want to focus on the X states
in both the barrier and the contact material. It is well
known that electrons in bulk GaAs may be transferred
from the I to the L or X valleys if they are accelerated in
a sufficiently strong electric field. This is the Gunn effect
which may be accompanied by a region of negative
differential conductivity in the current-voltage curve due
to the low mobility of electrons in the satellite valleys.
The "IX(1L) transfer" is usually stimulated by some
kind of scattering mechanism, e.g. , elastic-impurity
scattering. Our aim is to show how a heterostructure
with one or more indirect-band-gap barriers can be used
to control the I X transfer in a material like GaAs. Let
us assume that the transport takes place in the (100)
direction. Then, with a bias V ) [E, (GaAs) EF ]leap-—
plied across the heterostructure, incoming electrons in
the left contact can end up in two fina1 states in the right
contact, in the I valley or in the X valley. The two out-
comes are characterized by transmission coefficients T~
and T~, respectively, which depend on the energy of in-
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coming electrons, applied bias, and barrier parameters.
In Sec. V below, we shall explore these dependencies for
GaAs/A1As heterostructures in order to find effective
"IX filters, "i.e., conditions under which Tx » TI-.

In transport experiments the measured quantity is usu-
ally the electric current vs the applied voltage. Based on
simple arguments one can write down an expression for
the current density in terms of transmission coefBcients
and a factor ensuring that initial states are occupied and
final states are empty. In the present case a sum over
different final states at equal energy automatically pro-
vides a decomposition of the current density in a "direct"
component J& and a "transferred" one Jz. This simple
procedure is indeed applicable in the present study of
perfectly layered heterostructures where we ignore effects
of disorder and inelastic scattering. If such effects are to
be included, one must resort to a more general approach.
In an Appendix, we derive an expression for the current
density which provides the starting point for extensions
to more realistic calculations. ' The general expression
involves nonequilibrium Green functions and gives the to-
tal current density J, not the decomposition into J& and
Jx. However, in the case where disorder and phonons
can be ignored, we will show how the general expression
for J( V) can be decomposed and proven to be identical to
the result which was written down directly in terms of
transmission probabilities.

The transmitted electrons will be subject to elastic and
inelastic scattering and eventually come to thermal equi-
librium somewhere in the right contact. This process
may be described by scattering rates ~&&, ~zz, and ~zz,
where the former two account for intravalley scattering
and the latter describes the relaxation of X electrons to
the I valley. Clearly, ~&z sets the time scale for observing
or taking direct advantage of having electrons in the X
valley.

The rates of elastic and inelastic scattering depend
mainly on impurity concentration and temperature, re-
spectively. At low temperatures the dominating inelastic
process in GaAs is spontaneous emission of LO phonons.
A rough estimate, based on Refs. 20—22, yields an inelas-
tic relaxation rate on the order of 10' s ' in both the I
and the X valley. A similar estimate yields an intervalley
scattering rate ~zz-10' s ', taking into account that
electrons in the X valley may relax to the I valley via
emission of LO phonons or via scattering off charged im-
purities (assuming impurity concentrations of about 10'
cm ). This implies that, with an average drift velocity
of about 10 m/s, a transferred electron travels typically
a distance of 1000 A in the X valley.

One way of detecting X electrons, then, could be by
means of a magnetic field 8 applied parallel to the
crystal-growth direction, and taking advantage of the
difference in Landau-level splitting (EELi =inst'co,

=A'e8/m*) in the I and the X valley due to the
difference in effective mass (mx )&m r* ). However, in or-
der to test predictions for the I X transfer, it may even,
for carefully designed heterostructures, be suScient to
measure the total current vs the applied voltage. If the
nonlinear structure in the measured total current is well
described by the theory, it seems reasonable to assume

that the calculated decomposition into J„andJz also
agrees with reality. Finally, the I X transfer may be
checked by investigating the noise spectrum of the
current. Quite often the noise spectrum of a given physi-
cal quantity may reveal sharper features and more infor-
mation than a measurement of the physical quantity it-
self

The effects we want to study involve states far from the
local minima of the conduction band and also states in
more than one valley. In order to describe the band
structure correctly, at least qualitatively, we apply the
semiempirical sp s' tight-binding (TB) Hamiltonian put
forward by Vogl et al. A feature of this model, of par-
ticular interest here, is the correct description of the tran-
sition in Al Gal, As from a direct to an indirect band

gap. In addition, it is a three-dimensional model which
makes it suitable for evaluation of current-voltage
characteristics. The sp s* model was also used by Cade
et al. "and by Yamaguchi.

%e have organized the paper as follows. In Sec. II we
describe briefly the sp s ' TB Hamiltonian. In Sec. III we
derive expressions for the scattering coeScients. An ex-
pression for the current density is presented in Sec. IV,
and in Sec. V we perform a systematic study of the I X
transfer in GaAs/A1As heterostructures. We conclude in
Sec. VI and discuss briefly possible extensions and other
applications of the present model.

II. THE sp s HAMILTONIAN

The semiconductors that we want to describe have the
crystal structure of zinc blende. The valence bands of
these materials are usually well described by an eight-
band sp nearest-neighbor semiempirical TB Hamiltoni-
an, ' the eight bands arising from the inclusion of four
atomic orbitals on each of the two types of atoms, cation
and anion. However, for electronic transport and tunnel-
ing we need a model that describes the lowest conduction
bands adequately, and for that purpose the nearest-
neighbor sp model generally fails. In particular, as
shown by Chadi and Cohen, it cannot produce an in-
direct band gap in materials like A1As, and this is the sin-

gle most important feature required for our purposes.
Vogl et al. have overcome this deficiency by the ad

hoc inclusion of an excited s state on each atom. The
main effect of coupling these s* states to nearest-neighbor

p states is to repel the p-like conduction-band levels near
the X and I. points to lower energies, thus producing the
desired indirect band gap. The resulting ten-band sp s*
Hamiltonian has thirteen independent TB matrix ele-
ments that are determined by fitting band-structure data.

The independent TB matrix elements are given in a
basis of symmetrically orthogonalized atomic orbitals
~nbR), also called Lowdin orbitals. Here R is the posi-
tion of the atom, n denotes the type of orbital (s, p, or s*)
and b the type of atom (c for cation and a for anion). In
Ref. 24 the Hamiltonian for bulk material is expressed as
a 10X10 matrix in a basis ~nb@) which is obtained by a
discrete Fourier transform of the 1ocalized orbitals
~nbR). The systems that we want to study are transla-
tionally invariant in the "parallel" plane (y, z). However,
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the heterostructure breaks the invariance in the crystal-
growth direction, which is usually chosen to be along the
(100) axis. Thus it is convenient to represent the Hamil-
tonian in a basis

l
nb jk~~ ) with parallel momentum

k~~=(k~, k, ) and "perpendicular" position x,. =jaL /4 as
parameters. The distance between nearest-neighbor
planes is one fourth the lattice constant aL. A simple in-

verse Fourier transform (with the same normalization
convention as in Ref. 24),

l~bjk„)=L,z~" fdk„e ' """l~bk) (2.1)

yields the desired basis. Here LBz =8m/a~ is the length
of the one-dimensional (1D) Brillouin zone over which
the k„integral is taken.

In the new basis the Hamiltonian takes the form

V„E, U„
U„E, V„

V„E, U„
U„E, V„

(2.2)

where each element is a 5X5 matrix. The matrices E,
and E, are diagonal and represent the orbital energies on
cations and anions, respectively, whereas the "hopping"
terms U„, U„, V„,and V„ involve the various
transfer-matrix elements between orbitals on neighboring
sites. Obviously U„=U,t, and V„=V„sothat the
Hamiltonian is Hermitian. In Appendix A the elements
of H are given in detail, and we have also included the
numerical values of the matrix elements for GaAs and
A1As, taken from Ref. 24. The Hamiltonian in Eq. (2.2)
is formally identical to that of a two-atomic 1D chain
with interatomic separation aL/4 and periodicity aL /2,
see Fig. l.

Alloys will not be treated explicitly in the present pa-
per. We only mention that the simplest approach would
be the virtual-crystal approximation (VCA). This means
that the Hamiltonian of an alloy A B, „Cis approxi-
mated by the weighted average of the Hamiltonians
of AC and BC, e.g. , U„[A„B, C]=xU„[AC]
+(1—x)U„[BC).Scattering due to disorder in the cat-
ion planes is neglected in the VCA. That effect can be in-
cluded by replacing VCA with the so-called coherent-
potential approximation.

Another effect that is ignored in this work, is elastic
scattering due to interface roughness. Like alloy disor-
der, interface roughness breaks the translational invari-
ance in the parallel plane. Hence the parallel momentum
is no longer conserved, and the simple treatment of the
next section must be modified. Interface-roughness
scattering can also be accounted for within the coherent-
potential approximation.

To summarize this section, we use a model which basi-
cally extends the simplest models of tunneling by incor-
porating a semirealistic band structure. All other ap-
proximations are still included, e.g. , neglect of inelastic
scattering, disorder, and many-particle effects.

a~/4

~ ~ ~ ~ 0 ~ 0 ~
E

0 ~ ~ ~

FIG. 1. Projection of the zinc-blende lattice on the (100)
direction. Closed and open circles represent cation and anion

layers, respectively. The interlayer distance is aL /4, i.e., one
fourth the lattice constant. Indicated are also the "on-layer"
energies E, and E„and the interlayer hopping matrices U„,
Uac y Vcg &

and Vac o

III. SCATTERING COEFFICIENTS

The first term is taken to be the incoming plane-wave
part with wave number k =(k, k~~) and energy E, re-
stricted to layers up to and including the cation part of
site 0:

lS )= pe ' ja).
J O, c

(3.2)

The local part l j,a) is a 10X1 vector with coefficients
a„b(n=s,p„,p~,p„s'and b =c,a). These coefficients are
determined by the solution of the Schrodinger equation
for the bulk material at energy E and wave vector k .
The problem is now reduced to finding the "remainder"
lP), and since (E —H) l%)=0, we have

(3.3)

Here G (E)=lim ~(E H+i g) ' is—the retarded

Green function which also depends on kIl via the Hamil-
tonian. From the definition (3.2) of lS ), and since H
only couples nearest-neighbor atomic layers, the term in
square brackets in (3.3}is clearly zero for sites j )0. Fur-
thermore, the Schrodinger equation ensures that
(E H)lS }=0 for sit—es j (0, and one is left with
nonzero terms only on the cation and anion layer at site

j =0. We may finally write

lP) = G "(E)U lO, a), (3.4)

When the physical system is described with an
effectively 1D nearest-neighbor TB Hamiltonian, the
scattering states can be evaluated efficiently with a recur-
sive Green-function technique. This method has been ap-
plied to various problems. The present treatment will
essentially be a generalization of the simple one-band 1D
chain described in detail in Ref. 30.

Since we will discuss only processes where the parallel
momentum k~l is conserved, we will suppress k~~ in most of
the notation of this section. It is, furthermore, con-
venient to label a cation layer and its neighboring anion
layer to the right with a common "site" index j. Assume
that the heterostructure and the undoped spacer layers, if
any, are located on the sites from j =1 to j =X. Then
the homogeneous "leads" extend from j = —~ to j =0
and from j =%+1 to j = 00. Write the total wave func-
tion l4) as a sum of two pieces,

(3.1)
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where v resulting from (3.3) reads

a 0

4g —iU„ (3.5)

The operator v can be interpreted as a local velocity
operator. This is consistent with the velocity operator
obtained from the Heisenberg equation of motion,
v = —i/6[x, H], with the position operator

Here we have split the vector
I j) into its cation and anion

parts Ij, ) and
Ij, ), respectively.

It is now straightforward to determine the scattering
amplitudes. The total wave function may be written as

' 1/2

r fte
s IJ', p) +

j&%+1 p P

' 1/2

t.te ' '
il,P)+ g Xxj..IJ ~)

I+j+N a

(3.7)

The incoming plane wave with wave number k may be
rejected or transmitted with wave number k&, with the
restriction that the total energy and the parallel momen-
tum are conserved. The velocity factors are included so
that particle conservation yields a natural probabilistic
interpretation of the transmission and re6ection
coefficients,

y[lt.,l'+ Ir.,l'] = 1 . (3.8)

Information about the various tunneling states are con-
tained in the coefficients Igj„l, the j dependence of
which yields the spatial-decay rate of the state with (in
general) complex wave number k„.An expression for the
transmission amplitude t

&
is obtained by comparing the

projection {N+1,pl%') of Eqs. (3.1) and (3.7)

struction, the closure relations

pie) {ul =pie](ul = 1 .
P P

(3.11)

We can bring Eqs. (3.9) and (3.10) into more symmetric
forms by using the identity

via)=v, la] . (3.12)

(3.13)

Here u is the velocity [in the (100) direction] associated
with the state la}. Equation (3.12) is a result of (B12) in
Appendix B. Using (3.12) in (3.9) and (3.10) yields

T &= It &I
= Qv&v {N+1,PIG" IO, ]a

4iA'

aL

' 1/2

aL

~.p ——Ir.pl'= '
v'lvplv. {o,PIG" IO, a]

aL

(3.9)

In a similar way the projection {O,pl'0) yields the
refi.ection amplitude

1 /2

{O,

PIG�

"ulO, a)
V~ aL

—5 &{O„alO„a) (3.10)

where the second term comes from the fact that IS, )

does not include the anion layer of site j=0. Equations
(3.9) and (3.10) are readily seen to reduce to the expres-
sions for t (k) and r(k) given in Eq. (2.9) of Ref. 30 for
the simple case of a one-band 1D model.

Note that the "left" states {j,pl in (3.9) and (3.10) are
not simply the Hermitian conjugate (j,pl of

I j,p). The
reason is that the local projections Ij,p} on a site j do not
correspond to an orthogonal basis. Hence,
(j,B'Ij,I3)W5~&, and we must construct a new basis of left
states such that {j,p'Ij, p)=5&&. I.et 8 denote the
10X 10 matrix whose columns are the ten states
lp):—lj,p), independent of j. Then the matrix inverse
8 ' is precisely the orthogonal basis that we need, with
rows {P'I. In addition to orthogonality one has, by con-

—5 p{O„alO„a]

IV. ELECTRIC CURRENT

Transport in solids can be treated on various levels, de-
pending on the approximations that are assumed at the
outset. Examples are the semiclassical Boltzmann equa-
tion, the Kubo formula for linear response, and the Lan-
dauer formula which expresses the conductance of a sys-
tem in terms of the single-particle transmission
coefficients. '

In the case of a perfectly layered heterostructure it is
well known that an expression for the electric current can
be written down directly in terms of the transmission
coefficients. Assume that one can define chemical poten-
tials pL and pz in the left and right leads, respectively.
Under equilibrium conditions LML =pz, and when a bias V
is applied between the two leads, one has p~ =pL —eV.
Strictly speaking, these potentials do not describe the sit-
uation close to the barrier structure, a region that is out
of equilibrium because of tunneling electrons. Thus, pL
and pz correspond to asymptotic distributions in the
leads. In the left lead, states with energy E are occupied
with probability fFD(E pL ) = [exp {(E pi —

) /k~ T]—
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+1] . Here f„Dis the Fermi-Dirac distribution func-
tion, kz is Boltzmann's constant, and T is the tempera-
ture. An electron in initial state ~a) with velocity v in
the (100) direction has probability T & of being transmit-
ted into the right lead in a final state ~P), which has prob-
ability 1 f„—D(E —

pL +eV) of being empty. Analogous
arguments hold for the states in the right lead. In order
to find the total current fiowing in the (100) direction, we
must integrate over all possible states, i.e., over the Bril-
louin zone. In addition we have to sum over the different
energy bands for each k.

In the present case, we have scattering processes that
conserve parallel momentum and total energy, whereas
the momentum haik in the (100) direction may be altered.
It is, therefore, convenient to replace the integral over k
and the sum over energy bands by an integral over energy
and a sum over momenta Ak:

~y
dk

~y dE BE

L

Since (BE/Bk ) '=(flu ) ', the total electric-current
density is given by

(4.1)

X [fFD(E —
}uL )

fFo(E Vt, +«) 1
—. (4.2)

Here e is the absolute value of the electron charge so that
V) 0 results in a net flow of electrons from left to right,
i.e., a negative electric current. The sum over a and P is
restricted to states with velocities U, u&) 0 in the (100)
direction, and we have taken advantage of time-reversal
symmetry under which T(k ~k&)=T( k& + —k ).— —
The integral over parallel momentum k~~ runs over the
ttao dimensiona-! Brillouin zone which for the [100] plane
in zinc-blende structures is a square with corners
(0, +2~/at ) and (+2m/aL, O)

Note that the simple arguments above are no longer
applicable if one wants to include effects of alloy scatter-
ing or electron-phonon interactions. In that case a full
Green-function treatment is required, and in Appendix B
such an approach is presented. For the ideal case, where
(4.2) is valid, we demonstrate explicitly the equivalence
between the Green-function approach and the
transmission-probability approach.

V. RESULTS AND DISCUSSIQN

The model and method described above can be applied
to study electronic transport through arbitrary hetero-
structures with zinc-blende-type constituents. In this sec-
tion, we shall concentrate on the I X mixing and transfer,
and results will be presented exclusively for GaAs/AlAs
heterostructures. We have used a simple, linear relation,

b,E,"( )=x0.9x (eV),

for the I point conduction-band offset between
A1„Ga, „Asand GaAs. This is a compromise between

3.20

2.80

GaAs AlAs

2.40

2.00

various empirical relations quoted in the literature. In
combination with the TB parameters of Ref. 24 (see Ap-
pendix A), Eq. (5.1) yields a discontinuity of about 0.16
eV between E, (A1As), i.e., the I point conduction-band
minimum in A1As, and E, (GaAs). This is in agreement
with recent experiments.

We believe it is instructive to base the following discus-
sion on parts of the complex band structure of GaAs and
A1As. In Fig. 2 the solid lines denote the lowest conduc-
tion band in the (100) direction, i.e., for hi =0. For A1As

we have also plotted the two branches of complex wave
vector corresponding to the analytical continuation
below the conduction-band minima at the I and X points
of the Brillouin zone. These branches are found by
solving the Schrodinger equation for fixed energy E. In
the present model there are ten solutions k(E) =ktt +i K

that make up the full complex band structure. In Fig. 2
we have only plotted the imaginary parts, ~z and K~, of
the two branches that are relevant to tunneling in a
GaAs/A1As heterostructure. For an incoming electron
at energy E in the I" valley of GaAs ar(E) and ax(E)
determine the exponential decay of the tunneling wave
functions Pr and Pz through the A1As barrier(s). Clear-

ly, the relative importance to the tunneling process of Pr
and gx will depend on which has the slowest decay in the
barrier region. For energies below, but close to the
conduction-band minima we have

ar(E) = [2m r'(E, E)/A )'~—
and

xx(E)= [2mx(E, —E)/k ]'

where m z and m~ are the effective masses in the I and
the X valley, respectively. Thus, although the "X bar-
rier" E, —E is much lower than the "I barrier" E, —E,
the large value of mx yields ~~ &~i- for energies up to
about 20 meV above the conduction-band minimum in
GaAs. Furthermore, it is not only the exponential decay

1.55
X

FIG. 2. Parts of the complex band structure for GaAs and
AlAs. The solid lines are the lowest conduction band of the two
materials. For A1As we have also included the imaginary parts,
Kp and ~&, of the analytical continuation below the minima at
the I and I points, respectively. [To be precise, the
conduction-band minimum of A1As is not exactly at the Ipoint
in the present model, but slightly below, at k =0.85 X (2n /aL ).]
Zero energy is taken to be at the top of the valence band in

GaAs, and with the present model and parameters GaAs has an

energy gap of 1.55 eV.
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FIG. 3. Spatial decay into A1As of the wave functions 1(r
(thick lines) and Px (thin lines) at energies 10 meV (solid lines)
and 100 meV (dashed lines) above the GaAs conduction-band
edge E,"(GaAs). The distance from the GaAs/A1As interface is
given in terms of the number of A1As monolayers Nb. The de-
cay lengths corresponding to these curves are ~& '=0.95aL and
0.98aL', vz'=0. 92aL and 1.78al . Here the first (second) num-
ber refers to the solid (dashed) lines, and ai =5.66 A is the lat-
tice constant in A1As. The inset illustrates the I point
conduction-band minimum which represents a potential step be-
tween Nb =0 and Nb = 1. The wave functions are normalized to
an incoming plane wave of unit amplitude (see Sec. III).

of the tunneling wave functions that determine their con-
tribution to transmission through a barrier. At the ma-
terial interfaces plane waves in GaAs must be matched to
the wave functions fr and fx in the A1As barrier. From
symmetry arguments we expect, for an incoming I elec-
tron, a larger matrix element for the matching to 1(r than
to 1(x. These effects are illustrated in Fig. 3 where we
have plotted the absolute value of the tunneling states as
a function of position for a GaAs/A1As potential step.
The solid lines represent states at an energy 10 meV
above E, (GaAs}. The stronger coupling to gr is clearly
observed by the fact that ~gr~ && ~gx( in the first layer of
A1As (i.e., for Nb=1). Furthermore, since ~x&ar for
this energy, gx decays slightly faster than Pr, and tunnel-
ing will predominantly happen via 1(r. At an energy of
100 meV above E, (GaAs) (dashed lines) we see again the
stronger coupling to fr at the material interface. How-
ever, in this case ax is considerably smaller than ar, and
beyond the tenth A1As monolayer we have ~1(x~ & ~1tr~.
Thus, depending on the width of the A1As barrier, tun-
neling at this energy may take place via fr, gx, or both.

In a typical experiment the Fermi level is about 10—50
meV above E,"(GaAs). With the aid of Fig. 4 we will now
sketch a qualitative picture of the tunneling of an elec-
tron through a single A1As barrier, where a bias V is ap-
plied such that transfer to the GaAs X valley is possible.
Let us assume that the energy of the electron is far from
any resonances in the system. At the 1eft interface (xl }
the matching of the incoming plane wave to tunneling
states gr and gx may be described with matrix elements
M„„(x,) and M„x(x,}, respectively. We saw in Fig. 3,
in accordance with expectations, that Mzz »M j-z.
Since there is a bias across the barrier, the decay parame-
ters az and a& will now be functions of position within
the barrier. Between xl and x2 (typically a very short

FIG. 4. Tunneling of an electron through a single A1As bar-
rier with applied bias V. The profiles of the I and X point
conduction-band minima are represented by the solid and
dashed lines, respectively. The lowest conduction band in GaAs
[in the (100}direction] is sketched on both sides of the barrier,
and the dotted portions indicate initially occupied states on the
left side and available transmission states on the right side.
Shaded areas denote the filled equilibrium Fermi sea in the
emitter and collector contact. The transmitted electron may
contribute to the "direct" current density Ji- or the
"transferred" one Jz. The tunneling process is described in de-
tail in the text. Relaxation processes that bring the transmitted
electrons to thermal equilibrium are indicated with scattering
rates ~qr' and ~XI'-.

distance), we have ~x &sr, so up to this point tunneling
via fr dominates strongly. However, beyond x2 we have

Kx (Kr, and the amplitude for tunneling via 1(tx is "catch-
ing up" relative to that of gr. Between x3 and x4 the en-

ergy of the tunneling electron lies above E, (A1As). This
means that ax =0, and the amplitude of Px is not further
reduced whereas Pr continues to decay exponentially.
Finally, at the right interface (x4) matching of the two
tunneling states to transmitted states in the collector con-
tact may be described by matrix elements M &(x4), with

a,P=I or X. As above we expect the coupling between
states of different symmetry (M„xand Mxr) to be much
weaker than that between "similar" states (M„„and
Mxx}.

Based on this simple picture we can make predictions
concerning the two contributions, JI- and Jz, to the
total current density in a GaAs/A1As heterostructure.
First, there is no I X transfer for biases
V ( [E, (GaAs) EF )/e. However—, the direct component
JI- may still be strongly affected by the presence of the
tunneling state fx, in particular due to resonant
tunneling via confined X states in the barrier. We
will briefly come back to this below. For biases
V & [E, (GaAs) E+]/e, I X transfe—r is possible, and the
total current density is given by the sum of J„andJ~.
Their relative contribution is determined by two compet-
ing factors. On one hand, Jz is favored by the stronger
coupling to fr at the barrier interface. On the other
hand, Jx is favored by the slower exponential decay of gx
through the barrier. For very thin barriers the interface
coupling is the decisive factor, and we expect Jz &Jz.
With increasing thickness of the barrier the difference in
decay rate will eventually yield Jz & Jz, and the cross-
over to a "IX filter" takes place around a barrier width

Lzz that will be estimated below via numerical examples.
The qualitative discussion above can only be expected

to be valid in the off-resonant tunneling regime. The res-
onant features of tunneling through indirect-band-gap
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heterostructures have been discussed extensively in the
literature, ' ' and they have been observed very clearly
in experiments. ' In general there are two types of reso-
nant states in a GaAs/A1As structure. With two or more
A1As barriers there will be one or more GaAs wells in
which one finds the "normal" quasibound states cj-
confined by the I profile of the conduction band. On the
other hand, the X profile of the conduction band reverses
the role of barrier and well material, and as a result there
will be resonant levels cz confined to the A1As layers.
These states are degenerate with the continuum of the
GaAs contacts and hence similar to the so-called Fano
resonances in atomic physics. Predictions concerning
resonance positions and linewidths are to some extent
model dependent, as discussed in Ref. 18. Here we shall
not elaborate further on the resonant structure of the
current, although tunneling via resonant levels is indeed
taking place in the structures studied below (only e» in

the single-barrier case, both c,z and c.z in the double-
barrier case).

In order to determine the conditions for having a I X
filter, we have calculated current-voltage curves for a
number of single- and double-barrier structures. Explicit
results will be shown for single barriers only. We have
used a Fermi level of 10 me V above the GaAs
conduction-band edge. Furthermore, the potential profile
is taken to be flat throughout the GaAs contacts, with a
linear voltage drop across the barrier structure. In Fig. 5

we have plotted the two current-density components Jz
(thick solid line) and J» (thick dashed line) for a single
A1As barrier of width 40 A, for biases in the range where
I X transfer is possible, and at zero temperature. We
have also included the corresponding transmission
coefficients Tr (thin solid line) and T» (thin dashed line)
at the Fermi level and with kII=O. This shows that, al-

though Jz and J~ are given by integrals over E and kII of
T& and Tx, respectively, their dependence on applied
bias is to a very good approximation reflected in a single
ualue of the transmission coef6cient. Of course, the in-

2.5

2.0 ~

E~ is-

] 4.0

' 30 ~

2.0

0.5; i.0
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FIG. 5. Direct and transferred current-density contributions
(thick lines), Jz and J&, for a single AlAs barrier of width 40 A.
The corresponding transmission coefficients (thin lines), T& and
T&, at E =E+= 10 meV and kII =0 reflect to a good approxima-
tion both the qualitative behavior of J& and J&, and also their
relative contributions to the total current density. The left vert-
ical axis represents Jl- and Jz in A/cm; the right axis
represents Tz and T& which are of the order of 10 in this
case.

100

10;

O. l =
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FIG. 6. Rr», as defined in Eq. (5.2), for a single AlAs barrier
as a function of barrier width, the latter given in terms of Nb,
the number of monolayers of AlAs. The solid line connecting
the data points is nothing more than a guide to the eye. Rz&
gives a quantitative measure of the relative contribution of Jx
and Jr to the total current density: Rrx &&1 implies negligible
I X transfer; R zx &) 1 implies large I X transfer.

tegrals over E and kII tend to give a smoother behavior of
J( V) than that of T( V). In addition, resonance positions
and relative peak values may be slightly shifted in J ( V)
when compared with T( V). However, since we are not
interested in details in the current-voltage curves, the fol-
lowing discussion may be based on the behavior of Tz
and Tx at E =Ez and k =0.

II

From Fig. 5 we see that a single A1As barrier acts like
a good I X filter for a width of 40 A. As a measure of the
I X transfer we have calculated the ratio

fdVT»( V;E =E~'k
R~ fdVTr(V;E =EF;ki=0

(5.&)

with limits of integration at 0.5 and 0.8 V. The result is
shown in Fig. 6 where R z~ is plotted versus the number
of monolayers of A1As in the barrier. As expected there
is only negligible I X transfer for very narrow barriers,
but already at 10 monolayers there is almost an order of
magnitude more electrons being transmitted in the X val-

ley than in the I valley. Hence, the single A1As barrier
behaves like a I X filter with a crossover thickness
LI.X-2,5 A.

We have also performed analogous calculations for
double-barrier structures. As mentioned above, a qualita-
tive di6'erence from the single-barrier case is that reso-
nant tunneling may happen not only via confined X states
in the barriers, but also via confined I states in the well.
Hence the resulting current-voltage curves display more
resonances, both asymmetric Fano resonances and "nor-
mal" resonances with a Breit-Wigner form.

Because of the complicated resonant behavior of Tz
and T~, R„~is not a smoothly increasing function of
barrier width. This is already apparent in Fig. 6, and in
the case of a double barrier the oscillations are even
stronger. Even so it is possible to distinguish two re-
gimes, one where mostly Rzx(&1 and another where
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mostly Rzz&&1. For the double-barrier structure we

have evaluated R zz as a function of AlAs barrier width,
for four different GaAs well widths: 6, 17, 34, and 56 A.
The resulting barrier crossover widths are Lr» —14, 22,
25, and 25 A, respectively. This result can be under-
stood as follows. When the well is very narrow and con-
sists of only two monolayers of GaAs, there is strong cou-
pling between the X states in each barrier. Hence the
crossover width for one barrier is about half the cross-
over width in the single-barrier case. With increasing
well width the coupling between the X states in each bar-
rier becomes weaker, and Lzx approaches the value
found in the single-barrier case.

approximation, first, to enable a study of the effects of al-

loy scattering in, e.g., Al„Ga&,As, and second, to see
how interface roughness affects the I X transfer.
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APPENDIX A

From Eq. (2.1) we have

(nbjk~~lHln'b'j'k~() =Laz~ fdk„e

&&(nbklHln'b'k), (A 1)

VI. CONCLUSIONS

We have presented a framework for the study of tun-
neling in III-V semiconductor heterostructures. A multi-
band tight-binding model was used to obtain a realistic
description of the lowest conduction band of each materi-
al. We applied the model to GaAs/A1As structures
where the barrier material has an indirect band gap.
Tunneling states fr and l(» contribute to transmission.
For barriers wider than about ten monolayers of A1As,
tunneling via P» dominates. An applied bias larger than,
in the present model, 0.5 V enables transfer of I' electrons
to the X valley in GaAs. The I X transfer is stimulated
by an indirect-band-gap AlAs barrier. With a
conduction-band offset of 160 meV between GaAs and
A1As we find a barrier "crossover width" Lz~-25 A
which separates a regime of negligible I'X transfer (nar-
row barriers) from a regime of large I'X transfer (wide
barriers).

Finally, we would like to comment that the present
model is quite general. Given the crystal structure, a set
of tight-binding parameters, and the conduction-band
offsets between the materials involved, one can study
transport through structures of arbitrary composition.
Interesting applications, besides the one studied here,
could be the polytype type-II heterostructures and the
mixing of hole states in a pn junction. One might also try
to apply the model on the level of the coherent-potential

I

where the matrix elements (nbklHln'b'k) are given in
Table A of Ref. 24. For example, the matrix element be-
tween the anion s orbital and the cation p, orbital is

(saklHlp, ck) = V(sa,pc)g3(k) . (A2)

where d, = (1,1)ar /4 and d2=(1, —1)ar /4 are vectors in

the (y, z) plane. Hence (Al) readily yields

(sajkllHlp, cj'k~~) = V (sa,pc) &1+, 1'
—

sink~~ d,

l—
5J ) J 2

sink)~ dz (A4}

for the matrix element in the desired basis. In Eq. (2.2)
we let U„represent the "hopping" from an anion layer j
to a cation layer j —1, whereas V„represents the hop-

ping in the other direction, from j to j+1. We then
have, with s„=—,

' sink~ d„and c„=——,
'

cosk~~ d„(n=1,2),
the following elements of our Hamiltonian:

Here V(sa, pc)=4(saR, lHlpcR, ) is one of the, thirteen
in all, independent TB matrix elements in the basis of
symmetrically orthogonalized atomic orbitals lnbR), and

g3(k) may be regarded as a form factor that is deter-
mined by the symmetry of the crystal. One may write

ik„~g/4 l —ik„a&/4 gg3(k)=e " —
sink~~ d&

—e " —
sink~~ d2, (A3)

E =

E(s, b)

E(p, b}
E(p, b)

E(p, b)

E(s', b)

b=c or a,

V(s, s)cz

V(pa, sc)C2

U„= —i V(pa, sc)s2

i V (pa, sc)s2

—V(sa,pc)cz i V(sa,pc)s2 i V(sa, pc}—s2

V(x, x)c2

i V (x,y)s2-

l V(x,y)$2

i V (x,y)s2—
V(x, x)cz

iV(x,y}s2
—V(x,y)c2

—V(x,y)c2 V(x, x}c2
—V(s'a, pc)c2 iV(s'a, pc)s2 iV(s'a, pc—)s2

V(pa, s c)cp

i V(pa, s'c)s2—
i V(pa, s'c)s2

V(s', s')c2

(A5)
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V(s, s)c
&

V(sa, pc)c, i V(sa, pc)s, i V(sa, pc)s,

—i V (Pa, sc)s,
—i V (pa, sc)s,

i V(x,y)s,

i V(x,y)s,

—V(pa, sc)c, V(x,x)c, i V(x,y)s,

V(x, x)ci

V(x,y)c,

V(x,y)c,

V(x,x)c,

—i V (pa, s*c)s,

i V—(pa, s *c)s,

i V (x,y)s, —V(p a, s'c)c,

V(s' apc)c, iV(s*a,pc)s, iV(s' apc) s, V(s*,s*)c,

In addition U„=U„andV„=V„.Numerical values
for GaAs and A1As, taken from Ref. 24, are collected in
Table I.

G +G'=i(G —G") . (85)

lated to the retarded and aduanced Green functions G"
and 6 via

APPENDIX 8

where P(m) is the probability of having the many-body
configuration I m ], and p (s) is the probability that the
single-particle state lt)), ) is occupied in the given many-
body configuration [p (s) equals 0 or l]. Since the re
duced density matrix p is defined as

p= QP(m)gp (s)lP, )(P,
Im I s

we may also write

J =tr(pJ),

(82)

(83)

where tr denotes the trace operation. The connection to
Green functions is now transparent since

In this appendix, we will follow a general approach and
obtain the electric-current density in terms of nonequili-
brium Green functions. Using so-called "surface Green
functions" we will show how to make contact with the
transmission-probability approach presented in Sec. IV.
The present treatment is closely related to the one intro-
duced by Caroli et al. For a system of noninteracting
electrons, the total current density J is given in terms of
the single-particle current-density operator J as a many-
body quantum average over occupied single-particle
states, and a statistical average over all possible many-
body configurations. Thus,

I = g P (m)gp (s)(P, l
J I y, ),

Im) s

In general only two of the four functions in (85) are in-
dependent since one also has the connecting identity

GR —[G A]'t (86)

for the net current density Bowing between layers m and
m + I (in the positive x direction). In (87) the matrix ele-
ments of 6 depend, of course, on E and k~~, and the TB
"hopping" elements u +, depend on k~I in a way that is
determined by the crystal structure (see Appendix A).
Equation (87) is valid for systems that have translational
invariance in the parallel plane and are characterized by
a nearest-neighbor TB Hamiltonian.

In order to connect the Green-function approach and
the transmission-probability approach, we must show
that

m+1, m~m, m+1 Gm, m+1 m+1, m )

Equations (83)—(86) constitute the proper starting point
for evaluation of the electric-current density in a system
of noninteracting electrons.

An operator J for the electric-current density is found
by comparing the continuity equation and the Heisenberg
equation of motion. We also use (84) and obtain the re-
sult

d lt((+i= —
~fi 2m

m+], m m, m+]

(
Gm, m+1~m+1, m )

(87)

p= J G'(E), (84) =gT &[fFD(E —pL) f„D(E pL+e—V)] (88—)
aP

where we follow the notation in, e.g., Ref. 40. The corre-
lation function G and its hole "counterpart" 6 are re-

when we have a structure connected to semi-infinite per-
fect leads in equilibrium at chemical potentials pL and

TABLE I. Empirical matrix elements of the sp's* Hamiltonian in ev for GaAs and A1As.

Compound

GaAs
A1As

E(s,a)

—8.3431
—7.5273

E(p, a)

1.0414
0.9833

E(s,c)

—2.6569
—1 ~ 1627

E(p, c)

3.6686
3.5867

E(s*,a)

8.5914
7.4833

E(s*,c)

6.7386
6.7267

V(s, s)

—6.4513
—6.6642

Compound V(x,x) V(x,y) V(sa,pc) V(pa, sc) V(s*a,pc) V(pa, s*c) V(s*,s*)

GaAs
A1As

1.9546
1.8780

5.0779
4.2919

4.4800
5.1106

5.7839
5.4965

4.8422
4.5216

4.8077
4.9950

0.0000
0.0000
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(Ag)R ARBR

(Ag)A gAgA

(Ag) =A B +A g"
(Ag) =A B +A g" .

(B10)

(3} The Dyson equation and the recursive Green-
function technique, described in detail in the Appendix of
Ref. 30.

(4}The unit matrices of Eq. (3.11}.
Straightforward algebra then yields

g (a, I U„2Imy,+ U„IP, ) tPI GN+], p Ip]
aPp, v

X(p. I U.,2 Imy, U..Iv. ) [vl Gp, ]v+] Ia]

X [fFD(E pL ) fFD(E pL+eV)] (Bl 1)

for the left-hand side of (B8},where we have chosen to let
the cation and anion layers of "site" N+1 represent m

and m+1, respectively. Here subscripts e or Q on the
states a, P, p, and v denote the cation or anion parts, re-
spectively Furthe. r, 2 Imy =—i(y"—y"), and y,+(y, ) is

the surface Green function, i.e., the local element at the
surface layer of the Green function for a semi-infinite
crystal extending from layer N+ l, a (O, c) to + oo( —ao ).
Remember, sites N + 1 and 0 are defined as the first sites
of the semi-infinite crystals at constant potential energy
on each side of the heterostructure. From the recurrent
relations for the surface Green functions it is clear that

y,+ is the same on site N +1 as in + ~, and y, the same
on site 0 as in —00. In other words, y,+ and y, in (Bll)

I

pR =pi —eV. The following ingredients are required to
rewrite the left-hand side of this equation:

(1) The equilibrium expressions for 6 and 6 in a
homogeneous system at chemical potential p: '

g (E)=i[g (E)—g "(E)]fFD(E—p),
(B9)

g (E)=i [g"(E) g "(—E)][1 fFD—(E —p)] .

(We use lowercase letters for Green functions that de-
scribe a system in equilibrium. )

(2} The rules, derived by Langreth and Wilkins, for
handling products of two or more Green functions

(a, I U„21my,+ U„IP,)=—

4
v~5 p, (u &0),a a ~ a

(B12}

(p, lU„2Imy, U„lv,)= (plulv)= u„5„„,4A 4'
QL QL

(v„(0).

Here the relation (alvlP)=v 5~ follows from current
conservation. Although states with negative velocity do
not contribute to the sum in (Bl 1), there corresponds to
each state p (with u„(0)a "time-reversed" state p' (with

v„.= —v„&0)for which one has

(p,'IU„2Imy, U„lp,')=—
Vp

QL
(B13)

Finally, collecting all our knowledge, the sum in (Bl1)
may be written as

reflect asymptotic properties of the left and right lead, re-
spectively, which allows for the use of (B9) in deriving
(Bl1).

In (Bl1) only a few terms contribute to the sum. First,
there can only be a contribution from extended states
with real values of k. Clearly, the result of (Bl 1) must be
unchanged if we choose sites, other than N + 1 and 0, fur-
ther into the asymptotic regions. However, evanescent
states P or p would give a modulus

I [PIG;~ Ip] I that de-

creases exponentially with increasing i or decreasing j
(i &N+1,j (0). Second, only states with positive veloci-

ty contribute to the sum since the retarded Green func-
tion propagates a scattering state forward in time. Final-
ly, since 6"=[6"]t, the states v and a must also be ex-
tended states with positive velocities.

What remains is to evaluate the matrix elements
(a, I U„2Imy,+ U„IP, } and (p, I U„2Imy, U„I v, ). This
task is accomplished by rewriting matrix elements of the
velocity operator u [see Eq. (3.5}] with the help of the
Dyson equation and the recursive Green-function tech-
nique. The result is

v 5 t]IplG]v+, pla] v„5„„[vIGp]]]+]Ia}[fFD(E—
pL } fFD(E pL+«)]- —4fi R 4A

apjMv QL

2
4A

u tIuIP]IGN 1, +l pjla[fFD(E pL) fFD(E —
pL +eV)]R 2

aP

QT~t][fFD(E p—L ) f„D(E pL
—+—eV)], —

aP
(B14)

which demonstrates the validity of Eq. (B8), and hence the equivalence of the transmission-probability approach in Sec.
IV and the Green-function approach.
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